CHALMERS/GU Web applications
DIT Joachim von Hacht

Project PM DATO076/DIT126, 2013

General

The workshops have been designed and tested to speed up and ease the learning,
now you are on your own. Anything can happen!

Extremely important: Start out with a simple (but extensible) design. Apply
an iterative/modular work process to add use cases. Testing will save time later
on!

Version handling

Git is the only accepted (and mandatory) version handling. Works well
with NetBeans.

Project groups
You should form groups with 3-4 members.

e Name the group and send name, person number, email to all and possible
phone to someone to course responsible. Also send a link to your Git
repository (we really prefer *no* login). Don’t use strange aliases for
names. It must be possible to identify the members (or send a
translation table). As a confirmation you will get a group number, keep
it and use in all communication!

Reporting
Reporting consist of two parts; a demonstration and the delivery of the sources
and the documentation.

Demonstration

You must do a public demonstration of your project (approx. 20 min). The
demo includes running of the application and a short technical “walk thought”.
Use the documentation, see below, as a basis, interesting code snippets are ok.
It’s the groups responsibility to fully demonstrate the functionality
of the application during the demo. We will not be able to run it later.

e Give us a list of working use cases before the presentation (to check off).

e Also, before the presentation, handle in the self-evaluation (the same day,
self-evaluation form on course page).

1 Produced with Lyx, the open source wordprocessor

CHALMERS/GU Web applications
DIT Joachim von Hacht

Sources and documentation

Don’t send anything! We will download all sources and documentation from
your Git repository. Again: You must supply us with location (and permissions).

It’s the groups responsibility to make it possible to grade the sources
in about 2 hours. The documentation, if good, makes it possibility to fulfill
this. Bad documentation can impact the grading simple because the time will
run out. Keep documentation short, focused and in synch with the code. The
following is very important:

e Clean the project(s)! Unused things makes us confused and will waste

time!

e The documentation should contain the following (the format should be:
pure text or pdf (UML, pictures, any open format), no Javadoc).
— Group name and number.
— Group members (incl. pnumb and mail).
— General overview over the system.

x What is this? In which area is the system supposed to be used.
What is it supposed to do? Etc.

x A screen shot of the application.
« Possible users/roles (admin, others,...) and permissions.

x A list of fully functional use cases (short description, one sen-
tence/use case).

— Technical design of the system in the following order (UML where
appropriate);
« Physical set up (tiers). Imagine a real deployment of the appli-

cation (not running on a single computer).

« Participating software components distributed over the tiers (run
time support, applications, middleware, libs, ...). Responsibility
for each component. Communication between the components.

*x The modules (packages) of each component and the responsi-
bility for each module. Which specific techniques (AJAX, JSF,
JPA, ...) are present in each module (if any).

x A layered view of the application (GUIL, application layer, model,
persistence, services). Where does the components/modules fit
in.

* The object oriented model as an UML class diagram, similar to
the presented shop model.

x Classes central to understand the application should have a class
comment. Purpose? Responsibility? ...

« If needed comments for methods or statements (optimal is self
explanatory code).

x If there’s anything we should know, add a README file.

2 Produced with Lyx, the open source wordprocessor

CHALMERS/GU Web applications

DIT

Joachim von Hacht

Project Types

Any kind of web shop is possible, so are games, blogs, ... use your creativity
(possible discuss with assistant).

Grading

Max points for the project is 60 p.

General

The bigger (more realistic) the better!

The more technologies the better (an artificial school demand, use in sep-
arate parts of application).

Style

Badly organized environment and/or bad style will impact the grading, we don’t
find /understand...

Mandatory: Must be Maven project

Follow the code conventions for Java code. Correct use of packages. Good
naming etc.

Good organization of the development environment. Keep things col-
lected /separated (HTML, CSS, java, js, sql, ...) it should be easy to find
whatever we are looking for!

Comment at high level (what is done, not how).

Design/Quality

If you hand in a “big ball of mud” we can’t judge the project and you will fail.

Clean design. Layered.

System as modular as possible using interfaces between important parts.
No hard coded data.

Nothing in any way duplicated.

Minimize dependencies.

Use design patterns where appropriate (Facade, PRG-pattern,...).
Encapsulate as much as possible.

Use Findbugs, STAN or similar to improve quality (we will...)

3 Produced with Lyx, the open source wordprocessor

CHALMERS/GU Web applications
DIT Joachim von Hacht

Testing

e JUnit, QJunit tests for modules will increase the grading.

Technical points
Client parts
e Mandatory: (X)HTML, CSS and some JavaScript

Databases

e Mandatory: You must use a small database. Database design is not
reviewed.

e Mandatory: Dumping string to the web is ok if appropriate, but some-
where in the application you must have an ORM layer.

e Forbidden: Native SQL

Example points

e 0-29p: A few ugly HTML/JSF pages. No real OO-model. Primitive
persistence handling (no ORM). Little functionality. Sloppy design, envi-
ronment and style. Bad or no documentation (or a lot of auto generated).
This will fail.

e 30-39p: A basic web application using one of the presented approaches. A
small but correct OO-model. Fair persistence handling using ORM. Basic,
usable GUI with some kind of style. A number of use cases implemented.
Some features; confirm via mail, possible file upload, Design, testing
and documentation ok.

e 40-49p: A more realistic web application using at least two of the pre-
sented approaches in a meaningful way. More advanced persistence han-
dling. More advanced GUIL. A number of use cases implemented. Possible
features like above. Possible mashup. Clean design, high test coverage.
Good documentation.

e 50-60p: Like the above but even more realistic and advanced. Using all of
the presented approaches in a meaningful way.

4 Produced with Lyx, the open source wordprocessor

