
 Java Server Pages, JSP

BWA Slides #6

... change rate is high...

Java Server Pages, JSP's, is possible a
“previous generation” technology
● But there are a lot of application out there using them
● The concept is common to other frameworks (ASPX)
● Sometimes handy

We'll later inspect Java Server Faces the “GUI-
standard” for JEE

Why JSP?

Problems
● Servlets need programmer skills
● Servlets mix Java and HTML
● Tedious: out.println("<h1>...</h1>")...
● Servlets should not be in the view part (MVC)

Solution: JSP
● A JSP is a Servlet, ... but written in a tag language!
● Simple for the non-programmer
● Faster development
● In the view part of (MVC)

Specification: JSR 152, Java Server Pages 2.0

JSP Location

JSP's live in projects "Web Pages" folder (Maven:
src/main/ webapp)

Best practices: Put in WEB-INF/jsp directory.
- Application private, can’t access with browser address field

JSP Life Cycle

At first request...
● Translated to Servlet by container
● Compiled

...them as a Servlet
● ...loaded, instantiated, service, destroyed

First response slower

JSP Language

Two different syntax's
● Standard (default in NetBeans), banned ...very common in

examples on web (file suffix *. jsp)
● JSP document, XML syntax, use (file *.jspx)

 Select document in NetBeans when creating JSP ...
 ...and of course inspect code samples

JSP Content

● XML prolog
● The HTML tags (static content)
● Some JSP tags

○ All starts with jsp, <jsp:root...>, <jsp:include...>, ...

● Some Java Standard Tag Library, JSTL, tags
(upcoming)
● We use only the core tags, <c:.../>

The Expression Language, a small embedded
language, compare XPath

JSP Design Issues

JSP is a view technology
● Should only display data i.e. do "reads" to get it
● Should normally not handle incoming requests (will be handled

by a Servlet), see later MVC model

To read data (dynamic data in the pages) we use the
Expression Language (EL)

We never put inline Java code in the JSP pages (aka
"scriptlets")
● Common for bad, deprecated, code samples on web

The Expression Language, EL

Would like to read data from a Java object to display
● EL is read only
● Purpose of object is to supply data to a page (aka backing bean

or page bean more later...)

In pages get data as ${object.data}
● Will call method named getData() on object
● ${...} delimits the expression
● method must return primitive or String value
● If inside element ok: <body>${...}</body>
● If attribute value ok: <... name="${...}"...>
● String concatenation: "This is ${...} from ${...}"

The Expression Language cont.

Inside ${...} we can have
● Literals: 34, 45.6, ...
● Operators: Arithmetic, Logical, Relational,... mostly same as Java

(+, -, *, &&, ||, <, >, ...)
● Some reserved words: and, or, not (same as operators), empty (is

value null?)
● [] and .
● Only used for "view" calculations, no application logic!

Indexing and dot operators, are (almost) the same a['b'] = a.b

EL Implicit Objects

Many implicit object, accessible from EL

● The scopes
○ ${requestScope},
○ ${sessionScope},
○ ${applicationScope},
○ ...same object as HttpRequest, HttpSession, ServletContext

● Also a ${pageScope},page local variables, only visible in page,
new page -> object gone

● Request parameters ${param['myParam']}, normally avoid
(requets goes to control parts, i.e. Servlets)

● .. and more

Set and Get Dynamic Page Data

The scopes (Map's) are “automagically” searched in
EL expressions (direction wider scopes)

Set: Somewhere in application (store a customer
object)
 session.setAttribute(“c”, customer);

Get: In an EL expression in page (retrieve object):
 ${c.id} // search all scopes for key 'c'
// get object, call getId().toString()

Modular JSP's

Anything a Servlet can do a JSP can

Forward, redirect and include
● Include static: Included compile time (included never change),

low workload
● Include dynamic: Included every request, included changes,

higher workload

Java Standard Tag Library, JSTL

Need for modification/selection/generation of
dynamic content in the JSP's
● Typically a loop to create at table
● Need some statements: assignment, selection, iteration, ...

Solution: JSTL tags for statement
● Used in conjunction with EL

Also other JSTL tags for formatting, database, XML,
● ...not used in course

JSTL is not for application logic, view only

JSTL cont.

JSTL Core tags, must have namespace declaration

<jsp:root xmlns:c="http://java.sun.com/jsp/jstl/core” ...>
 // Assignment
 <c:set var="mB" value="${requestScope['myBean']}" />
 // Selection
 <c:choose>
 <c:when test="${i lt 5 }">...</c:when>
 <c:otherwise>...</c:otherwise>
 </c:choose>
 // Iteration
 <c:forEach var="row" items="${table.data}">
 ...
 </c:forEach>

pom.xml, dependency javax.servlet, artifactId: jstl, version 1.2

JSP and CSS

No problem, same as HTML

...
<head>
 <link rel="stylesheet" href="default.css" type="
text/css"/>
 <title>tempate.jspx</title>
</head>
<body>
...
</body>
...

