
Web applications Adam Waldenberg

Workshop 5: Designing a Real Time Web
application with ICEFaces

Objective

In this workshop we will design a simple chat application. To accomplish this, we will

need to use the following:

• The GlassFish application server.

• Java Server Faces (JSF).

• The ICEFaces component suite together with the ICEPush push server.

• Context and Dependency Injection (CDI).

• Bean validation.

Final date: See course page

1 Introduction

This workshop will take you a little deeper into the intricacies of Java Server Faces

and teach you how you can properly utilize the provided functionality of a modern JSF

component suite such as ICEFaces.

ICEFaces provides automatic Ajax functionality1, direct-to-DOM rendering2 and server

push3. With these technologies, ICEFaces can partially update pages and only trigger

submits on page components that it deems need updating; something called �Single Sub-

mit�4 in the documentation of ICEFaces. In practice; this means that less navigation

(and reloading of pages) is needed when updating components on a page. Compared to

other component suites it is easier to get working Ajax behavior and requires very little

e�ort from the programmer.

We will use the functionality of ICEFaces to create a single-paged chat without navi-

gation or submit buttons (ICEFaces can submit component data without actual button

clicks). We will also discuss how you should think when designing your application in

order to get a clean design and preserve the MVC (Model-View-Controller) pattern in

your web application.

2 Preparation

• Download the skeleton code from the course site and import it into NetBeans.

1Automatic Ajax, ICEFaces: http://www.icesoft.org/wiki/display/ICE/Automatic+Ajax
2D2D Rendering, ICEFaces: http://www.icesoft.org/wiki/display/ICE/Direct-to-DOM+Rendering
3Ajax Push Overview, ICEFaces: http://www.icesoft.org/wiki/display/ICE/Ajax+Push+-+Overview
4Single Submit, ICEFaces: http://www.icesoft.org/wiki/display/ICE/Single+Submit

1



Web applications Adam Waldenberg

• Inspect the skeleton code. Notice that the whole chat model has been provided for

you. We have also provided you with an initial layout in the index.xhtml page.

• Your task will eventually be to implement all the managed beans and the JSF page

(index.xhtml) holding the view description. If you look in the project view; suitable

packages to place the Java classes in have already been provided for you.

• Read through this whole workshop before starting any actual work (especially the

troubleshooting section at the end).

3 The chat model

While very simple and by no means complete, the chat model provided in the skeleton

code consists of four separate classes. No changes should be needed to the actual model

to implement the chat application.

• The Building

� The main class and entry point of the application.

� Each building has a number of chat rooms.

• Chat Rooms

� Holds a list of users currently logged into the chat room.

� Holds a list of messages entered by users of the chat room.

• Users

• Messages

� Each message is associated with the user that posted it.

2



Web applications Adam Waldenberg

4 Creating a log in page

Lets create the �log in� page for the chat. We want to create something similar to the

picture above. You will need to do several steps for this:

1. Create a BuildingBean holding the building. Consider what scope it should be

placed in and why. You should get the property #{buildingBean.numRooms} used

inside index.xhtml to work.

2. Create a UserBean holding the user data. Consider what scope it should be placed

in and why.

3. Add the following under SECTION#1 in index.xhtml :

a) Create form elements for entering alias, �rst name and surname. You can use

the <ace:textEntry> component for this purpose.

b) To accomplish form submission without a submit button you can (use the

<icecore:defaultAction> component together with a key=�Enter� attribute.

4. Add validation and reject empty �elds.

5. Does the section need a separate backing bean?

3



Web applications Adam Waldenberg

5 Mind how you toot those beans

When designing a JSF application it is important to structure your beans in a manner

that preserves the MVC5 pattern. This will help in creating an application with clean

separation and coherent design. There are also many other considerations to take into

account. As a thumb of rule, you should always try to follow these simple rules:

• Add at least one backing bean to each page. Often, pages have a single backing

bean. However, multiple backing beans are allowed and is especially useful if a

component, or set of components, are used in several pages. It can also be a

valuable help when dividing the logic of the application.

• Never add actions, actionListeners or valueChangeListeners to a backing bean.

Backing beans are part of the view and should not receive events from user input.

Instead, create a special controller bean for this purpose.

• Keep the model separated from the beans. Try to resist the urge to add Java

EE annotations directly into the model package. Instead, you should wrap model

classes by extending them from a bean class. If you look in the code skeleton, there

is a model.bean package intended for exactly this purpose.

• Always keep your beans in the shortest possible scope. Every time you put a

bean in the wrong scope you are consuming unnecessary memory and breaking the

application.

• @ApplicationScoped and @Singleton CDI beans are not thread-safe. If they have

modi�able �elds you have to make sure they are atomic. Otherwise your application

will break when multiple instances are accessing it. There are many ways of solving

this problem; one is to back up the model inside an EJB (which supplies thread

safety with the right annotations), another is to handle the problem using the many

synchronization options that Java itself supplies.

5MVC, Wikipedia: http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

4



Web applications Adam Waldenberg

6 Creating the chat view

Lets create the chat view. We want to create something similar to the picture above:

1. Add the following under SECTION#2 in index.xhtml :

a) Create a <ace:tabSet> that holds an empty <ace:tabPane> for each chat

room de�ned. You can use the <c:forEach> tag to programmatically create

multiple <ace:tabPane> entries from the list of rooms in the building.

b) Inside each tab; add a <ace:textEntry> that displays the name of the room.

Entering a new room name should also change the name in the tab. If done

correctly, this should happen transparently without any e�ort on your part.

c) Each tab should also hold two <ace:dataTable> components; one for the mes-

sages posted to the chat room and one for the list of users currently inside the

chat room. A data table isn't the most optimal component for a chat view

but it keeps the complexity down so we will use it anyway.

i. The message entries in the left table should display the alias of the poster,

time of the post and the message itself.

5



Web applications Adam Waldenberg

ii. The user entries in the right table should display the alias of the user, full

name and an indicator symbol which is shown whenever that particular

user is writing something in the bottom message �eld.

2. Make sure your beans are structured in a way that preserves MVC.

3. Add the following under SECTION#3 in index.xhtml :

a) Create a <h:inputText> where the user can enter messages to the currently

selected chat room. To get this to work, you need to be able to store the

currently selected tab (or tab index) inside a backing bean.

b) Again, to accomplish form submission without a submit button you can use

the <icecore:defaultAction> component.

c) To get the writing indicator symbol to show up in the user list of the chat room

we need to update the user.writing property whenever a user is writing in the

message �eld. This can be accomplished by adding the following components

to the message �eld:

i. An<f:ajax> component that listens to the keyup event and sets user.writing
to true.

ii. An<f:ajax> component that listens to the blur event and sets user.writing
to false.

4. Make sure your beans are structured in a way that preserves MVC.

7 Ways of testing the chat application

Your application should now work just �ne in single-user mode. It should even work with

multiple users. However, users will need to manually reload to see each other's changes.

To test the chat with multiple users you have two options:

1. Start two separate browsers (two di�erent windows of the same will not work as

that will use the same session).

2. Use Google Chrome and test the application with multiple users by using the user

manager available in Chrome. The user manager can be found under Menu >
Settings > Users. Create a few users and try it out.

To get the chat working without requiring separate reloads from users on changes we

need to add push functionality.

8 Adding Ajax push

ICEFaces provides a simple way of managing push noti�cations between clients with it's

PushRenderer interface. It works in the following manner:

6



Web applications Adam Waldenberg

• PushRenderer.addCurrentSession(GROUPNAME); registers the user's session to

the speci�ed group name.

• PushRenderer.removeCurrentSession(GROUPNAME); removes the user's session

from the speci�ed group name.

• PushRenderer.render(GROUPNAME); tell all members of GROUPNAME to up-

date their view.

Using this, it is relatively simple to update the chat view for all users when new content

arrives. You could, for example, try the following solution (these calls should all be done

inside an actionListener, valueChangeListener or similar):

• Whenever a tab is switched, make the following calls:

� PushRenderer.removeCurrentSession(�CHATROOM� + oldChatRoomIndex)

� PushRenderer.addCurrentSession(�CHATROOM� + newChatRoomIndex)

� PushRenderer.render(�CHATROOM� + oldChatRoomIndex)

� PushRenderer.render(�CHATROOM� + newChatRoomIndex)

• Whenever a new message is entered, make the following calls:

� PushRenderer.render("CHATROOM" + chatRoomIndex)

• Whenever a user logs in, make the following calls:

� PushRenderer.addCurrentSession("CHAT")

� PushRenderer.addCurrentSession(�CHATROOM� + chatRoomIndex)

� PushRenderer.render("CHAT")

• Whenever a user is writing something in the message �eld or stops, make the

following calls:

� PushRenderer.render("CHATROOM" + chatRoomIndex)

• Whenever the name of a chat room is changed, make the following calls:

� PushRenderer.render("CHAT")

9 Clean up the graphical interface on session end

Add a session listener that cleans up the interface. Do you remember how to do this

from the servlet workshop? Whenever a session expires the user should be removed from

any chat room that he or she is part of. Ajax push should be used to notify every client

of the change in the user list. How do you best accomplish this?

7



Web applications Adam Waldenberg

Troubleshooting

• Some of the beans of this workshop need to be put in session scope simply because

CDI in Java EE 6 does not provide a view scope. This has been �xed in Java EE

7.

• Some validation errors might pop up in NetBeans while working with the defaultAc-
tion component (complaining about a missing action attribute). These can safely

be ignored.

• Some versions of NetBeans will complain with "CDI artifact is found but there is no
beans.xml �le." on managed CDI beans. This is harmless and no longer relevant.

• When grouping components together on your page, use <h:panelGroup> and<ace:panel>.

8


