JPA Mappings

JPA Slides #2

(®%) GOTEBORGS UNIVERSITET

JPA and ORM

Object relational mapping
e How to map between the primitive data in the database tuples
(rows in database tables) and Java objects?

We're using JPA 2.0 as our ORM “framework™ (not

what | call framework, middleware better)

e Using annotations to define the mappings
e Also possible using XML mapping files, we don't ..

Sadly Persistence JPA seems a little brittle , ..
this has been the most troublesome part of the course, ...
may the force be with you

(®%)) GOTEBORGS UNIVERSITET

Mapping OO-models to Database

In general

- Package —— Schema (have only one package, the model)
-Class —— Table

- Attribute —— Column

- Associations —Relationships

Associations are tricky

- Relational model only has relationships and the 1:N cardinality (the
1.1 cardinality must be forced through UNIQUE constraint on foreign
key)

- .more to come...

(®%)) GOTEBORGS UNIVERSITET

JPA Entity Class

Class, possible to map to database table(s). A Java

class with

® @Entity class annotation and @ld attribute annotation.
Default constructor

Serializable

No final, whatsoever!

Must be listed in a "persistence unit” (config file) more later...

@Entity annotation on..
® Abstract class, ok
® |nterface or Enum, no!

(®%) GOTEBORGS UNIVERSITET

Entity Class Identity

Entity classes should define equals-method (and

hashCode) else possible problems..
- In our case we only use the id attribute in equals, more to come ...

- Also: Same type or mixed type equals?

GOTEBORGS UNIVERSITET

Default Mapping Rules

If no annotations except @Entity and @ld default mapping rules

applies (again: convention over customization)

e Class mapped to single table. Table will have same hame as
class but uppercase

® Attributes mapped to column names, uppercase

e JDBC rules for mapping simple Java types to database types
O int, Integer, .. bytell, Bytell, ...String, Data, Calendar, TimeStamp.any

ENUM, any Serializable.

® Relationships creates columns for fk (possible

extra/unnecessary join tables)

Upper- Lower-case confusion..
® Depends on database...” Most seems not to be case
sensitive! Always check!!!

GOTEBORGS UNIVERSITET

Customize Mapping

If not satisfied with default mappings use class, field or method
annotations. Annotations for;

- Table

- Columns

- Others

We give a few examples

Many more at http.//www.objectdb.
com/api/java/jpa/annotations/orm

GOTEBORGS UNIVERSITET

http://www.objectdb.com/api/java/jpa/annotations/orm
http://www.objectdb.com/api/java/jpa/annotations/orm
http://www.objectdb.com/api/java/jpa/annotations/orm

Customize Table

Use @Table class annotation

// Other name for table

@Entity
@Table (name="CUST", schema="RECORDS")
public class Customer { ... }

// Unique constraint for full row (i.e. no duplicates in rows)

@Entity

@Table (name="ALLOCATION", uniqueConstraints={
@UniqueConstraint (columnNames={"CONSULT ID", "PROJECT ID"})

})

GOTEBORGS UNIVERSITET

Customize Columns

@GeneratedValue

- Used with @ld to let database generate primary keys

- If using generated id, never supply any id when creating entity
(constructor or other ..)

- More to come ..

// Generate pk’sl, 2, 3, ...

@GeneratedValue (strategy=GenerationType.AUTO)
@Id

private Long 1d;

@Column used for name and restrictions

// Other name and restrict
@Column (name="DESC", nullable=false, length=512)
public String getDescription () { return description; }

GOTEBORGS UNIVERSITET

Customize Columns, cont

@Temporal must be used for Date and Calendar

@Temporal (DATE)
protected java.util.Date endDate;

@ Transient specifies that an attribute is not persistent (possible a
calculated value)

// Don’t save current user
@Entity
public class Employee {

@Id int id;

@Transient User currentUser;

GOTEBORGS UNIVERSITET

The Id Problem

If letting database generate id, the object have no id
before really written to database

Can't depend on object id before. Will cause
problems if not observant

- equals method
- .. @S a consequence can't use in some containers (Set)

GOTEBORGS UNIVERSITET

Collections and Enums

if class has a Collection or Map of primitive types

e Annotate with @ElementCollection, @CollectionTable (possible
FetchType.Lazy upcoming...)

e \Will create extra table holding collection data

e |f non-primitive.. more to come...

If class has Enum

e Annotate with @Enumerated(EnumType . STRING)
e Willend up in same table

(®%) GOTEBORGS UNIVERSITET

Embedded Objects

Embedded object dependents on some entity class for it's identity
(no own identity, i.e. a value object, identifying relationship)

@Embeddable
public class Address { ... }

@Entity

public class Employee {
WEmbedded
private Address address;

}

Ends up in same table (Employee)

GOTEBORGS UNIVERSITET

Assoclations

Classes A and B

1 = 1+
S | B A B
1 1 * 1 This one
A - B A B possible
to fix
1 * . .
A «— B A B
Unidirectional OK Bidirectional BAD
Mutual dependencies,
avoid

GOTEBORGS UNIVERSITET

Mapping Associations

Classes (objects) are connected with associations,
database tables with relationships

Mapping an association will result in relationships
between tables

e Not a perfect match..associations have direction, relationships
not

RUNTIME: Associations = object references, relationships =
matching row id's (key’s)

(®%)) GOTEBORGS UNIVERSITET

Assoclations: UML vs Database

UMVL associations means a references in Java

- UML 1.1 says one object having a reference to another. But the id
of the objects aren't considered! It's just some objects associated

But when working with databases the id's are what's

count
- Database (ER) 1:1 says one pk is related to one unique pk from
other table (like splitting a table vertically). The id's are related!

(®%)) GOTEBORGS UNIVERSITET

Unidirectional 1:1 Mapping

@XToY , X is object having the annotation Y is associated object

11
A —> B

r?:tf?g;tuio CGEntity REntity
necessary C)OoClaSS A { class B{

@OneToOne

ERe) }

}

A

i
/

Join column,B_ID
(default name)

If the exact identity of B is important (database 1:1) need to use Column(unique=true) for
B _ID

GOTEBORGS UNIVERSITET

Unidirectional 1:* Mapping

1 * 1 *
A —> B A - B
REntity QEntity QEntity @Entity
class A { class B{ class A { class B{
dOneToMany @ManyToOne
@JoinColumn (} } A a;
name = B FK) }
List b;
b oo
O A
O B

—

If not using °o0 ®) Will end
JoinColumn - up the
extra table same in

database

\

Join column, B_FK (will be
added)

created

(®%) GOTEBORGS UNIVERSITET

Mapping Bidirectional Association

As noted; We'll avoid this so just a quick one to many
bidirectional

// Class A
@OneToMany (mappedBy = "a") // Must use mappedBy
private List Dbs;

// Class B

@ManyToOne

@JoinColumn (name = "AUTHOR FK")
private A a;

// Navigation
A a = ..get an A
List bs = a.getBs();

b
a

B
A

GOTEBORGS UNIVERSITET

Mapping M:N

Many to many transformed to .. this!

Author

Book Author Book

class Author

Collection<Book> bs; Ny
Publication

}

class Book{

@Entity GEntity

Collection<Author> as; class Author { class Book {

}

o

O

} }

@Entity
ﬁTable(name="PUBLICATION", uniqueConstraints={
@UniqueConstraint (columnNames={"AUTHOR ID", "BOOK ID"})

})

class Publication {
@ManyToOne
Author a;
@ManyToOne
Book b;

Will get extra

Summary Assoclation Mapping

SE best practices
- Limit number of associations
- Prefer unidirectional, review use case to decide direction

If need to navigate in “other” (non existing) direction

have to search
- Probably best to let database search (i.e. use queries, upcoming)

(®%) GOTEBORGS UNIVERSITET

Mapping Inheritance

Different strategies
- Single table for hierarchy (all super/sub-objects in same table)

- Joined strategy, many tables
- .. more...

//Superclass

@MappedSuperclass

public class Person .. {
// Common code

}

//Subclass, everything will end up in table Employee

@Entity
public class Employee extends Person {

}

GOTEBORGS UNIVERSITET

Fetching Strategies

When to load associated objects
- EAGER, when owner loaded
- LAZY, when code executed

Default (otherwise annotate)
- @0neToOne, EAGER

- @ManyToOne, EAGER

- @0OneToMany, LAZY

- @ManyToMany, LAZY

// Example
@OneToMany (fetch=FetchType.EAGER)
List<OrderItems> o01i;

GOTEBORGS UNIVERSITET

Generation of Tables

We can specify that JPA should create the tables (using the

annotated classes) when application runs, a table generation
strategy (DLL)

- Possible to specify in NetBeans

Possible strategies

- None, no tables created

- Create, will create

- Drop and Create, delete and create

Strategy defined in persistence.xml, upcoming..

(®%) GOTEBORGS UNIVERSITET

JPA Constraints and Bean
Validation

@NotNull is a JSR 303 Bean Validation annotation. It has nothing to
do with database constraints itself.

@Column(nullable = false) is the JPA way of declaring a column to
be not-null. l.e.

When to use
@NotNull is on control layer
@Column is for entity classes in model layer

As noted: All layers should validate incoming datal

(®%)) GOTEBORGS UNIVERSITET

JPA and JAXB

Possible to have both @Entity and @XmlRootElement

on same class
- Get database data as XML directly .. possible for REST

applications

GOTEBORGS UNIVERSITET

Other way round

If you're a skilled database developer, start with
database and let NetBeans generate the application
bout ...

..dont touch generated code! Separate
out!

GOTEBORGS UNIVERSITET

