
JavaScript

WS Slides #2

Scripting Languages

"A scripting language is a programming language
that is used to manipulate, customise, and automate
the facilities of an existing system ...
... the existing system is said to provide a host
environment of objects and facilities, which
completes the capabilities of the scripting language."

Existing system for us: The browser

JavaScript

JavaScript is a client (browser) side* scripting
language
- Allow authors to create interactive web pages
- API’s for DOM manipulation and many more ...

Implementation of the ECMAScript 5.1 specification

*) JS has started to go server side, ...

Executing JavaScript

Script(s) file downloaded from server (cached!)
at page request, typically

 <!-- In HTML Page (if many scripts, order matters !!) -->
 <head>

 <!-- Will download script -->
 <script type="text/javascript" src="js/myjavascript.js" />
 </head>

<body>
 ...

</body>

- All script elements are executed by the browser in found order (as the document is
loaded)
-JavaScript handles events, Normally only “event handling set up” executed during page
load (after DOM creation!)
-Possibilities for “code on demand” (security)
-Script APIs http://www.w3.org/html/wg/drafts/html/master/webappapis.
html#webappapis

http://www.w3.org/html/wg/drafts/html/master/webappapis.html#webappapis
http://www.w3.org/html/wg/drafts/html/master/webappapis.html#webappapis
http://www.w3.org/html/wg/drafts/html/master/webappapis.html#webappapis

Developing with JavaScript

Must have a JS debugger

Chrome (Tools > Developer tools)

In Firefox, addon Firebug (Tools menu). Installed in
school

Possible to step code, inspect values etc.
- Debugging dynamically downloaded JS in debugger needs tweak

//Last in file products.js
//@ products.js

JavaScript vs Java

Looks close to Java but ...
● Java and Javascript are similar like Car and Carpet are similar

Language more related to functional languages
Scheme
● Heavy use of functions

Criticism: JS has (too?) many design flaws
● Author, Brendan Eich, .. says he implemented JS in 10 days.. we

believe him...

http://en.wikipedia.org/wiki/Scheme_(programming_language)
http://en.wikipedia.org/wiki/Scheme_(programming_language)

JavaScript vs Java, cont

Anyway, many thing are comfortable for a Java
programmer
- Case sensitive

These details probably no problem
- Numbers 1,2, ...3.5
- Strings like “a string” or ‘a string’ (+ for concatenation)
- Operators, +, -, >, <=, NOTE: use ===, !== not ==, !=)
- Statements, if, for, while, …

IO normally by GUI but possible to use console.log in debugger

The Good Parts

Awful Parts

Non exhaustive list ...
● Untyped, all errors runtime (typical: Nothing happens..!) Spelling!
● Global variables, introducing (using) an undeclared variable

makes it global (i.e. omitting the "var" keyword)
● All compilation units loaded into a common global namespace,

name clashes
● No modularization mechanisms (packages..)
● Program semantics very strange: semi-colon insertions, variable

reordering?!
● Many gotchas!! Link on course page. NetBeans will warn for

some …

There’s a “strict” mode trying to reduce design flaws

JS Language Overview

- Object-based scripting language
- Object is a dynamic collection of properties each with zero or
more attributes (i.e. key, values)
- Properties are containers that hold other objects, primitive values,
or functions
- A primitive value is a member of one of the following built-in
types: Undefined, Null, Boolean, Number, and String
- An object is a member of the remaining built-in type Object
- A function is a callable object
- A function that is associated with an object via a property is a
method

JS Built-in Objects

"ECMAScript defines a collection of built-in objects that round out
the definition of ECMAScript entities. These built-in objects include
the global object, the Object object, the Function object, the Array
object, the String object, the Boolean object, the Number object,
the Math object, the Date object, the RegExp object, the JSON
object, and the Error objects Error, EvalError, RangeError,
ReferenceError, SyntaxError, TypeError and URIError."
// ECMA Specification

NOTE
● Objects not classes, there are no classes in JS

JS Host Environment

"A web browser provides an ECMAScript host environment for
client-side computation including, for instance, objects that
represent windows, menus, pop-ups, dialog boxes, text areas,
anchors, frames, history, cookies, and input/output [host objects].
Further, the host environment provides a means to attach scripting
code to events such as change of focus, page and image loading,
unloading, error and abort, selection, form submission, and mouse
actions. Scripting code appears within the HTML and the displayed
page is a combination of user interface elements and fixed and
computed text and images. The scripting code is reactive to user
interaction and there is no need for a main program."
// ECMA Specification

In browser the window object = the global object

References

Objects manipulated via references like Java
- References have no type, language untyped (= not statically typed
- Values have types not references (variables))

// Using an untyped reference
var myRef = ….

Objects

Object are mutable maps like; Map<Property, Value>
in Java
● Object structure possible change during lifetime
● No constructor
● Everything public
● Can contain sub-objects
● Internal properties, pops up (not possible to manipulate with

language, but need understanding)
● Object literal (create object in line): { … } ← an objec

Functions

Functions are (close to) objects with the additional
capability of being callable
● Functions are first class members; Functions as

parameters/result, references to, callbacks
● Anonymous functions common
● Inner functions (function inside function)
● Functions may have properties (data..!)
● Functions as information hiding. Objects inside function not

accessible from outside. JS has function scope not block scope
● Has property "arguments". Gives access to all supplied

arguments and more...
● If return ... in function, function will return value. Else void

Function cont.

Call conventions same as Java (by value)
● Some primitives are like objects (boxed)!
● Passing in a function is different (although it's an object)?!
● Different invocation patterns (!), more to come...

Methods

A function as a property of an object (literal here)
- Methods, will belong to object, not shared between objects

var o = { // Start object literal

...

doIt: function() { // Method (reference to anon. function)
 return … ;
}

}; // End object literal

// Call
o.doIt();

Closures

“A closure is formed when one of those inner functions is made
accessible outside of the function in which it was contained, so that
it may be executed after the outer function has returned. At which
point it still has access to the local variables, parameters and inner
function declarations of its outer function. Those local variables,
parameter and function declarations (initially) have the values that
they had when the outer function returned and may be interacted
with by the inner function.”
// http://www.jibbering.com/faq/notes/closures/

More to come...

Funny comment on web
“Closures are not hard to understand once the core concept is grokked. However, they are impossible to understand
by reading any academic papers or academically oriented information about them!”

http://www.jibbering.com/faq/notes/closures/

Prototype

All objects have an implicit reference to a "parent
object"
● This is the object prototype
● Prototype object used to share properties between objects

(remember; methods belong to individual object)
● Displayed in Chrome debugger as __proto__

The prototype chain
● All objects have a link to it's "parent", a chain of references. If

asking for some property not found in actual object, the
prototype chain is searched

● Final object in chain is Object object
● Possible to alter new children by assigning new values to the

prototype for some parent (old children not affected)

Constructor Function

Function used to create and initialize new objects in
conjunction with operator new (what's "new" in Java?)
● Can't distinguish from normal function, except using leading

uppercase for name (an idiom, not enforced)
● Imagine a freestanding constructor (outside object)

A constructor function has a not hidden reference to
an automatically created unnamed prototype object
● This is called the prototype property
● Accessed with NameOfContructorFunction.prototype
● The prototype objects has a reference back to constructor

Object Creation and Prototype

Using constructor function and new
"When a constructor creates an object, that object implicitly
references the constructor’s prototype property for the purpose of
resolving property references."

// ECMA Spec

An alternative to create objects (possible better) is Object.create(...)
(not used by us)

Object Creation with Constructor

MyCtor
(constructor

function)

 Prototype
Object

 Object
(created using new

and constructor
function)

 Object
(created using new

and constructor
function)

__proto__

MyCtor.prototype

Function
(built-in)

__proto__

 Object
(built-in)

__proto__

MyCtor.prototype.
constructor

Executing
Object o = new MyCtor();

__proto__
Unnamed,
automatically
created object

The “this” keyword

Different from Java

In global scope this is the window object (the global
object)

In function scope
- The value of this in a function context is provided by the caller
and determined by the current form of a call expression (how the
function call is written syntactically!!!)
- this not statically bound (may vary)
- Complicated: We simplify by identifying fairly correct invocation
patterns ...

“This” invocation patterns

Global function invocation: In function this is the
global object

Method invocation: In method this is the object the
method belongs to

Constructor function invocation (in conjunction with
new) : In function this is the newly created object

Preserving “this”

Inner functions doesn’t share this with outer

To use this in inner function, have to store before
executing inner

var me = this;
// .. this changes, use me

Sometimes handled automatically by some higher
level libraries, JQuery, ...

Emulating Java

We use the JS "pseudo-classical" style + module
pattern to emulate classes
● Class is = constructor function (for object data) + prototype

holding shared methods
● Put "class" in matching file like Java (class name = file name)

Pseudo-Classical JavaScript

// Emulate a class (this is in file person.js)
var Person = function(name){ // Constructor function
 // Set attributes here, "this" is the actual object!
 this.name = name;
};

Person.prototype = (function(){ // Shared by all objects
 // Public API here
 return { // Anonymous object
 setName : function(name){
 this.name = name; // "this" is the actual object
 },

 getName : function (){
 return this.name;
 }

}
})(); // Call function immediately

Pseudo-Classical JavaScript cont.

// MUST use new else disaster (this bound to global object)
var p = new Person("Sara");

Now...
… p is a reference to the returned anonymous object with methods
setName and getName (previous slide)

// Call
var name = p.getName();

getName not found in p, so search prototype, method found! … call
it, “this” supplied by caller (the p object), so this is really the actual
object

Miscellaneous

Comments as in Java /* */ and //

Declaring variables using var keyword (optional but use!)

 var a = { … }// a reference to object literal
 // Forget var -> Global scope (even in functions)

Ending ';' optional but use!

Watch out for conversions and comparison, always use === for
comparison

JavaScript is single threaded, ... ! More to come...

Exceptionhandling …

JavaScript API's

Language very tightly connected to some API’s

The most basic are DOM, DOM Event, CSS, and AJAX
(XMLHttpRequest object) …
- ...will not be used directly!
- We'll use the higher level library JQuery, more to come...
- Many new API’s in HTML5, not covered ...

Window and Document

This is part of the DOM API, we don't use but some
knowledge needed
● The window object represents the browser window itself

(automatically created)
● Each tab contains its own window object i.e. not shared between

tabs in the same window (except possible some global
properties)

● The document property of a window points to the DOM for the
document loaded in that window

// Example native JS DOM API call
 var e = document.getElementById(...);

● Also document.cookie

