
Service Based Approach
Intro, Beans, JAXB, Web

Services and JAX-RS

WS Slides #1

Serviced Based Approach

The Web is a marvelous “application”
- Has been up 24/7 for 30-40 years
- Has been able to expand many magnitudes
- More users, more data, more advanced services , …
- … the perfect application?

Hmmm.. wouldn’t it be good to build our application
like that??
- So what are the key principles behind the Web?

Representational State Transfer
(REST)
Key principles that makes the web work and scale
1. Identification of resources (anything that can be named as a

target of hypertext)
2. Manipulating of resources through representations (in

responses we get an representation of the resource, for example
as XML)

3. Self-descriptive messages (each message contains all the
information necessary to complete the task. Other ways to
describe this type of message is "stateless")

4. Hypermedia as the engine of application state (HATEOAS), the
client/server interaction state is in the hypermedia they
exchange (client guided through application)

 // Roy Fielding, author of HTTP specification

Implementing REST

Practical interpretation of REST

1. All resources accessible with URL's
2. Use XML (or JSON, or, .. more later) in HTTP-

request/responses as representation of objects
3. HTTP is stateless and self descriptive (simple

unified interface: GET, POST, PUT, DELETE, ...)
4. Embed links in response (i.e. present the options to

the client, more to come ...)

RESTful CRUD Service

Resource URL:http://www.server.com/application/orders

URL above will give us a
representation of the orders
(possibly in XML (or other))

CRUD = create, read,
update, delete

A resource

To Build an RESTful Application

I.e. an application adhering to the principles we use
Web Services (and more...)

To use Web Services we need a few Java EE APIs, …
(and some design)
- JAXB (mostly in background)
- JAX-RS
- … but first define Java Bean (aka Javabean, Java Beans,
 ...next slide)

Java Bean

Recurring term: Java bean, session bean, managed
bean, enterprise bean...

Class must fulfill the below to be a Java Bean
● Private attributes and read/write methods for (relevant)

attributes (attribute +set + get is called a property)
● Naming conventions for set/get-methods
 private String data;
 public String getData();
 public void setData(String str);
● Default constructor (possible protected), Serializable
● May generate events

 .. sadly it's a bit of an antipattern... (can't use immutable...)

Java Architecture for XML Binding,
JAXB

Runtime

Purpose: Convert between XML Schema/XML
documents and/or classes/objects

JAXB Basics

We will not use XML Schema from/to class

We use JAXB to (un)marshal objects
● Must have no-arg ctor (not shown below)

@XmlRootElement(name="person")
@XmlAccesorType(XmlAccessType.PROPERTY) //Annotation on methods (or XmlAccessType.
FIELD)
public class Person {

 private int id;
 private String fName;

@XmlAttribute
public void setId(int id){

this.id = id;
}

 @XmlElement(name="fname")
public void getFName(){

 return fName;
 }
}

JAXB Documentation

Reference implementation Metro, links course page

We'll try to avoid explicit use of JAXB, most work will
be done in background, more to come...

Details at https://jaxb.java.net/2.2.6/docs/ch03.
html#annotating-your-classes

https://jaxb.java.net/2.2.6/docs/ch03.html#annotating-your-classes
https://jaxb.java.net/2.2.6/docs/ch03.html#annotating-your-classes
https://jaxb.java.net/2.2.6/docs/ch03.html#annotating-your-classes

Testing JAXB

JAXB part of Java SE, possible to run JUnit test
without any dependencies!
● Use to check out the XML result of the annotations, see code

samples

Web Services

Probably no commonly accepted definition ?!

[Definition: A Web service is a software system designed to support
interoperable machine-to-machine interaction over a network. It
has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web service in
a manner prescribed by its description using SOAP messages,
typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards.] *)
// http://www.w3.org/TR/ws-arch/

) This is mostly a definition of WS-, upcoming...

http://www.w3.org/TR/ws-arch/

Web Services Programmers View

The application is composed of loosely coupled,
distributed, reusable, platform/language independent
services (resources)

Service has an agreed on/public interface/API

Presentation or functionality from two or more
sources to create new services
- This is sometimes called a mashup application

Types of Web Services

WS-*, A stateless messaging service (Simple Object Access
Protocol, SOAP), describing service interfaces in XML (Web
Services Description Language, WSDL). Heavyweight. Code
generation from WSDL and conversion to objects. WSDL
example: http://www.vasttrafik.se/External_Services/TravelPlanner.asmx?WSDL

WS-REST, RESTful Web Service, an architectural style

http://www.vasttrafik.se/External_Services/TravelPlanner.asmx?WSDL
http://www.vasttrafik.se/External_Services/TravelPlanner.asmx?WSDL

Services vs. Resources

WS-* is a service oriented approach. The key
abstraction is a service (a verb)

WS-REST, is not service oriented, it's resource-
oriented, the key abstraction is a resource (a noun)
● So Web Service for REST is a bit misleading

WS-* vs. WS-REST

REST very hyped right now, but watch this ...

http://www.slideshare.net/pizak/rest-vs-ws-myths-
facts-and-lies-352457

True believers in REST: RESTafarians

Anyway, ...we only use WS-REST

http://www.slideshare.net/pizak/rest-vs-ws-myths-facts-and-lies-352457
http://www.slideshare.net/pizak/rest-vs-ws-myths-facts-and-lies-352457
http://www.slideshare.net/pizak/rest-vs-ws-myths-facts-and-lies-352457

Web Services Roles

Consuming a Web Service, i.e a client
Producing, implement a Web Service

Many public Web Services available (normally need a
key to send with requests, API-key or an account or ...).

Example: Consuming some
RESTful Services
Example: Flickr (photo service, no key)
http://api.flickr.com/services/feeds/photos_public.gne?
tags=flower&lang=en-us&format=atom (try change format)

Example: YouTube (no key)
http://gdata.youtube.
com/feeds/api/standardfeeds/most_viewed

Later examples using key (OAuth)

http://api.flickr.com/services/feeds/photos_public.gne?tags=flower&lang=en-us&format=atom
http://api.flickr.com/services/feeds/photos_public.gne?tags=flower&lang=en-us&format=atom
http://api.flickr.com/services/feeds/photos_public.gne?tags=flower&lang=en-us&format=atom
http://gdata.youtube.com/feeds/api/standardfeeds/most_viewed
http://gdata.youtube.com/feeds/api/standardfeeds/most_viewed
http://gdata.youtube.com/feeds/api/standardfeeds/most_viewed

Java API for RESTful Web
Services (JAX-RS)

Java Specification for REST, JSR 311

Reference implementation: Jersey

Client side and server side API's

Need configuration in web.xml (special Servlet...)
● NetBeans will notify if missing (light bulb)

REST Java Client Side

Of course possible to use the java.net.* directly
● Use HttpURLConnection... inconvenient, looooong strings
● ... have to convert representation

Generic client libraries: com.sun.jersey.api.client.Client
A bit smoother, working with objects... using a WebResource class
● ...but still cumbersome, many and strange parameters
● Possible to generate in NetBeans

Specialized API's, example: Twitter4J
● Converting REST API to Java OO API
● Comfortable, clean objects, parameters, ... prefer!

REST Non Java Client Side

Very common with JavaScript clients running directly
in browser, upcoming

Also JavaScript libraries for Twitter and alike (more on
JavaScript later)

REST Java Server Side

JAX-RS resource classes
● Class representing the resource
● Possible to map to URLs
● Can handle HTTP requests (similar Servlet doGet(), doPost())
● Often automatic conversion of representation in parameters

and results
● Automatic extraction of parameters from URL
● Possible a hierarchy of resource classes matching different

parts of URI

If a resource class in application, NetBean will add special icon in
project (RESTful Web Services). No files only resources shown

JAX-RS Root Resource Class

The top level resource class (there are sub resources
not used by us...)

Root resource class must have
● @Path class annotation
● Or at least one method with @Path or a request method

designator (= annotation on method): @GET, @POST, @PUT,
@DELETE,...a resource method

● Default ctor

Instantiated by the JAX-RS runtime

Content Negotiation (Conneg)

Different client needs different representation
● XML, JSON (text format), YAML,...
● Internationalization, Encoding,...

Which representation are we using?

Resource methods can handle different MIME types.
Specify with annotations
● @Consumes (mime type(s) in request...)
● @Produces (...in response)
● Must match "Accept" HTTP header else "Not Found"

Root Resource Example

A first root resource class

@Path("/persons")
public class PersonResource { // Root resource,any Java class

...

@GET
//@Consumes often not needed more later
@Produces({MediaType.APPLICATION_XML, MediaType.APPLICATION_JSON})
public List<Person> selectAll() {
... // Will return List<Person> as XML (JAXB in background)
}

}

Person must be JAXB marsh:able

Running a Service

Possible on Tomcat but many dependencies

GlassFish works out of the box (possible dependency
see samples)

Important log message from GlassFish when running
(check!)

INFO: Root resource classes found: // Good!
 class edu.chl.hajo.bjj.resource.PersonResource
INFO: No provider classes found. // No problem!

Testing a Service

There are testing frameworks (Jersey Test
Framework) but too complex for now, avoid

Simpler (but manual): cURL, command line tool for
transferring data with URI syntax http://curl.haxx.se/

Command line post example

curl -v http://localhost:8080/service_based/rs/persons --request
POST --data "pnumb=99&fname=XX&age=99"

http://curl.haxx.se/

Conneg Details

Any JAXB annotated class can be marshaled as
response
● As XML or mapped to JSON, Atom, ...

Can't return primitives int, double, boolean, ... !
● ... has no natural XML representation (possible to implement

custom content handlers to marshal, we don't)...
● ... simpler, create a JAXB wrapper class

(<boolean>true</boolean>)...
● ..or return a String (too simple?)

JAX-RS: URI Path Templates

URI's with embedded parameters (substituted
runtime). Annotations on methods

// username a parameter in request
@Path("/users/{username}")
// Possible using regex to match
@Path("users/{username: [a-zA-Z][a-zA-Z_0-9]}")

Possible to retrieve request parameter as path
(method) parameter

@GET
@Produces("text/xml")
@Path("/users/{username}")
public String getUser(@PathParam("username")

 String userName) {
 ...

}

URL Path Matching

@Path("/root")

@GET String doIt(){...}

@GET @Path("do") String doIt(){...}

@GET @Path("dop/{id}") String doIt
(@PathParam("id")){...}

@Path(value="{subr}") String delegate(){...}

@GET @Path("{id}") String doIt
(@PathParam("id")){...}

Root resource
class

(sub) Resource
class

href="rs/root"

href="rs/root/dop/12"

href="rs/root/do"

href="rs/root/subr/12"

/rs/ is Servlet
mapping in web.xml

We don't use sub
resources

Form Parameters

@FormParam, parameter annotation, extract posted
form data (matching names)

 @POST
 @Consumes("application/x-www-form-urlencoded")
 public Response post(@FormParam("pnumb") String pnumb,
 @FormParam("fname") String fname,
 @FormParam("age") int age) {
 ...
 }

Type Conversions

Automatic type conversion from HTTP request (string)
to Java
● Primitive types
● Some classes with special restrictions (ctor with exactly one

String param, etc.)
● List<T>, Set<T> and SortedSet<T>

Conversion of Generic Types

Must use

// Get a list
List<Person> ps = ... (List is generic class)

// Wrap list (note anonymous subclass)
GenericEntity<List<Person>> ge =

new GenericEntity<List<Person>>(ps) {};

More later...

JAX-RS Content Handlers

Some build in content handlers ((un)marshall from/to
HTTP message body to specific Java type)

Mostly low level
- StreamingOutput, Reader, File, byte[], String, char[], ...
- Possible to implement custom content handlers (primitive types)
- Probably don’t need

Context

Possible to inject "low level" objects in resource
classes using @Context annotation (similar to
ServletContext)

@Context
private HttpHeaders headers;

@Context
private UriInfo uriInfo

@Context
private Request request;

.. and more

Standard HTTP Response Codes

Successful response codes (GET, POST, PUT,
DELETE)
● “200 OK”, if return value not null, message has body
● “204 No Content” if return value null (but ok), no message body
● ...

Errors
● Client error 4xx
● Server Error 5xx
● Examples “404 Not Found”, “406 Not Acceptable”, wrong data

format, “405 Method Not Allowed”, bad method, 500 Internal
Server Error (...NullPointerException ..:-) possible...)

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

REST Response Codes

JAX-RS default response codes close to standard
response codes (as described in HTTP 1.1)

Examples
GET: If found 200, else 204 (null)
POST: 201 Created

Possible to customize response codes, upcoming...

Return Types

As noted we can return objects or collections of any
JAXB marsh:able type
● But we don't ...

Simpler and more uniform to let all methods have
return type : javax.ws.rs.core.Response
● Possible to embed (marshalled) objects in responses
● Possible to customize for example response codes and more...
● Will use response codes from previous slide
● Inspect code samples

Return Type Examples

// There's a ResponseBuilder object in background
Person p = reg.selectByPk(pnumb);
if (p != null) {

// ok = 200 OK
return Response.ok(p).build();

} else {
// noContent = 204 No Content

 return Response.noContent().build();
}

// Returning a collection
List<Person> ps = reg.selectAll();
GenericEntity<List<Person>> ge =

new GenericEntity<List<Person>>(ps) {};
return Response.ok(ge).build();

Caching

"The advantage of adding cache constraints is that they have the
potential to partially or completely eliminate some interactions,
improving efficiency, scalability, and user-perceived performance
by reducing the average latency of a series of interactions."// Roy
Fielding

I.e.
● improve speed, because we want to deliver fast content to our consumer

● fault tolerance, because we want our service to deliver content also when it
encounters internal failures

● scalability, because the WWW scales to billions of consumers through hypermedia
documents and we just want to do the same thing

● reduce server load, because we don't want our servers to compute without the need
of it

Types of Cache

Local cache, your browser's local copy

Proxy cache, a copy on some server on the way to
the origin (the original Server), a middleman
● Content Delivery Network (CDN), large distributed system of

servers deployed in multiple data centers in the Internet. The
goal of a CDN is to serve content to end-users with high
availability and high performance (example: Akamai)

Caching Strategy

Good candidates for caching are pages that:
● Are accessed frequently
● Are stable for a period of time
● Contain a majority of contents that can be reused by a variety of

users

A good example would be catalog display pages

Pages with sensitive data shouldn't be cached

HTTP Header: Cache-Control

Cache-Control (HTTP 1.1) some parameters. Server says...

Value Description

private A cache mechanism may cache this page in a Private cache and resend
it only to a single client. This is the default value. Most proxy servers will
not cache pages with this setting.

public Shared caches, such as proxy servers, will cache pages with this
setting. The cached page can be sent to any user.

no-cache Do not cache this page at all, even if for use by the same client.

no-store The response and the request that created it must not be stored on any
cache, whether shared or private. The storage inferred here is non-
volatile storage, such as tape backups. This is not an infallible security
measure.

Example Server Response

HTTP/1.1 200 OK
Content-type: application/xml
Cache-Control: private, no-store, max-age=300

● Only client may cache
● Must not be stored on disk
● Valid for 300 seconds

Cache Inconsistency

Cache introduces inconsistency!
● Possible resource served to a consumer is different from the

one actually held by the server

To improve data’s consistency:
● Cache validation

○ Use ETag header (a hash/MD5 encoding of the
object). Server calculate/set ETag header, client store and
add to next request or ...

○ ... use Last-Modified header, timestamp, proceed as above...

Cache validation

public interface Request {
 ResponseBuilder.evaluatePreconditions(ETag eTag)
 ResponseBuilder.evaluatePreconditions(Date lastModified)
 ResponseBuilder.evaluatePreconditions(Date lastModified, ETag
eTag)
}

Use on Server side
// Create an ETag object (etag) for actual object then...(compare with request)
ResponseBuilder builder = request.evaluatePreconditions(etag);

If precondition true builder == null
If precondition false builder == A ResponseBuilder with appropriate
status (possible 412 Precondition failed)

HATEOAS

HATEOAS: The interaction state of the client/server in
exchanged hypermedia

I.e embed all links useful for client in the response

Using Atom-links (XML based format for lists
of related information)
● Links embedded in XML document (or other) or ...

Using HTTP Response “link” header
● Link in response (don't need to parse XML to get the link)

JEE HATEOAS

Not much support in JAX-RS (HATEOAS defined by
application)

Running JEE Web Services

Possible to use Tomcat or other but many, many
dependencies

Prefer GlassFish everything included

