
JEE Security

Misc Slides #2

JEE Security

Security is another vast topic, we just have a short
look at authentication (who are you?) and
authorization (what can you do?)

Application managed
- Do it yourself, ... by the way are you a security pro??

Container managed
- Security implemented by pros!

Also many low level API's, we don't

Some JEE Security API's

Java Authentication and Authorization Service (JAAS)
Java Cryptography Extension (JCE)
Java Generic Security Services (Java GSS-API)
Java Secure Socket Extension (JSSE)
Simple Authentication and Security Layer (SASL)
XML Digital Signature

 much more, phuiii...

 But we dont'...

JEE Application Managed
Security

Do it yourself (as in Workshop 1, ok for this course)

- Put "everything" in private parts of application (below WEB-INF
directory)
- Only visible pages: home/login/logout
- Use a filter (javax.servlet.Filter) to protect resources (URI's)

○Filter can forward, redirect
- Users and groups (roles) in database tables

JEE Container Managed Security

Predefined JEE security design/system handled by
containers. Security configuration Server dependent

Possibilities
- Securing Web Application
- Securing EJB's, … not covered

Realms, Users, Groups, and Roles

A realm is a security policy
domain defined for a web
or application server. A
realm contains a collection
of users, who may or may
not be assigned to a group
(implemented as file-, jdbc-
, LDAP-realms, ...)

A role is an abstract name
for the permission to
access a particular set of
resources in an
application.

Web Security Constraints

Web resource collection: A list of URL patterns (the part of a URL after the
hostname and port you want to constrain) and HTTP operations (the
methods within the files that match the URL pattern you want to constrain)
that describe a set of resources to be protected.

Authorization constraint: Specifies whether authentication is to be used and
names the roles authorized to perform the constrained requests.

User data constraint: Specifies how data is protected when transported
between a client and a server.

 Specified in web.xml

Web Security Constraints
Example
// web.xml
<security-constraint>
 <web-resource-collection>
 <web-resource-name>wholesale</web-resource-name>
 <url-pattern>/acme/wholesale/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>PARTNER</role-name> <!-- Role name in application -->
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
</security-constraint>

CONFIDENTIAL = GlassFish will use SSL (alt. NONE)

Web Authorization Mechanism

JEE supports

-Basic authentication
-Form-based authentication, the only covered in course
-Digest authentication
-Client authentication
-Mutual authentication

Form Based Authorization

Specify Authorization Mechanism

// web.xml
<login-config>
 <auth-method>FORM</auth-method>
 <realm-name>file</realm-name>
 <form-login-config>
 <form-login-page>/login.xhtml</form-login-page>
 <form-error-page>/error.xhtml</form-error-page>
 </form-login-config>
</login-config>

 <error-page>
 <!-- Access denied (bad role response) -->
 <error-code>403</error-code>
 <location>/notAuthorized.xhtml</location>
 </error-page>

Setup with Database and
GlassFish
Must have database (some column must be specified as login and
password columns and more...)

Must have a DataSource (in file Other Sources/setup/glassfish-
resources.xml, wizard in NetBeans)

Create the GlassFish (JDBC) realm
- Use Admin Console

Must map roles in application to roles in GlassFish, in WEB-
INF/glassfish-web.xml (many application can use same server
roles)

 See code sample

