
Web applications Joachim von Hacht

Workshop 3: A Component Based Approach,
Java Server Faces

Objectives

Same as previous workshops (expose the ProductCatalogue). We need;

• GlassFish application server.

• Java Server Faces (JSF) and Facelets.

• Context and Dependency Injection (CDI).

• Bean validation.

• PrimeFaces, a higher level component library for JSF.

Please: Inspect code samples from the lectures (on course page)! Every-

thing you need should be there. will hopefully save you a lot of time!

Final date: See course page

1 The JSF request cycle

Recommended is GlassFish.

1. Download the JSF request cycle demo from course page. Run and try to get an
understanding. What happens? When?

Note The URI's, to trigger JSF, see <servlet-mapping> in web.xml (similar to /rs/ for
REST).

2 A JSF front-end to the Model

Yet another way of exposing the shop. Front-end looks very similar and the projects �nal
structure is as usual in Appendix.

1 Produced with Lyx, the open source wordprocessor



Web applications Joachim von Hacht

2.1 Creating the overall layout

We'll use Facelets to create the overall page layout (a template).

Note Facelets uses XHTML, only.

1. Download the skeleton app from course page and open in NetBeans. Inspect, note
new xml con�g-�les in WEB-INF!

2. It should be possible to run and add a product. Try!

3. Edit and delete pages are missing. So ...

a) Inspect /WEB-INF/template.xhtml, the Facelets template �le.

b) Create Facelets pages for edit and delete using the template, see addProd-
uct.xhtml, see Appendix.

c) Create backing beans for edit and delete pages. Both should extend Conversational-
Base and use the conversational scope (to be able to remember which id to
edit or delete). Don't connect to the shop yet, see 2.2.

d) Create the buttons for edit and delete in table on products.page (see above).

e) Connect pages, backing beans and buttons.

4. Add navigation. When adding, editing or deleting is �nish we should return to
products.xhtml. See faces-con�g.xml.

5. Make the front-end work (possible use System.out to trace).

2 Produced with Lyx, the open source wordprocessor



Web applications Joachim von Hacht

2.2 CDI injection

Warning There are annotations with the same name (but from di�erent sets/packages).
If using the wrong annotation very strange things can happen. For now we con-
centrate on CDI and Bean validation, i.e. all annotations should come from pack-
ages javax.enterprise.context, javax.inject, javax.validation.constraints or

javax.annotation. (NO ...faces... package, except for faces.events, anywhere).
Watch out!!

1. Now we add the model to the front-end.

2. Wrap the shop in a @Singleton This bean will keep the reference to the shop (make
reference transient, i.e. lost if bean passivated, it's just for now... not optimal
it's for pedagogical reasons). Add some method to access the wrapped shop. Let
all beans that need a shop reference use method injection i.e. let CDI handle the
initialization of references to the singleton bean.

2.3 Validation

For now there's no validation at all.

Note We try to avoid JSF validation, there should be no <f:validate..> tags in the pages.

1. Add beans Validation annotations to the backing beans. Use <h:message for="..."
/> to display validation errors in pages. There are some custom validation mes-
sages in �le /src/main/resources/ValidationMessages.properties. Use it to �gure
out some bean attribute constraints.

2.4 Authorization

(Optional) We will use the �o�cial� JEE style for authorization handling over a lot to
the container. We also will use form based authorization.

1. First we need a user in a realm (user database). Start GlassFish Admin Console (
Server > GlassFish, right click > View Domain Admin Console.

2. When started: server-con�g > Security > Realms > File > Manage users > New
... Add a user named qqq with password 111. Add group �products�.

Note Using a �le realm is just for now, standard is to have a backing database
with all users (principle the same, more later).

3. We will protect the products-pages. Inspect web.xml and add a <security-constraint>.
Set <role-name>productManager</role-name>.

4. Inspect glass�sh-web-xml, see <security-role-mapping>.

5. Implement missing parts of the AuthBean incl. validation and navigation. Where
should we go if success, if fail?

6. This should do it... does it work (also try bypass using address �eld in browser)?

3 Produced with Lyx, the open source wordprocessor



Web applications Joachim von Hacht

3 Using a JSF component suite

(Optional) For now we use simple <h: ...> components and no AJAX. If we would like
to spice up the pages or create a single page applications it's better to use a higher level
component suite like RichFaces, ICEFaces or PrimeFaces. Here we test PrimeFaces (visit
home page to get some inspiration). Would like something like this;

1. Make a clone of the previous workshop. Rename to jsf_shop_prime

2. Add support for PrimeFaces. Make sure GlassFish is selected as container. Mark
project > Properties >Frameworks > Components > Check PrimeFaces > OK

3. Inspect dependencies. There' a generated �le welcomePrimerFaces.xhtml. Run
application and visit.

4. The goal is to replace all products pages and corresponding backing beans with
a single product page and a single backing bean (similar to the REST solution).
Do so. Use order.xhtml as an starting point. Copy and rename to products.xhtml
Comment out <security-constraint> to disable authorization during development.

Tip The main components to use are <p:dataTable> and <p:dialog>. Put them
inside the <ui:de�ne>.

There's a very nice example (full version also using database, we do later... ) on
the course page, thanks to Emre Simtay. A lot to copy!

4 Produced with Lyx, the open source wordprocessor



Web applications Joachim von Hacht

Appendix

5 Produced with Lyx, the open source wordprocessor


