Web applications Joachim von Hacht

Workshop 2: A Service Oriented Approach,
RESTful Web Services with JAX-RS

Objectives

Same as in previous workshop, we’ll expose the shop (ProductCatalogue) on the web.
You need the following;

e Tools as before and GlassFish 3.1.2.x

e More HTML, CSS and basic JavaScript

e JQuery (DOM and AJAX API’s) and JQueryUI
e Java EE RESTful Web Services (JAX-RS)

e Cache control, conditional GET’s and update’s

PLEASE: INSPECT CODE SAMPLES FROM THE LECTURES (ON COURSE PAGE)! EVERY-
THING YOU NEED SHOULD BE THERE. WILL HOPEFULLY SAVE YOU A LOT OF TIME!

Final date : See course page.

1 GlassFish

We can handle GlassFish from inside NetBeans.
1. Go to Services tab > Servers > Mar GlassFish > Start

2. Mark GlassFish > View Domain Admin Console. A Web page should show up,
note port. This is the administration tool for GlassFish. Peek around!

3. Stop Server.

2 The model as a RESTful web service

We’ll design a RESTful web service for the ProductCatalogue. The projects final struc-
ture is in the Appendix.

1. Download the skeleton app from course page and open in NetBeans. Inspect Test
Packages/.../cURL _README.txt to get an understanding of the REST APIL.

]. Produced with Lyx, the open source wordprocessor

Web applications Joachim von Hacht

2.1 Implementing the Service

Warning There are annotations with the same names but from different packages! Must
select the correct ones. For now just use from java.xml.bind or javax.ws.rs! Watch
out!

We'll try to keep the model uncluttered, so no annotation in the shop model. We’ll use
wrapper classes.

1. Add JAXB-annotations to the ProductProxy class. Use XmlAccessType. PROPERTY
and annotations on the getter-methods to access data from the wrapped Product.
Let the the returned XML contain <product> element(s) (i.e. not <productProxy>-
elements). There’s a JUnit “pseudo™test to dump the XML result. Use it!

2. Create a plain Java class ProductCatalogueResource as a wrapper for the Pro-
ductCatalogue in the model (i.e. all calls to ProductCatalogueResource will be
forwarded to the model class).

a) Annotate class with @Path(“products”).

b) Inspect web.xml, there should be a ServletAdaptor and “Jersey” ServletCon-
tainer. If not check any code sample and compare. All URL’s /rs/* should
be handled by JAX-RS.

¢) Build the project. An icon, RESTful Web Services, should show up in the
project (see Appendix image).

3. Implement a method getAll() in the resource class that just returns all Products.
Try to run using GlassFish. Use cURL to test the method.

4. Now we’ll implement and test the ProductCatalogueResource (the central piece of
the application). Let ProductCatalogueResource have the same functionality as
IProductCatalogue in shop model, except the method sort(). Don’t implement the
interface, we need different signatures.

e All methods should return a Response-object with correct status code returned
(OK, Created, etc.)

— Must wrap Products if used as return values.

— All methods should be able to return JSON and XML

— It’s not possible to return primitive types (a wrapper is supplied).
— Method handling form data should use @FormParam

— getRange-method should use @QueryParam (first (element) and nltems
(number of returned items in list)

— Generic classes (List<T> etc.) must be wrapped using the javax.ws.rs.core.GenericEntity <T
class.

2 Produced with Lyx, the open source wordprocessor

Web applications Joachim von Hacht

3 A client for the service

Now we’ll develop a “single page” JavaScript client for the service similar to the previous
workshop. A few screen shoots (uses JQueryUT for tabs and dialogs, tabs should work)...

[Home T Products T Customers T Oorders . [Home T Products T Customers T Orders -

This is HOME Add Product
The footer
Prev Next
43 pineapple 44 .44
75 apple 22.22
275 pear 66.66
Add New Product t 31| Edit or Delete Product a
All form fields are required. | All form fields are required.
Id Id
| 572
Name MName
Papaya pear
Price Price
123 66.66
|
Save Cancel Delete Save Cancel

Note The browser address field should stay the same all the time.

Tip To debug the running JavaScript use Chrome/Developer Tools or Firefox/Firebug

3 Produced with Lyx, the open source wordprocessor

Web applications Joachim von Hacht

or other.

Note We use JQuery, no low level JavaScript DOM or AJAX API!

3.1 A Proxy for the ProductCatalogue

We’ll represent the server side ProductCatalogueResource as a JavaScript ProductCata-
logue “class” on the client side (a remote proxy). The proxy shall have the same methods
as the server side class.

1. Inspect navigator.js to see an example of the “pseudo classical” JS style.

2. Implement the proxy class using the “pseudo classical’- style in file productCata-
logue.js. The single task for any methods should be to to execute an AJAX call to
the REST service. All methods should return the JQuery “deferred”- object.

Hint Many functions are one-liners.

3. There’s some JS tests in /js/test. Use to test the proxy.

3.2 Event handling and DOM manipulation

The task is to forward calls from the products page via products.js to the productProxy
and get the result back into the DOM (i.e. display result in products.html). We will
use JQueryUI components, possible have a look at their home page. All JS code for this
should be in the products.js file (downloaded dynamically when products.html is loaded).

1. Go to products.js

2. Implement the “rendering” functions (or at least some of). The table should have a
listener. When clicking on a row the Edit/Delete dialog should pop up (populated
with selected product). The Edit/Delete dialog shows a confirmation dialog before
deleting.

3. Implement listeners for the buttons.

4. Continue until you have a fully functional JavaScript REST client.

3.3 A Java RESTclient

(Optional) It’s rather easy to generate Java clients for any REST service.

1. Create the ProductsClient for our product catalogue service. New > Web Service
> RESTful Java Client > etc.

2. There’s a JUnit test to try.

4: Produced with Lyx, the open source wordprocessor

Web applications Joachim von Hacht

3.4 Cache control, conditional GET and update’s
(Optional)

1. Refactor copy ProductsCatalogueResource and rename to ProductsCatalogueRe-
sourceCond. Change @QPath.

2. Modify new resource. Add conditional gets and updates for relevant methods.

3. Check with ¢cURL.

5 Produced with Lyx, the open source wordprocessor

Web applications

Joachim von Hacht

Appendix

? @ﬁws_shup
7 [CEgWeb Pages
6= [META-INF
o~ [WEB-INF
¢ [Jgcontent
E‘] horme. htrml
[@ orders.html
E‘] products. html

¢ Clais
7 dgcore
@] navigator.js
@'] productCatalogue.js
@] shop.js
o= [Jgetrl
¢ Cgavi
@'] index.js
@] products.js
o [Jgtest
o= lib

o= [resources
[README.txt
E‘] index. html
9 [RESTful Web Services
o= l@g ProductCatalogueResource [products]
9 [OdgSource Packages
¢ Eaﬁedu.chl.hajo.wss
Primitive] SONWrapper.java

YEY

ProductCatalogueResource.java
Eo‘] ProductCatalogueResourceCond. java
@ ProductProxy.java
Eo‘] Shop.java
@ WSShopContextResolver. java
¢ Edgedu.chlhajo.wss.client
@ ProductsClient.java
o [[JzTest Packages
o [Other Sources
o g Dependencies
o [Runtime Dependencies
o= [Test Dependencies
o [Java Dependencies
-5 Project Files

Produced with Lyx, the open source wordprocessor

