
JPA Mappings

JPA Slides #2

Object relational mapping
● How to map between the primitive data in the database tuples

(rows in database tables) and Java objects?

We're using JPA 2.0 as our ORM “framework” (not
what I call framework, middleware better)
● Using annotations to define the mappings
● Also possible using XML mapping files, we don't …

Sadly Persistence JPA seems a little brittle , …
this has been the most troublesome part of the course, ...
may the force be with you

JPA and ORM

Mapping OO-models to Database

In general
- Package Schema (have only one package, the model)
- Class Table
- Attribute Column
- Associations Relationships

Associations are tricky
- Relational model only has relationships and the 1:N cardinality (the
1:1 cardinality must be forced through UNIQUE constraint on foreign
key)
- ..more to come...

JPA Entity Class

Class, possible to map to database table(s). A Java
class with
● @Entity class annotation and @Id attribute annotation.
● Default constructor
● Serializable
● No final, whatsoever!
● Must be listed in a “persistence unit” (config file) more later...

@Entity annotation on...
● Abstract class, ok
● Interface or Enum, no!

Entity Class Identity

Entity classes should define equals-method (and
hashCode) else possible problems...
- In our case we only use the id attribute in equals, more to come ...
- Also: Same type or mixed type equals?

Default Mapping Rules

If no annotations except @Entity and @Id default mapping rules
applies (again: convention over customization)
● Class mapped to single table. Table will have same name as

class but uppercase
● Attributes mapped to column names, uppercase
● JDBC rules for mapping simple Java types to database types

○ int, Integer, ... byte[], Byte[], ...String, Data, Calendar, TimeStamp,any
ENUM, any Serializable.

● Relationships creates columns for fk (possible
extra/unnecessary join tables)

Upper- Lower-case confusion...
● Depends on database...? Most seems not to be case

sensitive! Always check!!!

Customize Mapping

If not satisfied with default mappings use class, field or method
annotations. Annotations for;
- Table
- Columns
- Others

We give a few examples

Many more at http://www.objectdb.
com/api/java/jpa/annotations/orm

http://www.objectdb.com/api/java/jpa/annotations/orm
http://www.objectdb.com/api/java/jpa/annotations/orm
http://www.objectdb.com/api/java/jpa/annotations/orm

Customize Table

Use @Table class annotation

// Other name for table
@Entity
@Table(name="CUST", schema="RECORDS")
public class Customer { ... }

// Unique constraint for full row (i.e. no duplicates in rows)
@Entity
@Table(name="ALLOCATION", uniqueConstraints={
 @UniqueConstraint(columnNames={"CONSULT_ID", "PROJECT_ID"})
})

Customize Columns

@GeneratedValue
- Used with @Id to let database generate primary keys
- If using generated id, never supply any id when creating entity
(constructor or other …)
- More to come …

// Generate pk’s1, 2, 3, ….
@GeneratedValue(strategy=GenerationType.AUTO)
@Id
private Long id;

@Column used for name and restrictions

// Other name and restrict
@Column(name="DESC", nullable=false, length=512)
public String getDescription() { return description; }

Customize Columns, cont

@Temporal must be used for Date and Calendar

@Temporal(DATE)
protected java.util.Date endDate;

@Transient specifies that an attribute is not persistent (possible a
calculated value)

// Don’t save current user
@Entity
public class Employee {

@Id int id;
@Transient User currentUser;

 ...
}

The Id Problem

If letting database generate id, the object have no id
before really written to database

Can’t depend on object id before. Will cause
problems if not observant
- equals method
- .. as a consequence can’t use in some containers (Set)

Collections and Enums

If class has a Collection or Map of primitive types
● Annotate with @ElementCollection, @CollectionTable (possible

FetchType.Lazy upcoming...)
● Will create extra table holding collection data
● If non-primitive... more to come...

If class has Enum
● Annotate with @Enumerated(EnumType.STRING)
● Will end up in same table

Embedded Objects

Embedded object dependents on some entity class for it's identity
(no own identity, i.e. a value object, identifying relationship)

@Embeddable
public class Address { ... }

@Entity
public class Employee {
 @Embedded
 private Address address;
 ...
}

Ends up in same table (Employee)

Associations

A B

A B

A B

A B
1 *

1 1

1 *

1 1

A B1 1

A B
1 *

A B* 1

A B
* *

Unidirectional OK Bidirectional BAD
Mutual dependencies,
avoid

This one
possible
to fix

Classes A and B

Mapping Associations

Classes (objects) are connected with associations,
database tables with relationships

Mapping an association will result in relationships
between tables
● Not a perfect match...associations have direction, relationships

not

RUNTIME: Associations = object references, relationships =
matching row id's (key's)

Associations: UML vs Database

UML associations means a references in Java
- UML 1:1 says one object having a reference to another. But the id
of the objects aren’t considered! It’s just some objects associated

But when working with databases the id’s are what's
count
- Database (ER) 1:1 says one pk is related to one unique pk from
other table (like splitting a table vertically). The id’s are related!

Unidirectional 1:1 Mapping

A B
1 1

@Entity
class A {
 @OneToOne
 B b;
}

A

B

Join column,B_ID
(default name)

@Entity
class B{

}

@XToY , X is object having the annotation Y is associated object

If the exact identity of B is important (database 1:1) need to use Column(unique=true) for
B_ID

Default so
not really
necessary

Unidirectional 1:* Mapping

A B
1 *

@Entity
class A {

}

@Entity
class B{
 @ManyToOne
 A a;
}

A B
1 *

A

B

Join column, B_FK (will be
added)

@Entity
class A {
 @OneToMany
 @JoinColumn(
name = B_FK)
 List b;
}

@Entity
class B{

}

Will end
up the
same in
database

If not using
JoinColumn
extra table
created

Mapping Bidirectional Association

As noted; We’ll avoid this so just a quick one to many
bidirectional
// Class A
@OneToMany(mappedBy = "a") // Must use mappedBy
private List bs;

// Class B
@ManyToOne
@JoinColumn(name = "AUTHOR_FK")
private A a;

// Navigation
A a = ..get an A
List bs = a.getBs();

B b = … get a B
A a = b.getA();

Mapping M:N

Author Book
* *

Many to many transformed to … this!

class Author {
 Collection<Book> bs;
}

class Book{
 Collection<Author> as;
}

Author Book

1 *

Publication

* 1

@Entity
class Author {
}

@Entity
class Book {
}

@Entity
@Table(name="PUBLICATION", uniqueConstraints={
 @UniqueConstraint(columnNames={"AUTHOR_ID", "BOOK_ID"})
})
class Publication {

@ManyToOne
Author a;
@ManyToOne
Book b;

}

Optional
Will get extra
table

Summary Association Mapping

SE best practices
- Limit number of associations
- Prefer unidirectional, review use case to decide direction

If need to navigate in “other” (non existing) direction
have to search
- Probably best to let database search (i.e. use queries, upcoming)

Mapping Inheritance

Different strategies
- Single table for hierarchy (all super/sub-objects in same table)
- Joined strategy, many tables
- .. more...

//Superclass
@MappedSuperclass
public class Person … {

// Common code
}

//Subclass, everything will end up in table Employee
@Entity
public class Employee extends Person {
}

Fetching Strategies

When to load associated objects
- EAGER, when owner loaded
- LAZY, when code executed

Default (otherwise annotate)
- @OneToOne, EAGER
- @ManyToOne, EAGER
- @OneToMany, LAZY
- @ManyToMany, LAZY

// Example
@OneToMany(fetch=FetchType.EAGER)
List<OrderItems> oi;

Generation of Tables

We can specify that JPA should create the tables (using the
annotated classes) when application runs, a table generation
strategy (DLL)
- Possible to specify in NetBeans

Possible strategies
- None, no tables created
- Create, will create
- Drop and Create, delete and create

Strategy defined in persistence.xml, upcoming...

JPA Constraints and Bean
Validation
@NotNull is a JSR 303 Bean Validation annotation. It has nothing to
do with database constraints itself.

@Column(nullable = false) is the JPA way of declaring a column to
be not-null. I.e.

When to use
@NotNull is on control layer
@Column is for entity classes in model layer

As noted: All layers should validate incoming data!

JPA and JAXB

Possible to have both @Entity and @XmlRootElement
on same class
- Get database data as XML directly … possible for REST
applications

Other way round

If you're a skilled database developer, start with
database and let NetBeans generate the application
but ...

 ... don't touch generated code! Separate

out!

