
A Component Based
Approach
JSF Slides #5

Characterization Review

Much more of standard (non-web) OO-programming. Well
known concepts of objects, components and listeners

High abstraction level, possible a bit lack of control Normally
not accessing HTTP request etc. (but pops-up...)

Application Layers vs JEE Stack

PrimeFaces/ICEFaces/ ...

JSF

CDI/Bean Validation

 OO Model

Networking/
Persistence/Database/...

More to
come

User Interface

Application Layer

Domain Layer

Infrastructure (Services)

Domain driven application
layering

Design and MVC

JSF/CDI/Bean Validation is not a complete framework, no default
MVC design...

Full Frameworks
- Spring
- Seam
...

For now we have to design ourselves, so yet another in house
MVC- solution

Managed Bean Roles in MVC

Model-bean (session scope) represents data (doubtful?)
- Model objects representing collections seems ok

Backing (page)-bean (request) Support view. 1:1 mapping to page.
Possible have listener methods.

Controller-bean (request). Part of control. Execute application or
business logic. Return navigation outcome

Support-bean (session, application) Support many pages (populate
drop-down lists etc.)

Utility-bean (application) General functionallity used by many
pages/applications (file upload)

JSF Application Design
page.xhtml Backing-

Bean

page.xhtml

page.xhtml

Control-
Bean

Support-
Bean Application Interfaces

Application

Persistency Interfaces

Logic Model

Authorization

Have seen usage of filters (very simple) and OAuth (complex)..

Now for the predefined JEE authorization technique, using realms

A realm is a security policy domain defined for a web or application
server. A realm contains a collection of users, who may or may not
be assigned to a group

Types of realms (supported by GlassFish and Tomcat)
- file, Stores user information in a file. This is the default realm
when you first install the GlassFish Server
- ldap, Stores user information in an LDAP directory
- jdbc, Stores user information in a database
...

Realms, Users, Groups and Roles

For now we use the file realm (database advanced
sample later)

Steps
-Create users and groups in GlassFish file realm (using Admin
console) .. manual for now
-Create roles in application (defined in glassfish-web.xml)
-Map roles to users and groups (also glassfish-web.xml)

Authorization in Application

// In some backing bean connected to login page
// Using default mechanism and HTTPServletRequest (request)
…
if (request.getUserPrincipal() != null) {
 return "login-success";
}
request.login(username, password);

if (request.isUserInRole("productManager")){
user = new User(username);
Logger.getAnonymousLogger().log(Level.INFO, "Successfully logged

in
{0}", username);

return "login-success";
} else {

return "login-fail";
}

Logged in as ...

Simple approach in pages

<h:outputText value="Logged in as #{request.remoteUser}" />

