
Parallel Functional Programming
Lecture 8

Data Parallelism II
Mary Sheeran

(with thanks to Ben Lippmeier for
borrowed slides)

http://www.cse.chalmers.se/edu/course/pfp

Data parallelism
Perform same computation on a collection of differing data values

examples: HPF (High Performance Fortran)
 CUDA

Both support only flat data parallelism

Flat : each of the individual computations on (array) elements is

sequential
 those computations don’t need to communicate
 parallel computations don’t spark further parallel computations

API for purely functional, collective operations over dense,
rectangular, multi-dimensional arrays supporting shape
polymorphism

ICFP 2010

Ideas

Purely functional array interface using collective (whole array)
operations like map, fold and permutations can
– combine efficiency and clarity
– focus attention on structure of algorithm, away from low level details

Influenced by work on algorithmic skeletons based on Bird

Meertens formalism

Provides shape polymorphism not in a standalone specialist

compiler like SAC, but using the Haskell type system

terminology

Regular arrays
dense, rectangular, most elements non-zero

shape polymorphic
functions work over arrays of arbitrary dimension

terminology

Regular arrays
dense, rectangular, most elements non-zero

shape polymorphic
functions work over arrays of arbitrary dimension

note: the arrays are purely
functional and immutable

All elements of an array are

demanded at once -> parallelism

P processing elements, n array
elements => n/P consecutive

elements on each proc. element

version

I use Repa 2.1.1.5 (which works with the GHC that you
get with the current Haskell platform)

If you have GHC 7.4 installed, you can use a later Repa,

which has more array types (and doubtless better
performance)

example

transpose2D :: Elt e => Array DIM2 e -> Array DIM2 e

import Data.Array.Repa as A

example

transpose2D :: Elt e => Array DIM2 e -> Array DIM2 e

element type
(basic numeric types, Bool, strict pairs)

example

transpose2D :: Elt e => Array DIM2 e -> Array DIM2 e

index type
SHAPE
EXTENT

example

transpose2D :: Elt e => Array DIM2 e -> Array DIM2 e

 DIM0 = Z (scalar)
DIM1 = DIM0 :. Int
DIM2 = DIM1 :. Int

snoc lists
Haskell lists are cons lists
1:2:3:[] is the same as [1,2,3]

Repa uses snoc lists at type level for shape types
and at value level for shapes

DIM2 = Z :. Int :. Int is a shape type

Z :. i :. j read as (i,j) is an index into a two dim. array

examples
*Main> let y = fromList ((Z :. 2 :. 3 :. 3) :: DIM3) [1..18]

 shape

examples
*Main> let y = fromList ((Z :. 2 :. 3 :. 3) :: DIM3) [1..18]

the type of the shape
needs to be there, otherwise
get very annoying error messages

examples
*Main> let y = fromList ((Z :. 2 :. 3 :. 3) :: DIM3) [1..18]

*Main> y
Array (Z :. 2 :. 3 :. 3) [1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.
0,14.0,15.0,16.0,17.0,18.0]

*Main> extent y
((Z :. 2) :. 3) :. 3

examples
*Main> let y = fromList ((Z :. 2 :. 3 :. 3) :: DIM3) [1..18]

*Main> y ! (Z :. 0 :. 0 :. 0)
1.0

*Main> y ! (Z :. 1 :. 1 :. 1)
14.0

examples
*Main> let y = fromList ((Z :. 2 :. 3 :. 3) :: DIM3) [1..18]

*Main> y ! (Z :. 0 :. 0 :. 20)
*** Exception: .\Data\Vector\Generic.hs:237 ((!)): index out of bounds (20,18)

 bounds checking is done at RUN TME

examples
*Main> let y = fromList ((Z :. 2 :. 3 :. 3) :: DIM3)
[1..18]

*Main> y ! (Z :. 0 :. 0 :. 9)
10.0

*Main> y ! (Z :. 0 :. 0 :. 17)
18.0

*Main> y ! (Z :. 0 :. 17 :. 0)
*** Exception:
.\Data\Vector\Generic.hs:237 ((!)): index
out of bounds (51,18)

 This was unexpected!

*Main> let z = fromList (Z :. 2 :. 3 :: DIM2) [1..6]
*Main> transpose2D z
Array (Z :. 3 :. 2) [1.0,4.0,2.0,5.0,3.0,6.0]

1 2 3

4 5 6

1

2

3

4

5

6

transpose2D :: Elt e => Array DIM2 e -> Array DIM2 e
transpose2D a = backpermute (swap s) swap a
 where
 s = extent a
 swap (Z :. i :. j) = Z :. j :. i

transpose2D :: Elt e => Array DIM2 e -> Array DIM2 e
transpose2D a = backpermute (swap s) swap a
 where
 s = extent a
 swap (Z :. i :. j) = Z :. j :. i

s is the shape (or extent) of the
array a

transpose2D :: Elt e => Array DIM2 e -> Array DIM2 e
transpose2D a = backpermute (swap s) swap a
 where
 s = extent a
 swap (Z :. i :. j) = Z :. j :. i

swap i and j
= swap rows and columns

an index space transformation

transpose2D :: Elt e => Array DIM2 e -> Array DIM2 e
transpose2D a = backpermute (swap s) swap a
 where
 s = extent a
 swap (Z :. i :. j) = Z :. j :. i

swap i and j
= swap rows and columns

an index space transformation

1 2 3

4 5 6

1

2

3

4

5

6

backpermute :: (Shape shin, Shape shout, Elt a) =>
 shout -> (shout -> shin) -> Array shin a -> Array shout a

transpose2D :: Elt e => Array DIM2 e -> Array DIM2 e
transpose2D a = backpermute (swap s) swap a
 where
 s = extent a
 swap (Z :. i :. j) = Z :. j :. i

more general transpose
(on inner two dimensions)

transpose :: (Shape sh, Elt e) => Array ((sh :. Int) :. Int) e -> Array ((sh :. Int) :. Int) e

more general transpose
(on inner two dimensions)

is provided

transpose :: (Shape sh, Elt e) => Array ((sh :. Int) :. Int) e -> Array ((sh :. Int) :. Int) e

This type says an array with at least 2 dimensions.
The function is shape polymorphic

more general transpose
(on inner two dimensions)

is provided

transpose :: (Shape sh, Elt e) => Array ((sh :. Int) :. Int) e -> Array ((sh :. Int) :. Int) e

Functions with at-least constraints become a
parallel map over the unspecified dimensions (called
rank generalisation)

Important way to express parallel patterns

*Main> let w = fromList (Z :. 2 :. 3 :. 3 :: DIM3) [1..(18 ::Int)]

*Main> A.transpose w
Array (Z :. 2 :. 3 :. 3) [1,4,7,2,5,8,3,6,9, 10,13,16,11,14,17,12,15,18]

A.sum :: (Shape sh, Elt a, Num a) => Array (sh :. Int) a -> Array sh a

reduces shape by one dimension

*Main> w
Array (Z :. 2 :. 3 :. 3) [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]
*Main> A.sum w
Array (Z :. 2 :. 3) [6, 15, 24, 33, 42, 51]

*Main> w
Array (Z :. 2 :. 3 :. 3) [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]
*Main> A.sum w
Array (Z :. 2 :. 3) [6, 15, 24, 33, 42, 51]

note that for 1D arrays, sum is implemented as a parallel
tree reduction as (+) is known to be associative.
Generic folds etc. are sequential (in this version of Repa)
For > 1D arrays, both are sequential, but many of them
happen at once because of rank generalisation

backpermute can change the shape

selEven :: (Shape sh, Elt e) => Array (sh:.Int) e -> Array (sh:.Int) e
{-# INLINE selEven #-}
selEven !arr = force $ backpermute new_shape expand arr
 where
 (ns :.n) = extent arr
 new_shape = ns :.((n+1) `div` 2)
 expand (is :.i) = is :.(i * 2)

backpermute can change the shape

selEven :: (Shape sh, Elt e) => Array (sh:.Int) e -> Array (sh:.Int) e
{-# INLINE selEven #-}
selEven !arr = force $ backpermute new_shape expand arr
 where
 (ns :.n) = extent arr
 new_shape = ns :.((n+1) `div` 2)
 expand (is :.i) = is :.(i * 2)

Note how the new shape depends only on the old shape
and not on the data in the array
(My def. differs slightly from that in the paper.)

backpermute can change the shape

selEven :: (Shape sh, Elt e) => Array (sh:.Int) e -> Array (sh:.Int) e
{-# INLINE selEven #-}
selEven !arr = force $ backpermute new_shape expand arr
 where
 (ns :.n) = extent arr
 new_shape = ns :.((n+1) `div` 2)
 expand (is :.i) = is :.(i * 2)

selOdd :: (Shape sh, Elt e) => Array (sh:.Int) e -> Array (sh:.Int) e
{-# INLINE selOdd #-}
selOdd !arr = force $ backpermute new_extent expand arr
 where
 (ns :.n) = extent arr
 new_extent = ns :.(n `div` 2)
 expand (is :.i) = is :.(i * 2 + 1)

*Main> let w = fromList (Z :. 2 :. 3 :. 3 :: DIM3) [1..(18 ::Int)]
*Main> selEven w
Array (Z :. 2 :. 3 :. 2) [1,3,4,6,7,9,10,12,13,15,16,18]
*Main> selOdd w
Array (Z :. 2 :. 3 :. 1) [2,5,8,11,14,17]

filter?

filter :: (Elt e) => (E -> Bool) -> Array DIM1 e -> Array DIM1 e

can’t be shape polymorphic

the shape of the output depends on the value of the input

filtering rows in a matrix might give different lengths (but
we only deal with rectangular arrays)

slide from Lippmeier’s ICFP 2010 talk on Repa

slide from Lippmeier’s ICFP 2010 talk on Repa

slide from Lippmeier’s ICFP 2010 talk on Repa

slide from Lippmeier’s ICFP 2010 talk on Repa

slide from Lippmeier’s ICFP 2010 talk on Repa

worker-wrapper transformation, hoisting
etc.

End up with the index transformations nicely
composed

This is what gives tight loops in the resulting
code (and good performance)

Note on our research 
we have a similar symbolic array
representation in Obsidian (our DSL for GPU
programming in Haskell (Svensson, Claessen,
Sheeran))
and in Feldspar (DSL for DSP algorithm
design (Axelsson, Persson, Svenningsson,
Sheeran))

slide from Lippmeier’s ICFP 2010 talk on Repa

slide from Lippmeier’s ICFP 2010 talk on Repa

slide from Lippmeier’s ICFP 2010 talk on Repa

force :: (Shape sh, Elt a) => Array sh a -> Array sh a

Delayed Array Manifest Array
force

evaluate all elements in parallel

force :: (Shape sh, Elt a) => Array sh a -> Array sh a

Delayed Array Manifest Array
force

evaluate all elements in parallel

force :: (Shape sh, Elt a) => Array sh a -> Array sh a

Delayed Array Manifest Array
force

evaluate all elements in parallel

 if you index into a delayed array without
forcing it first, then each indexing operation
costs a function call. It also recomputes the
value of the array element at that index.

slide from Lippmeier’s ICFP 2010 talk on Repa

slide from Lippmeier’s ICFP 2010 talk on Repa

better cache performance when
accessing the elements of b in
row major order, so force the

transposed version

slide from Lippmeier’s ICFP 2010 talk on Repa

better cache performance when
accessing the elements of b in
row major order, so force the

transposed version

2 uses of force
to get parallelism

to improve locality

prescan in Repa (clear version)

import Data.Array.Repa as A

prescan0 :: (Elt a) => (a -> a -> a) -> a -> (Array (Z :. Int) a) -> (Array (Z :. Int) a)

prescan0 f _ as | size (extent as) == 1 = fromList (Z :. (1 :: Int)) [i]

prescan0 f i as | otherwise = let es = selEven as
 os = selOdd as
 ss = prescan0 f i (A.zipWith f es os)
 in interleave2 ss (A.zipWith f ss es)

same prescan in Repa
 (my fastest so far)

-- assumes input of length a power of 2
prescan :: (Elt a) => (a -> a -> a) -> a -> (Array (Z :. Int) a) -> (Array (Z :. Int) a)
{-# INLINE prescan #-}
prescan f !i !as = sc as
 where
 sc as | size (extent as) == 1 = force $ fromList (Z :. (1 :: Int)) [i]
 sc as | otherwise =
 let es = force $ selEven as
 os = force $ selOdd as
 ss = force $ sc (A.zipWith f es os)
 in as `deepSeqArray` interleave2M ss (A.zipWith f ss es)

5 or 6 times faster for sumAll . prescan (+) (0::Int) on 2^20 inputs
still 3-4 times slower than scanl1  but good speedup on 2 cores -N4
 and hopefully on more

more operations

map :: (Shape sh, Elt a, Elt b) => (a -> b) -> Array sh a -> Array sh b

Doesn’t care about shape of array. Just applies the function to each element.

foldl :: (Shape sh, Elt a, Elt b) => (a -> b -> a) -> a -> Array (sh :. Int) b -> Array sh a

foldl :: (a -> b -> a) -> a -> [b] -> a plain Haskell

Repa

reduce shape by one dimension

*Main> let y = fromList ((Z :. 2 :. 3 :. 3) :: DIM3) [1..18]
*Main> A.fold (+) 0 y
Array (Z :. 2 :. 3) [6.0,15.0,24.0,33.0,42.0,51.0]

*Main> A.transpose y
Array (Z :. 2 :. 3 :. 3)
[1.0,4.0,7.0,2.0,5.0,8.0,3.0,6.0,9.0,10.0,13.0,16.0,11.0,14.0,17.0,12.0,15.0,18.0]

*Main> A.fold (+) 0 (A.transpose y)
Array (Z :. 2 :. 3) [12.0,15.0,18.0,39.0,42.0,45.0]

each fold is sequential, but they are all done at once

more operations

map :: (Shape sh, Elt a, Elt b) => (a -> b) -> Array sh a -> Array sh b

Doesn’t care about shape of array. Just applies the function to each element.

foldl :: (Shape sh, Elt a, Elt b) => (a -> b -> a) -> a -> Array (sh :. Int) b -> Array sh a

foldl :: (a -> b -> a) -> a -> [b] -> a plain Haskell

Repa

reduce shape by one dimension

Note: in this version, there is
no map over (say) the inner
dimension (e.g. each row of a
DIM2 array)
That might cause NESTEDNESS
Note, though, that later Repa
versions have chunked arrays
and also a notion of regions in
an array

key function: traverse
traverse
 :: (Shape sh', Shape sh, Elt a) =>
 Array shin a -> (shin -> shout) -> ((shin -> a) -> shout -> b) -> Array shout b

Array

a) (

Array a

b

b

key function: traverse
traverse
 :: (Shape sh', Shape sh, Elt a) =>
 Array shin a -> (shin -> shout) -> ((shin -> a) -> shout -> b) -> Array shout b

Array

a) (

Array a

b

b
Note : shape of output depends
only on shape of input

key function: traverse
traverse
 :: (Shape sh', Shape sh, Elt a) =>
 Array shin a -> (shin -> shout) -> ((shin -> a) -> shout -> b) -> Array shout b

Array

a) (

Array a

b

b

Seems to mess around with
indices, but is still a collective
operation

key function: traverse
traverse
 :: (Shape sh', Shape sh, Elt a) =>
 Array shin a -> (shin -> shout) -> ((shin -> a) -> shout -> b) -> Array shout b

Array

a) (

Array a

b

b

Seems to mess around with
indices, but is still a collective
operation

there is also a version called unsafeTraverse that skips bounds checking and so is faster

use of traverse

backpermute :: (Shape sh’, Shape s, Elt e) =>
 shout -> (shout -> shin) -> Array shin e -> Array shout e
backpermute shout perm arr = traverse arr (const shout) (. perm)

output shape
 shout

input shape -> output shape
 shin -> shout

 (ignore input shape)

perm :: (shout -> shin)
(. perm) :: (shin -> a) -> shout -> a

use of traverse

A.map :: (Shape sh, Elt b, Elt a) => (a -> b) -> Array sh a -> Array sh b

map f arr = traverse arr id (f .)

unsafeTraverse

{-# INLINE bfly #-}
bfly !k !as
 = unsafeTraverse as id (\f (s :. i) -> let a = f (s :. i)
 b = f (s :. (flipBit i k))
 in if (testBit i k) then (b-a) else (a+b))

unsafeTraverse

{-# INLINE bfly #-}
bfly !k !as
 = unsafeTraverse as id (\f (s :. i) -> let a = f (s :. i)
 b = f (s :. (flipBit i k))
 in if (testBit i k) then (b-a) else (a+b))

{-# INLINE twids #-}
twids !k !as
 = let k2 = 2^k
 k2' = 2*k2 in
 unsafeTraverse as id (\f (s :. i) -> let a = f (s :. i)
 t = tw (i `mod` k2) k2'
 in if (testBit i k) then t*a else a)

{-# INLINE interleave2M #-}
interleave2M arr1 arr2
 = arr1 `deepSeqArray` arr2 `deepSeqArray`
 unsafeTraverse2 arr1 arr2 shapeFn elemFn
 where
 shapeFn dim1 dim2
 | sh :. len1 <- dim1
 , sh :. len2 <- dim2
 = sh :. (len1 + len2)

 elemFn get1 get2 (sh :. ix)
 = case ix `mod` 2 of
 0 -> get1 (sh :. ix `div` 2)
 1 -> get2 (sh :. ix `div` 2)

*Main> let w = fromList (Z :. 2 :. 3 :. 3 :: DIM3) [1..(18 ::Int)]
*Main> selEven w
Array (Z :. 2 :. 3 :. 2) [1,3,4,6,7,9,10,12,13,15,16,18]
*Main> selOdd w
Array (Z :. 2 :. 3 :. 1) [2,5,8,11,14,17]

*Main> interleave2 (selEven w) (selOdd w)
Array (*** Exception: Data.Array.Repa.interleave2: arrays must
have same extent
*Main> interleave2M (selEven w) (selOdd w)
Array (Z :. 2 :. 3 :. 3)
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]

unsafeTraverse

{-# INLINE bfly #-}
bfly !k !as
 = unsafeTraverse as id (\f (s :. i) -> let a = f (s :. i)
 b = f (s :. (flipBit i k))
 in if (testBit i k) then (b-a) else (a+b))

{-# INLINE twids #-}
twids !k !as
 = let k2 = 2^k
 k2' = 2*k2 in
 unsafeTraverse as id (\f (s :. i) -> let a = f (s :. i)
 t = tw (i `mod` k2) k2'
 in if (testBit i k) then t*a else a)

{-# INLINE fft4 #-}
fft4 !n !as = foldr1 (.) [force . twids k . bfly k | k <- [0..(n-1)]] as

slide from Lippmeier’s ICFP 2010 talk on Repa

slide from Lippmeier’s ICFP 2010 talk on Repa

slide from Lippmeier’s ICFP 2010 talk on Repa

slide from Lippmeier’s ICFP 2010 talk on Repa

Conclusions

Based on DPH technology

Good speedups!

Neat programs

Good control of Parallelism

BUT CACHE AWARENESS needs to be tackled

Next lecture (Monday)

 I would like to have a couple of student talks

next wednesday (having talked to a couple of
you earlier). Please contact to me again to
confirm!

 Student talks on topics related to the course
would be most welcome!

	Parallel Functional Programming�Lecture 8�Data Parallelism II
	Data parallelism
	Slide Number 3
	Ideas
	terminology
	terminology
	version
	example
	example
	example
	example
	snoc lists
	examples
	examples
	examples
	examples
	examples
	examples
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	more general transpose �(on inner two dimensions)
	more general transpose �(on inner two dimensions)�is provided
	more general transpose �(on inner two dimensions)�is provided
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	backpermute can change the shape
	backpermute can change the shape
	backpermute can change the shape
	Slide Number 36
	filter?
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	prescan in Repa (clear version)
	same prescan in Repa� (my fastest so far)
	more operations
	Slide Number 56
	more operations
	key function: traverse
	key function: traverse
	key function: traverse
	key function: traverse
	use of traverse
	use of traverse
	unsafeTraverse
	unsafeTraverse
	Slide Number 66
	Slide Number 67
	unsafeTraverse
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Conclusions
	Next lecture (Monday)

