
Intro, Persistence, Object
Relational Mapping and Java

JPA Slides #1

Persistence

Persistent object: Object that outlives the execution of
the program
● Have to store for later retrieval (next execution)

Many persistence mechanisms
● Flat files
● Serialization
● XML
● Different types of databases, … we use (simplest possible is to

use the JavaDB (aka Derby) bundled with NetBeans)!

Java API's for Persistence

Java database connectivity JDBC
● Low level API, not used
● Using embedded SQL strings as parameters

Java Data Object, JDO 2.0, Spec: JSR 243
● Very (too?) general, relational database, object database , ...
● Not used in course, possible fading away...

Java Persistence API, JPA 2.0, JSR 317
● Supports only relational databases
● Built on top of JDBC (JDBC pops up in between)
● We'll use...

JPA 2.x

Possible to use in JEE and JSE environments
● Different configurations, service levels
● If EJB container (GlassFish): Few lib. dependencies, less

code, more "automagical"
● JSE or Tomcat (not an EJB container) and JUnit (JSE) have to

supply dependencies in pom.xml
○ JPA lib's, JDBC driver lib, ...

JDBC Architecture

As noted JDBC will popup in between, need some
insights

We'll need a
JDBC Driver
(database
specific middle
ware, lib).
Dependency in
pom

JPA is here

The OO-Relational Mismatch

Relational databases and object orientation doesn't fit!

Object orientation: Objects

Relational databases: Sets of tuples
● No objects, classes
● No inheritance, polymorphism, generics...

Major clash, the OO-relational mismatch
● Relational databases won't change, mathematical foundations...
● Unsolved problem, ...

Handling the Mismatch, Option 1

Surrender : I.e. don't use OO

Possible solution (good for massive reads)
● Example: Product Catalog to web
● Just use primitive types, String, int, ...
● Fastest possible solution
● Not a solution for complex cases

Handling the Mismatch, Option 2

Try to fix the mismatch
● Map between objects and tuples, object relational mapping,

ORM

No general best strategy
● Must know how database in going to be used
● Mostly reads?
● Mostly writes?
● http://www.agiledata.org/essays/mappingObjects.html

Very complex task to implement
● “Must” use a "framework" to do the mapping, i.e. we use JPA 2.0

http://www.agiledata.org/essays/mappingObjects.html
http://www.agiledata.org/essays/mappingObjects.html
http://www.agiledata.org/essays/mappingObjects.html

ORM Cases to Handle

Associations? Multiplicity! Inheritance? Generics?

Object graphs! Lazy object creation? Lazy fetching?
Caching? Concurrency? Transactions?...

Ad hoc searching
● Possible don't need objects (ex. statistics)

Should database or application do the work?
● Databases very efficient at searching/sorting … we prefer

JavaDB (Derby)

As noted in the crash couse; We use the Java DB (aka
Derby) bundled with Netbeans
- Create/drop databases from inside Netbeans
- Create/drop tables (all tables should belong to a "schema" APP)
- CRUD or edit tables directly from inside NetBeans (NOTE: Must
commit to make persiste, click small button in table heading)
- Run SQL queries from Netbeans
- Sample database supplied (good for testing queries)

Databases stored as files in ~/.netbeans-derby directory
Possible to delete database by erasing files

