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JPA and ORM

Object relational mapping
e How to map between the primitive data in the database tuples
(rows in database tables) and Java objects?

We're using JPA 2.0 as our ORM “framework™ (not

what | call framework, middleware better)

e Using annotations to define the mappings
e Also possible using XML mapping files, we don't ..

Sadly Persistence JPA seems a little brittle , ..
this has been the most troublesome part of the course, ...
may the force be with you
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Mapping OO-models to Database

In general

- Package —— Schema (have only one package, the model)
-Class —— Table

- Attribute —— Column

- Associations —Relationships

Associations are tricky

- Relational model only has relationships and the 1:N cardinality (the
1.1 cardinality must be forced through UNIQUE constraint on foreign
key)

- .more to come...

(®%)) GOTEBORGS UNIVERSITET




JPA Entity Class

Class, possible to map to database table(s). A Java

class with

® @Entity class annotation and @ld attribute annotation.
Default constructor

Serializable

No final, whatsoever!

Must be listed in a "persistence unit” (config file) more later...

@Entity annotation on..
® Abstract class, ok
® |nterface or Enum, no!
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Entity Class Identity

Entity classes should define equals-method (and

hashCode) else possible problems..
- In our case we only use the id attribute in equals, more to come ...

- Also: Same type or mixed type equals?
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Default Mapping Rules

If no annotations except @Entity and @ld default mapping rules

applies (again: convention over customization)

e Class mapped to single table. Table will have same hame as
class but uppercase

® Attributes mapped to column names, uppercase

e JDBC rules for mapping simple Java types to database types
O int, Integer, .. bytell, Bytell, ...String, Data, Calendar, TimeStamp.any

ENUM, any Serializable.

® Relationships creates columns for fk (possible

extra/unnecessary join tables)

Upper- Lower-case confusion..
® Depends on database...” Most seems not to be case
sensitive! Always check!!!
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Customize Mapping

If not satisfied with default mappings use class, field or method
annotations. Annotations for;

- Table

- Columns

- Others

We give a few examples

Many more at http.//www.objectdb.
com/api/java/jpa/annotations/orm

GOTEBORGS UNIVERSITET



http://www.objectdb.com/api/java/jpa/annotations/orm
http://www.objectdb.com/api/java/jpa/annotations/orm
http://www.objectdb.com/api/java/jpa/annotations/orm

Customize Table

Use @Table class annotation

// Other name for table

@Entity
@Table (name="CUST", schema="RECORDS")
public class Customer { ... }

// Unique constraint for full row (i.e. no duplicates in rows)

@Entity

@Table (name="ALLOCATION", uniqueConstraints={
@UniqueConstraint (columnNames={"CONSULT ID", "PROJECT ID"})

})
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Customize Columns

@GeneratedValue

- Used with @ld to let database generate primary keys

- If using generated id, never supply any id when creating entity
(constructor or other ..)

- More to come ..

// Generate pk’sl, 2, 3, ...

@GeneratedValue (strategy=GenerationType.AUTO)
@Id

private Long 1d;

@Column used for name and restrictions

// Other name and restrict
@Column (name="DESC", nullable=false, length=512)
public String getDescription () { return description; }
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Customize Columns, cont

@Temporal must be used for Date and Calendar

@Temporal (DATE)
protected java.util.Date endDate;

@ Transient specifies that an attribute is not persistent (possible a
calculated value)

// Don’t save current user
@Entity
public class Employee {

@Id int id;

@Transient User currentUser;
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The Id Problem

If letting database generate id, the object have no id
before really written to database

Can't depend on object id before. Will cause
problems if not observant

- equals method
- .. @S a consequence can't use in some containers (Set)
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Collections and Enums

if class has a Collection or Map of primitive types

e Annotate with @ElementCollection, @CollectionTable (possible
FetchType.Lazy upcoming...)

e \Will create extra table holding collection data

e |f non-primitive.. more to come...

If class has Enum

e Annotate with @Enumerated( EnumType . STRING )
e Willend up in same table
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Embedded Objects

Embedded object dependents on some entity class for it's identity
(no own identity, i.e. a value object, identifying relationship)

@Embeddable
public class Address { ... }

@Entity

public class Employee {
WEmbedded
private Address address;

}

Ends up in same table (Employee)
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Assoclations

Classes A and B

1 = 1+
S | B A B
1 1 * 1 This one
A - B A B possible
to fix
1 * . .
A «— B A B
Unidirectional OK Bidirectional BAD
Mutual dependencies,
avoid
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Mapping Associations

Classes (objects) are connected with associations,
database tables with relationships

Mapping an association will result in relationships
between tables

e Not a perfect match..associations have direction, relationships
not

RUNTIME: Associations = object references, relationships =
matching row id's (key’s)
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Assoclations: UML vs Database

UMVL associations means a references in Java

- UML 1.1 says one object having a reference to another. But the id
of the objects aren't considered! It's just some objects associated

But when working with databases the id's are what's

count
- Database (ER) 1:1 says one pk is related to one unique pk from
other table (like splitting a table vertically). The id's are related!
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Unidirectional 1:1 Mapping

@XToY , X is object having the annotation Y is associated object

11
A —> B

r?:tf?g;tuio CGEntity REntity
necessary C)OoClaSS A { class B{

@OneToOne

ERe) }

}

A

i
/

Join column,B_ID
(default name)

If the exact identity of B is important (database 1:1) need to use Column(unique=true) for
B _ID
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Unidirectional 1:* Mapping

1 * 1 *
A —> B A - B
REntity QEntity QEntity @Entity
class A { class B{ class A { class B{
dOneToMany @ManyToOne
@JoinColumn ( } } A a;
name = B FK) }
List<B> b;
b oo
O A
O B

—

If not using °o0 ®) Will end
JoinColumn - up the
extra table same in

database

\

Join column, B_FK (will be
added)

created
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Mapping Bidirectional Association

As noted; We'll avoid this so just a quick one to many
bidirectional

// Class A
@OneToMany ( mappedBy = "a") // Must use mappedBy
private List<B> Dbs;

// Class B

@ManyToOne

@JoinColumn (name = "AUTHOR FK")
private A a;

// Navigation
A a = ..get an A
List<B> bs = a.getBs();

b
a

B
A
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Mapping M:N

Many to many transformed to .. this!

Author

Book Author Book

class Author

Collection<Book> bs; Ny
Publication

}

class Book{

@Entity GEntity

Collection<Author> as; class Author { class Book {

}

o

O

} }

@Entity
ﬁTable(name="PUBLICATION", uniqueConstraints={
@UniqueConstraint (columnNames={"AUTHOR ID", "BOOK ID"})

})

class Publication {
@ManyToOne
Author a;
@ManyToOne
Book b;

Will get extra




Summary Assoclation Mapping

SE best practices
- Limit number of associations
- Prefer unidirectional, review use case to decide direction

If need to navigate in “other” (non existing) direction

have to search
- Probably best to let database search (i.e. use queries, upcoming)
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Mapping Inheritance

Different strategies
- Single table for hierarchy (all super/sub-objects in same table)

- Joined strategy, many tables
- .. more...

//Superclass

@MappedSuperclass

public class Person .. {
// Common code

}

//Subclass, everything will end up in table Employee

@Entity
public class Employee extends Person {

}
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Fetching Strategies

When to load associated objects
- EAGER, when owner loaded
- LAZY, when code executed

Default (otherwise annotate)
- @0neToOne, EAGER

- @ManyToOne, EAGER

- @0OneToMany, LAZY

- @ManyToMany, LAZY

// Example
@OneToMany (fetch=FetchType.EAGER)
List<OrderItems> o01i;
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Generation of Tables

We can specify that JPA should create the tables (using the

annotated classes) when application runs, a table generation
strategy (DLL)

- Possible to specify in NetBeans

Possible strategies

- None, no tables created

- Create, will create

- Drop and Create, delete and create

Strategy defined in persistence.xml, upcoming..
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JPA Constraints and Bean
Validation

@NotNull is a JSR 303 Bean Validation annotation. It has nothing to
do with database constraints itself.

@Column(nullable = false) is the JPA way of declaring a column to
be not-null. l.e.

When to use
@NotNull is on control layer
@Column is for entity classes in model layer

As noted: All layers should validate incoming datal
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JPA and JAXB

Possible to have both @Entity and @XmlRootElement

on same class
- Get database data as XML directly .. possible for REST

applications
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Other way round

If you're a skilled database developer, start with
database and let NetBeans generate the application
bout ...

..dont touch generated code! Separate
out!
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