Parallel Functional Programming
Lecture 8
Data Parallelism |

Mary Sheeran

(with thanks to Ben Lippmeier for
borrowed slides)

http://www.cse.chalmers.se/edu/course/pfp

Data parallelism

Perform same computation on a collection of differing data values

examples: HPF (High Performance Fortran)
CUDA

Both support only flat data parallelism

Flat : each of the individual computations on (array) elements is
sequential

those computations don’t need to communicate
parallel computations don’t spark further parallel computations

Regular, Shape-polymorphic, Parallel Arrays in Haskell

Gabriele Keller Manuel M. T. Chakravarty' Roman Leshchinskiy?

Simon Peyton Jones* Ben Lippmeier'

tComputer Science and Engineering. University of New South Wales *Microsoft Research Ltd, Cambridge
{keller chak, rl benl} @cse.unsw.edu.au simonpj@microsoft.com

API for purely functional, collective operations over dense,

rectangular, multi-dimensional arrays supporting shape
polymorphism

ICFP 2010

ldeas

Purely functional array interface using collective (whole array)
operations like map, fold and permutations can
— combine efficiency and clarity
— focus attention on structure of algorithm, away from low level details

Influenced by work on algorithmic skeletons based on Bird
Meertens formalism

Provides shape polymorphism not in a standalone specialist
compiler like SAC, but using the Haskell type system

terminology

Regular arrays
dense, rectangular, most elements non-zero

shape polymorphic
functions work over arrays of arbitrary dimension

terminology

Regular arra

ys
dense, rectaf note: the arrays are purely \

functional and immutable

shape polym

All elements of an array are
functions wo| demanded at once -> parallelism

P processing elements, n array
elements => n/P consecutive
elements on each proc. element

—-—

U _/

version

| use Repa 2.1.1.5 (which works with the GHC that you
get with the current Haskell platform)

If you have GHC 7.4 installed, you can use a later Repa,
which has more array types (and doubtless better
performance)

example

import Data.Array.Repa as A

transpose2D :: Elt e => Array DIM2 e -> Array DIM2 e

example

transpose2D :: Elt e => Array DIM2 e -> Array DIM2 e

element type
(basic numeric types, Bool, strict pairs)

example

transpose2D :: Elt e => Array DIM2 e -> Array DIM2 e

index type
SHAPE
EXTENT

example

transpose2D :: Elt e => Array DIM2 e -> Array DIM2 e

4 DIMO=Z (scalar)
DIM1 = DIMO :. Int
DIM2 = DIM1 :. Int

shoc lists

Haskell lists are cons lists
1:2:3:[] isthe same as [1,2,3]

Repa uses snoc lists at type level for shape types
and at value level for shapes

DIM2=7:.Int:. Int is a shape type

Z:i:j readas (i,j) isanindexintoatwo dim. array

examples

*Main> lety =fromList ((Z:.2:.3:. 3):: DIM3) [1..18]

[shape

examples

*Main> lety =fromList ((Z:.2:.3:. 3):: DIM3) [1..18]

L

the type of the shape
needs to be there, otherwise

~

get very annoying error messages

J

examples

*Main> lety =fromList ((Z:.2:.3:. 3):: DIM3) [1..18]

*Main>y
Array (£:.2:.3:3)[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.
0,14.0,15.0,16.0,17.0,18.0]

*Main> extent y
((Z2:.2):.3):.3

examples

*Main> lety =fromList ((Z:.2:.3:. 3):: DIM3) [1..18]

*Main>y!(Z:.0:.0:0)
1.0

*Main>y!(Z:.1:.1:1)
14.0

examples

*Main> lety =fromList ((Z:.2:. 3:. 3): DIM3) [1..18]

*Main>y!(Z:. 0:0: 20)
*** Exception: .\Data\Vector\Generic.hs:237 ((!): index out of bounds (20,18)

bounds checking is done at RUN TME

examples

*Main> lety =fromList ((Z:. 2:. 3:. 3) :: DIM3)
[1..18]

*Main>y!(Z:.0:.0:.9)
10.0

*Main>y!(Z:.0:.0:17)
18.0

*Main>y ! (Z:..0:.17:.0)

*** Exception:
\Data\Vector\Generic.hs:237 ((!)): index
out of bounds (51,18)

This was unexpected!

*Main> let z = fromList (Z:. 2 .. 3 :: DIM2) [1..6]
*Main> transpose2D z
Array (Z:.3:.2)[1.0,4.0,2.0,5.0,3.0,6.0]

transpose2D :: Elt e => Array DIM2 e -> Array DIM2 e
transpose2D a = backpermute (swap s) swap a
where
S = extent a
swap (Z:.i..))=2Z:.]I

transpose2D :: Elt e => Array DIM2 e -> Array DIM2 e
transpose2D a = backpermute (swap s) swap a
where)
S = extent a

S
swap (Z:.i.j)=2Z:j:i L

is the shape (or extent) of the
array a

J

transpose2D :: Elt e => Array DIM2 e -> Array DIM2 e
transpose2D a = backpermute (swap s) swap a
where
S = extent a
swap (Z:.i.))=2Z:.j:.1I

swap i and |
= swap rows and columns

_ an index space transformation /

transpose2D :: Elt e => Array DIM2 e -> Array DIM2 e
transpose2D a = backpermute (swap s) swap a
where
S = extent a
swap (Z:..i:..))=2Z:.j:.1

swap i and |

= swap rows and columns

_ an index space transformation /

backpermute :: (Shape shin, Shape shout, Elt a) =>
shout -> (shout -> shin) -> Array shin a -> Array shout a

transpose2D :: Elt e => Array DIM2 e -> Array DIM2 e
transpose2D a = backpermute (swap s) swap a
where
S = extent a
swap (Z:..i1..))=2:.]:

more general transpose
(on inner two dimensions)

transpose :: (Shape sh, Elt e) => Array ((sh :. Int) .. Int) e -> Array ((sh :. Int) .. Int) e

more general transpose
(on inner two dimensions)
is provided

transpose :: (Shape sh, Elt €) => Array ((sh :. Int) .. Int) e -> Array ((sh :. Int) ;.. Int) e

4)

This type says an array with at least 2 dimensions.
The function is shape polymorphic

& J

more general transpose
(on inner two dimensions)
is provided

transpose :: (Shape sh, Elt e) => Array ((sh :. Int) .. Int) e -> Array ((sh :. Int) .. Int) e

/Functions with at-least constraints become a A
parallel map over the unspecified dimensions (called
rank generalisation)

\Important way to express parallel patterns)

*Main> let w = fromList (Z:. 2:. 3:. 3:: DIM3) [1..(18 ::Int)]

*Main> A.transpose w
Array (Z:.2:.3:.3)[1,4,7,2,5,8,3,6,9, 10,13,16,11,14,17,12,15,18]

A.sum :: (Shape sh, Elt a, Num a) => Array (sh :. Int) a -> Array sh a

|

reduces shape by one dimension

*Main> w

Array (Z:.2:.3:.3)[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]
*Main> A.sum w

Array (Z:. 2 :. 3) [6, 15, 24, 33, 42, 51]

*Main> w

Array (Z:.2:.3:.3)[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]
*Main> A.sum w

Array (Z:. 2 :. 3) [6, 15, 24, 33, 42, 51]

/note that for 1D arrays, sum is implemented as a paraIIeI\
tree reduction as (+) is known to be associative.
Generic folds etc. are sequential (in this version of Repa)
For > 1D arrays, both are sequential, but many of them
_.happen at once because of rank generalisation)

backpermute can change the shape

selEven :: (Shape sh, Elt €) => Array (sh:.Int) e -> Array (sh:.Int) e
{-# INLINE selEven #-}
selEven !arr = force $ backpermute new_shape expand arr
where
(ns :.n) = extent arr
new_shape = ns :.((n+1) ‘div 2)
expand (is :.i) =is ..(i * 2)

backpermute can change the shape

selEven :: (Shape sh, Elt €) => Array (sh:.Int) e -> Array (sh:.Int) e
{-# INLINE selEven #-}
selEven !arr = force $ backpermute new_shape expand arr
where
(ns :.n) = extent arr
new_shape = ns :.((n+1) ‘div 2)
expand (is :.i) =is ..(i * 2)

4)
Note how the new shape depends only on the old shape

and not on the data in the array

(My def. differs slightly from that in the paper.)
_ J

backpermute can change the shape

selEven :: (Shape sh, Elt €) => Array (sh:.Int) e -> Array (sh:.Int) e
{-# INLINE selEven #-}
selEven !arr = force $ backpermute new_shape expand arr
where
(ns :.n) = extent arr
new_shape = ns :.((n+1) ‘div 2)
expand (is :.i) =is ..(i * 2)

selOdd :: (Shape sh, Elt e) => Array (sh:.Int) e -> Array (sh:.Int) e
{-# INLINE selOdd #-}
selOdd !arr = force $ backpermute new_extent expand arr
where
(ns :.n) = extent arr
new_extent =ns :.(n div’ 2)
expand (is:.i) =is:.(i*2 +1)

*Main> let w = fromList (Z:. 2:. 3:. 3:: DIM3) [1..(18 ::Int)]
*Main> selEven w

Array (£:.2:.3:.2)[1,3,4,6,7,9,10,12,13,15,16,18]
*Main> selOdd w

Array (Z:.2:.3:.1)[2,5,8,11,14,17]

filter?

filter :: (Elt e) => (E -> Bool) -> Array DIM1 e -> Array DIM1 e

can’t be shape polymorphic
the shape of the output depends on the value of the input

filtering rows in a matrix might give different lengths (but
we only deal with rectangular arrays)

|
M
f 3
>
-

w
Fal

Matrix Multiplicaton ~ (A.B)ij =

aii1|d@i12(413 ci1/e1s
bii|biz
Qz2i|Qz2z2|4Az3 — C21|C22
* |b2i|b2z| =
dzi1|A32|Asz C31|C32
b3i|bsz
da1|dAa2(qa3 C41)Ca2

slide from Lippmeier’s ICFP 2010 talk on Repa

Matrix Multiplication L.,
—_ ol c21
a2l | azz | a23 w
I['II[IMU]_t a3l a3z | a33 o
(Num e, Elt E} as1 | asz | aa3 L~

=> Array DIMZ2 e
-> Array DIM2 e -> Array DIMZ2 e

mmMult arr brr
= sum (zipWith (*) arrRepl brrRepl)

where
trr = transposeZ2D brr
arrR = replicate (Z :.All r.colsB :.All) arr
brrR = replicate (Z :.rowsA :.All :.A11) trr
(2 :. colsA :. rowsA) = extent arr
(Z :. colsB :. rowsB) = extent brr

slide from Lippmeier’s ICFP 2010 talk on Repa

Fusion

¢ |t’s nice to program with bulk operations
.. but we usually want them to be fused.

¢ We imagine replicating the source arrays being replicated
when writing the program, but we don’t want this at runtime.

¢ Fusion eliminates the intermediate arrays and the
corresponding memory traffic.

slide from Lippmeier’s ICFP 2010 talk on Repa

Manifest and Delayed Arrays

data Array sh e
= Manifest sh (UArr e)
| Delayed sh (sh -> e)

eManifest wraps a bona-fide unboxed array.
Bulk-strict semantics. Forcing one element forces them all.

e Delayed wraps an element producing function, perhaps an
index transformation that references some other array.

¢ Delayed functions are inlined and fused by the existing GHC
optimiser (and lots of rewrite rules).

slide from Lippmeier’s ICFP 2010 talk on Repa

Manifest and Delayed

data Array
= Manif
| Delay

eManifest wraps a boj
Bulk-strict semantics. |

eDelayed wraps an elem
index transformation that

¢ Delayed functions are inlined and fused by the existing GHC

Arrave

worker-wrapper transformation, hoisting

etc.

End up with the index transformations nicely

composed

This is what gives tight loops in the resulting

code (and good performance)

o

)

ome other array.

optimiser (and lots of rewrite rules).

slide from Lippmeier’s ICFP 2010 talk on Repa

Manifest and Delayed Arrays

data Array sh e
= Manifest sh (UArr e)
| Delayed sh (sh,-> e)

eManifest wraps a bona-fi

Bulk-strict semantics
Note on our research ©

eDelayed wraps an g We have a similar symbolic array

index transformation! representation in Obsidian (our DSL for GPU
programming in Haskell (Svensson, Claessen,
* Delayed functions arc Sheeran))

optimiser (and lots of and in Feldspar (DSL for DSP algorithm
design (Axelsson, Persson, Svenningsson,

@eeran)) /

slide from Lippmeier’s ICFP 2010 talk on Repa

Sharing and force

let arr =
brr = map £ arr
in mmMult brr brr

slide from Lippmeier’s ICFP 2010 talk on Repa

Sharing and force

data Array sh e
= Manifest =h (UArr e)
| Delayed sh (sh -> e)

let arr =
brr = map f arr
in mmMult brr brr

Sharing and force

data Array sh e
= Manifest sh (UArr e)
| Delayed =sh (sh -> e)

force :: Array sh e
-> Array sh e

let arr =
brr = force (map f arr)
in mmMult brr brr

e For Manifest arrays, force is the identity.

e For Delayed arrays, it evaluates all the elements in parallel,
producing a manifest array.

® The programmer must add force manually.

slide from Lippmeier’s ICFP 2010 talk on Repa

force :: (Shape sh, Elt a) => Array sh a -> Array sh a

force
Delayed Array N Manifest Array

evaluate all elements in parallel

force :: (Shape sh, Elt a) => Array sh a -> Array sh a

force
Delayed Array e Manifest Array >

evaluate all elements in parallel

force :: (Shape sh, Elt a) => Array sh a -> Array sh a

Delayed Array if you index into a delayed array without

forcing it first, then each indexing operation
costs a function call. It also recomputes the
value of the array element at that index.

&

Using the force ... B e oy o (0 1 R
] . c21
azl akd a23 f
mmMult a3l | a3z | a33 L~
(Num e, E1t e) wr | wiz |an| V7

=> Array DIMZ e
-> Array DIM2 e -> Array DIM2 e

mmMult arr brr
= sum (zipWith (*) arrRepl brrRepl)
where

trr transposeZD brr)

arrR = replicate (Z :.All :.colsB :.A11) arr
brrR = replicate (Z :.rowsA :.Al1l . Al11) trr
(Z :. colsA :. rowsA) = extent arr

(2 :. colsB :. rowsB) = extent brr

slide from Lippmeier’s ICFP 2010 talk on Repa

: . e
Using the force ... B e oy o (0 1 R
] . c21
azl akd a23 f..
mmMult a3l | a3z | a33 L~
(Num e, E1t e) wr | wiz |an| V7

=> Array DIMZ e
-> Array DIM2 e -> Array DIM2 e

mmMult arr brr
= sum (zipWith (*) arrRepl brrRepl)

where
trr (transpose2D brr)
arrR = reg AL :.colsB :.A11) arr
brrR = r t.rowsA :.Al1l . Al11) trr
(Z2 :. co] = exXtent arr
(Z :. co wsB) = extent brr

(better cache performance when

-

accessing the elements of b in
row major order, so force the
transposed version)

le from Lippmeier’s ICFP 2010 talk on Repa

Using the force ... Mo v o D Eup
| a2l Fd a2l f EZ1
mmMult 31 | a32 | 233 L~
(Num e, E1t a1 | iz |a| V7

=> Array DIMZ e
-> Array DIM2 e ->

mmMult arr brr
= sum (zipWith (*) arrRe

where

trr 2 uses of force

arrk = to get parallelism

brrR . .

(7 . CD] to improve locality

(Z :. co wsB\\r S —— J

(better cache performance when
accessing the elements of b in
row major order, so force the

_ transposed version)

le from Lippmeier’s ICFP 2010 talk on Repa

prescan in Repa (clear version)

import Data.Array.Repa as A
prescanO :: (Elta) => (a->a->a)->a -> (Array (Z .. Int) a) -> (Array (Z :. Int) a)
prescan0f _as | size (extent as) == 1 = fromList (Z :. (1 :: Int)) [i]
prescan0 f i as | otherwise = let es = selEven as
0s = selOdd as

ss = prescan0 f i (A.zipWith f es 0s)
in interleave2 ss (A.zipWith f ss es)

same prescan in Repa
(my fastest so far)

-- assumes input of length a power of 2
prescan :: (Elta) =>(a->a->a)->a ->(Array (Z .. Int) a) -> (Array (Z .. Int) a)
{-# INLINE prescan #-}
prescan flilas = sc as
where
sc as | size (extent as) == 1 = force $ fromList (Z :. (1 :: Int)) [i]
sc as | otherwise =
let es = force $ selEven as
os = force $ selOdd as
ss = force $ sc (A.zipWith f es 0s)
in as deepSegArray interleave2M ss (A.zipWith f ss es)

5 or 6 times faster for sumAll . prescan (+) (0::Int) on 2220 inputs
still 3-4 times slower than scanl1 ® but good speedup on 2 cores -N4
and hopefully on more

more operations

map :: (Shape sh, Elt a, Elt b) => (a -> b) -> Array sh a->Array sh b

Doesn’t care about shape of array. Just applies the function to each element.

plain Haskell foldl:: (a->b->a)->a->[b]->a

Repa foldl :: (Shape sh, Elt a, Elt b) => (a -> b -> a) -> a -> Array (sh :. Int) b -> Array sh a

reduce shape by one dimension

*Main> lety = fromList ((Z:. 2:. 3:. 3) :: DIM3) [1..18]
*Main> A.fold (+) Oy
Array (Z:. 2:. 3) [6.0,15.0,24.0,33.0,42.0,51.0]

*Main> A.transpose y
Array (Z:.2:.3:.3)
[1.0,4.0,7.0,2.0,5.0,8.0,3.0,6.0,9.0,10.0,13.0,16.0,11.0,14.0,17.0,12.0,15.0,18.0]

*Main> A.fold (+) O (A.transpose Yy)
Array (Z :. 2:.3) [12.0,15.0,18.0,39.0,42.0,45.0]

each fold is sequential, but they are all done at once

map :: (Shape

Doesn’t care ab

plain Haskell

Repa foldl :: (Shape

more operations

sh, Elt a, Elt b) => (a -> b)

Note in th|s version, there is
no map over (say) the inner
dimension (e.g. each row of a
DIM2 array)

That might cause NESTEDNESS
Note, though, that later Repa
versions have chunked arrays

and also a notion of regions in

kn array /

reduce shape by one dimension

y sha->Array shb

to each element.

.. Int) b -> Array sh a

key function: traverse

traverse
:: (Shape sh', Shape sh, Elt a) =>
Array shin a -> (shin -> shout) -> ((shin -> a) -> shout -> b) -> Array shout b

Array - a
H—

key function: traverse

traverse
:: (Shape sh', Shape sh, Elt a) =>
Array shin a -> (shin -> shout) -> ((shin -> a) -> shout -> b) -> Array shout b

only on shape of input

~

J

) Array - b

key function: traverse

traverse
:: (Shape sh', Shape sh, Elt a) =>

Array shin a -> (shin -> shout) -> ((shin -> a) -> shout -> b) -> Array shout b

Array - a

(-—a) —)

indices, but is still a collective

operation

Seems to mess around with

J

) Array - b

key function: traverse

traverse
:: (Shape sh', Shape sh, Elt a) =>
Array shin a -> (shin -> shout) -> ((shin -> a) -> shout -> b) -> Array shout b

Array - a 4)

Seems to mess around with
indices, but is still a collective
operation

there is also a version called unsafeTraverse that skips bounds checking and so is faster

use of traverse

backpermute :: (Shape sh’, Shape s, Elt e) =>
shout -> (shout -> shin) -> Array shin e -> Array shout e
backpermute shout perm arr = traverse arr (const shout) (. perm)

input shape -> output shape

shin -> | shout
output shape

shout (ignore input shape)

perm :: (shout -> shin)
(. perm) :: (shin ->a) -> shout -> a

use of traverse

A.map :: (Shape sh, Elt b, Elt a) => (a -> b) -> Array sh a -> Array sh b

map f arr = traverse arr id (f .)

unsafeTraverse

{-# INLINE bfly #-}
bfly 'k !as
= unsafeTraverse asid (\f(s:.i)->leta=1f(s:. 1)
b=1(s:. (flipBitik))
in if (testBit i k) then (b-a) else (a+b))

unsafeTraverse

{-# INLINE bfly #-}
bfly 'k !as
= unsafeTraverse asid (\f(s:.i)->leta=1f(s:. 1)
b=1(s:. (flipBitik))
in if (testBit i k) then (b-a) else (a+b))

{-# INLINE twids #-}

twids 'k las
= let k2 = 27k
k2' = 2*k2 in

unsafeTraverse asid (\Mf(s:.i)->leta=1f(s:.)
t=tw (i mod k2) k2'
in if (testBit i K) then t*a else a)

{-# INLINE interleave2M #-}
interleave2M arrl arr2
= arrl deepSegArray arr2 deepSedgArray
unsafeTraverse2 arrl arr2 shapeFn elemFn
where
shapeFn diml1 dim2
| sh:. lenl <-diml
, Sh:. len2 <-dim2
=sh:. (lenl + len2)

elemFn getl get2 (sh :. ix)

= case ix mod 2 of
0 -> getl (sh:. ix div 2)
1 -> get2 (sh .. ix div 2)

*Main> let w = fromList (Z:. 2:. 3:. 3:: DIM3) [1..(18 ::Int)]
*Main> selEven w

Array (£:.2:.3:.2)[1,3,4,6,7,9,10,12,13,15,16,18]
*Main> selOdd w

Array (Z:.2:.3:.1)[2,5,8,11,14,17]

*Main> interleave2 (selEven w) (selOdd w)

Array (*** Exception: Data.Array.Repa.interleave2: arrays must
have same extent

*Main> interleave2M (selEven w) (selOdd w)

Array (Z:.2:.3:.3)
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]

unsafeTraverse

{-# INLINE bfly #-}
bfly 'k !as
= unsafeTraverse asid (\f(s:.i)->leta=1f(s:. 1)
b=1(s:. (flipBitik))
in if (testBit i k) then (b-a) else (a+b))

{-# INLINE twids #-}

twids 'k las
= let k2 = 27k
k2' = 2*k2 in

unsafeTraverse asid (\Mf(s:.i)->leta=1f(s:.)
t=tw (i mod k2) k2'
in if (testBit i K) then t*a else a)

{-# INLINE fft4 #-}
fft4 In las = foldrl (.) [force . twids k . bfly k | k <- [0..(n-1)]] as

Example Applications

Solving the
Laplace Equation

| I xo !l 1 Xo=(l+r+u+d)/4

slide from Lippmeier’s ICFP 2010 talk on Repa

Laplace Equation

boundary conditions 5000 steps

0 steps 100 steps 500 steps 1000 steps

slide from Lippmeier’s ICFP 2010 talk on Repa

Laplace Equation

stencil :: Array DIMZ Double
-> Array DIMZ Double

stencil arr
= traverse arr id update
where
_t. height :. width = extent arr

update get dé(sh :. 1 :. 3J)
= 1f isBoundary i 7
then get d
else (get (sh :. (i-1)) :. 3J)
+ get (sh :. 1 . (3-1))
+ get (sh :. (i+1)) :. 3J)
+ get (sh :. 1 . (J+1))) / 4

slide from Lippmeier’s ICFP 2010 talk on Repa

speadup

speadup

Laplace Equation

on ?x Guad-core 3GHz Xenon

sire 400x400

size J00=300

single | fastest
Gee thread | parallel

Xenon| 0.70 1.78 0.68s
T2 6.bs 32s 3.8s

thireads

on a 1,4Ghz UltraSPARC T2

size 300x300

size 400x400

e GHC native code generator
does no instruction reordering
on SPARC. No LLVM ‘port.

¢ Single threaded on T2 is slow

1

2 4] 8 10 12 14 16
threads (on 8 PEs)

slide from Lippmeier’s ICFP 2010 talk on Repa

Conclusions
Based on DPH technology
Good speedups!
Neat programs

Good control of Parallelism

BUT CACHE AWARENESS needs to be tackled

Next lecture (Monday)

| would like to have a couple of student talks
next wednesday (having talked to a couple of
you earlier). Please contact to me again to
confirm!

Student talks on topics related to the course
would be most welcome!

	Parallel Functional Programming�Lecture 8�Data Parallelism II
	Data parallelism
	Slide Number 3
	Ideas
	terminology
	terminology
	version
	example
	example
	example
	example
	snoc lists
	examples
	examples
	examples
	examples
	examples
	examples
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	more general transpose �(on inner two dimensions)
	more general transpose �(on inner two dimensions)�is provided
	more general transpose �(on inner two dimensions)�is provided
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	backpermute can change the shape
	backpermute can change the shape
	backpermute can change the shape
	Slide Number 36
	filter?
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	prescan in Repa (clear version)
	same prescan in Repa� (my fastest so far)
	more operations
	Slide Number 56
	more operations
	key function: traverse
	key function: traverse
	key function: traverse
	key function: traverse
	use of traverse
	use of traverse
	unsafeTraverse
	unsafeTraverse
	Slide Number 66
	Slide Number 67
	unsafeTraverse
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Conclusions
	Next lecture (Monday)

