
Finite Automata and
Formal Languages

TMV026/DIT321 – LP4 2011

Lecture 9

April 12th 2011

Overview of today’s lecture:

• Equivalence of Regular Languages

• Minimisation of Automata

Properties of Regular Languagues

Testing Equivalence of Regular Languages

There is no simple algorithm for testing this.

We have seen how one can prove that 2 RE are equal, hence the languages

they represent are equivalent, but this is not an easy process.

We will see now how to test when 2 DFA describe the same language.

Lecture 9 April 12th 2011 – TMV026/DIT321 Slide 1

Properties of Regular Languagues

Testing Equivalence of States in DFA

We shall first answer the question: do states p and q behave in the same way?

Definition: We say that states p and q are equivalent if for all w, δ̂(p, w) is

an accepting state iff δ̂(q, w) is an accepting state.

Note: We do not require that δ̂(p, w) = δ̂(q, w).

Definition: If p and q are not equivalent, then they are distinguishable.

That is, there exists at least one w is that one of δ̂(p, w) and δ̂(q, w) is an

accepting state and the other is not.

Lecture 9 April 12th 2011 – TMV026/DIT321 Slide 2

Properties of Regular Languagues

Table-Filling Algorithm

This algorithm finds pairs of states that are distinguishable.

Then, any pair of states that we do not find distinguishable are equivalent.

Let D = (Q,Σ, δ, q0, F) be a DFA. The algorithm is as follows:

Basis case: If p is an accepting state and q is not, the (p, q) are

distinguishable.

Inductive step: Let p and q be states such that for some symbol a,

δ(p, a) = r and δ(q, a) = s with the pair (r, s) known to be

distinguishable. Then (p, q) are also distinguishable.

(If w distinguishes r and s then aw must distinguish p and q since

δ̂(p, aw) = δ̂(r, w) and δ̂(q, aw) = δ̂(s, w).)

Lecture 9 April 12th 2011 – TMV026/DIT321 Slide 3

Properties of Regular Languagues

Example: Table-Filling Algorithm

For the following DFA, we fill to table with an X at distinguishable pairs.

a b

→ q0 q1 q2

∗q1 q3 q4

∗q2 q4 q3

q3 q5 q5

q4 q5 q5

∗q5 q5 q5

q0 q1 q2 q3 q4

q5 X X X X X

q4 X X X

q3 X X X

q2 X

q1 X

Let us consider the base case of the algorithm.

Let us consider the pair (q0, q4).

Let us consider the pair (q0, q3).

Finally, let us consider the pairs (q3, q4) and (q1, q2).

Lecture 9 April 12th 2011 – TMV026/DIT321 Slide 4

Properties of Regular Languagues

Example: Table-Filling Algorithm

For the following DFA, we fill to table with an X at distinguishable pairs.

a

→ q0 q1

∗q1 q2

q2 q3

q3 q4

∗q4 q5

q5 q0

q0 q1 q2 q3 q4

q5 X X X X

q4 X X X

q3 X X

q2 X X

q1 X

Let us consider the base case of the algorithm.

Let us consider the pair (q0, q5). Let us consider the pair (q0, q2). We go on

with the remaining pairs.

Lecture 9 April 12th 2011 – TMV026/DIT321 Slide 5

Properties of Regular Languagues

Equivalent States

Theorem: Let D = (Q,Σ, δ, q0, F) be a DFA. If 2 states are not

distinguishable by the table-filling algorithm then the states are equivalent.

Proof: Let us assume there is a bad pair (p, q) such that p and q are

distinguishable but the table-filling algorithm doesn’t find them so.

If there are bad pairs, let (p′, q′) be a bad pair with the shortest string

w = a1a2 . . . an that distinguishes 2 states.

Observe w is not ǫ otherwise (p′, q′) are found distinguishable in the base step.

Let δ(p′, a1) = r and δ(q′, a1) = s. States r and s are distinguished by

a2 . . . an since this string takes r to δ̂(p′, w) and s to δ̂(q′, w).

Now string a2 . . . an distinguishes 2 states and is shorter than w which is the

shortest string that distinguishes a bad pair. Then (r, s) cannot be a bad pair

and hence it must be found distinguishable by the algorithm.

Then the inductive part should have found (p′, q′) distinguishable.

This contradict the assumption that bad pairs exist.

Lecture 9 April 12th 2011 – TMV026/DIT321 Slide 6

Properties of Regular Languagues

Testing Equivalence of Regular Languages

We can use the table-filling algorithm to test equivalence of regular languages.

Let L and M be 2 regular languages.

Let DL = (QL,Σ, δL, qL, FL) and DM = (QM,Σ, δM, qM, FM) be their

corresponding DFA.

Let us assume QL ∩ QM = ∅ (easy to obtain by renaming).

We proceed now as follows.

Construct D = (QL ∪ QM,Σ, δ,−, FL ∪ FM). (The initial state is irrelevant.)

δ is the union of δL and δM as a function.

One should now check if the pair (qL, qM) is equivalent.

If so, a string is accepted by DL iff it is accepted by DM.

Hence L and M are equivalent languages.

Lecture 9 April 12th 2011 – TMV026/DIT321 Slide 7

Properties of Regular Languagues

Equivalent Relations

(Recall from Set theory.)

Definition: A relation R over a set S that is reflexive, symmetric and

transitive is called an equivalence relation over S.

In mathematical notation:

R ⊆ S × S is an equivalence relation iff R is

Reflexive: ∀a ∈ S, aRa

Symmetric: ∀a, b ∈ S, aRb ⇒ bRa

Transitive: ∀a, b, c ∈ S, aRb ∧ bRc ⇒ aRc

Note: Alternative notations: (a, b) ∈ R, R(a, b), (a, b) satisfies R.

Lecture 9 April 12th 2011 – TMV026/DIT321 Slide 8

Properties of Regular Languagues

Partitions

(Recall from Set theory.)

Definition: A set P is a partition over the set S if:

• Every element of P is a non-empty subset of S

∀C ∈ P, C 6= ∅ ∧ C ⊆ S

• Elements of P are pairwise disjoint

∀C1, C2 ∈ P, C1 6= C2 ⇒ C1 ∩ C2 = ∅

• The union of the elements of P is equal to S
⋃

C∈P

C = S

Lecture 9 April 12th 2011 – TMV026/DIT321 Slide 9

Properties of Regular Languagues

Equivalent Classes

(Recall from Set theory.)

Let R be an equivalent relation over S.

Definition: If a ∈ S, then the equivalent class of a in S is the set defined

as [a] = {b ∈ S | aRb}.

Lemma: ∀a, b ∈ S, [a] = [b] iff aRb.

Theorem: The set of all equivalence classes in S with respect to R form a

partition over S.

Note: This partition is called the quotient and is denoted as S/R.

Lecture 9 April 12th 2011 – TMV026/DIT321 Slide 10

Properties of Regular Languagues

Example: Equivalent Classes

(Recall from Set theory.)

Let S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Let the relation x ≡ y be defined as 3 divides x − y.

It can be proved that ≡ is an equivalent relation.

The quotient S/≡ consist of the following classes:

[1] = {1, 4, 7, 10} [2] = {2, 5, 8} [3] = {3, 6, 9}

Lecture 9 April 12th 2011 – TMV026/DIT321 Slide 11

Properties of Regular Languagues

Equivalence of States: An Equivalence Relation

The relation “state p is equivalent to state q”, which we shall denote p ≈ q, is

an equivalence relation. (Prove it as an exercise!)

Reflexive: every state p is equivalent to itself

∀p, p ≈ p

Symmetric: for any states p and q, if p is equivalent to q then q is equivalent

to p

∀p q, p ≈ q ⇒ q ≈ p

Transitive: for any states p, q and r, if p is equivalent to q and q is

equivalent to r then p is equivalent to r.

∀p q r, p ≈ q ∧ q ≈ r ⇒ p ≈ r

(See Theorem 4.23 for a proof of the transitivity part.)

Lecture 9 April 12th 2011 – TMV026/DIT321 Slide 12

Properties of Regular Languagues

Partition of States

Let D = (Q,Σ, δ, q0, F) be a DFA.

The table-filling algorithm defines the “equivalence of states” relation over Q.

Since this is an equivalence relation we can define the quotient Q/≈.

This quotient gives us a partition of the states into classes/blocks of mutually

equivalent states.

Example: The partition for the example in slide 4 is the following (note

the singleton classes!)

{q0} {q1, q2} {q3, q4} {q5}

Example: The partition for the example in slide 5 is the following

{q0, q3} {q1, q4} {q2, q5}

Note: Classes might also have more than 2 elements.

Lecture 9 April 12th 2011 – TMV026/DIT321 Slide 13

Properties of Regular Languagues

Minimisation of DFA

Let D = (Q,Σ, δ, q0, F) be a DFA.

Q/≈ allows to build an equivalent DFA with the minimum number of states.

In addition, this minimum DFA is unique (modulo the name of the states).

The algorithm for building the minimum DFA D′ = (Q′,Σ, δ′, q′
0
, F ′) is:

1. Eliminate any non accessible state

2. Partition the remaining states with the help of the table-filling algorithm

3. Use each block as a single state in the new DFA

4. The start state is the block containing q0, the final states are all those

blocks containing elements in F

5. δ′(S, a) = T if given any q ∈ S, δ(q, a) = p for some p ∈ T

(Actually, the partition guarantees that ∀q ∈ S, ∃p ∈ T, δ(q, a) = p)

Lecture 9 April 12th 2011 – TMV026/DIT321 Slide 14

Properties of Regular Languagues

Examples

Example: The minimal DFA corresponding to the DFA in slide 4 is

q0 q1q2 q3q4
q5

a, b a, b a, b

a, b

Example: The minimal DFA corresponding to the DFA in slide 5 is

q0q3 q1q4 q2q5

a a

a

Lecture 9 April 12th 2011 – TMV026/DIT321 Slide 15

Properties of Regular Languagues

Does the Minimisation Algorithm Give a Minimal DFA?

Given a DFA D, the minimisation algorithm gives us a DFA D′ with the

minimal number of states with respect to those of D.

Can you see why?

But, could there exist a DFA A completely unrelated to D, also accepting the

same language and with less states than those in D′?

Section 4.4.4 in the book shows by contradiction that A cannot exist.

Theorem: If D is a DFA and D′ the DFA constructed from D with the

minimisation algorithm described before, then D′ has as few states as any

DFA equivalent to D.

Lecture 9 April 12th 2011 – TMV026/DIT321 Slide 16

Properties of Regular Languagues

Can we Minimise a NFA?

One can of course find (in some cases) an smaller NFA, but the algorithm we

presented before does not do the job.

Example: Consider the following NFA
q0 q1

q2

0

1 0

0, 1

The table-filling algorithm does not find equivalent states in this case.

However, the following is a smaller and equivalent NFA for the language.

q0 q1
0

0, 1

Lecture 9 April 12th 2011 – TMV026/DIT321 Slide 17

Properties of Regular Languagues

Functional Representation of the Minimisation Algorithm

data Q = ... deriving (Eq, Show)

data S = ...

delta :: Q -> S -> Q

final :: Q -> Bool

-- lists with all states and all the symbols

states :: [Q]

states = [...]

alphabet :: [S]

alphabet = [...]

Lecture 9 April 12th 2011 – TMV026/DIT321 Slide 18

Properties of Regular Languagues

Func. Representation of the Minimisation Alg. (Cont.)

-- swaps elements in a pair

swap :: (a,a) -> (a,a)

swap (p,q) = (q,p)

-- equality in pairs: order doesn’t matter here

pair_eq :: Eq a => (a,a) -> (a,a) -> Bool

pair_eq p q = p == q || p == swap q

-- remove "repetition" from the list

clean :: Eq a => [(a,a)] -> [(a,a)]

clean = nubBy pair_eq

-- maps a function to the elements of the pair

map_pair :: (a -> b -> c) -> (a,a) -> b -> (c,c)

map_pair f (p,q) x = (f p x, f q x)

Lecture 9 April 12th 2011 – TMV026/DIT321 Slide 19

Properties of Regular Languagues

Func. Representation of the Minimisation Alg. (Cont.)

-- all possible pairs of states without repetition

all_pairs :: [(Q,Q)]

all_pairs = [(p,q) | p <- states, q <- states, p /= q]

-- tests to distinguish if one state is final but not the other

dist :: (Q,Q) -> Bool

dist (p,q) = final p && not(final q) || final q && not(final p)

-- splits a list according to whether the elem. satisfies dist

splitBy :: [(Q,Q)] -> ([(Q,Q)],[(Q,Q)])

splitBy [] = ([],[])

splitBy (p:pps) = let (qs,ds) = splitBy pps

in if dist p then (qs,p:ds) else (p:qs,ds)

Lecture 9 April 12th 2011 – TMV026/DIT321 Slide 20

Properties of Regular Languagues

Func. Representation of the Minimisation Alg. (Cont.)

-- equiv ss pps dds gives the equivalent states

-- ss are all the symbols in the alphabet

-- pps are the pairs of states still to check if distinguishable

-- dds are all pairs of states already found distinguishable

equiv :: [S] -> [(Q,Q)] -> [(Q,Q)] -> [(Q,Q)]

equiv ss pps dds =

let dqs = [pq | pq <- pps, or (map (\pp -> elem pp dds)

(map (map_pair delta pq) ss))]

nds = union dds dqs

nps = pps \\ dqs

in if not (null dqs)

then equiv ss nps nds

else clean pps

-- if we instead return (clean nds) we give all distinguishable pairs

Lecture 9 April 12th 2011 – TMV026/DIT321 Slide 21

Properties of Regular Languagues

Func. Representation of the Minimisation Alg. (Cont.)

-- group the pairs into classes

group_classes :: Eq a => [(a,a)] -> [[a]]

group_classes [] = []

group_classes ((p,q):pps) =

let pqs = (p,q):[pr | pr <- pps, (fst pr == p || fst pr == q ||

snd pr == p || snd pr == q)]

nps = pps \\ pqs

qs = nub ([fst p | p <- pqs] ++ [snd p | p <- pqs])

in qs : group_classes nps

Lecture 9 April 12th 2011 – TMV026/DIT321 Slide 22

Properties of Regular Languagues

Func. Representation of the Minimisation Alg. (Cont.)

-- add the classes with just one state

add_singel :: Eq a => [a] -> [[a]] -> [[a]]

add_singel [] pps = pps

add_singel (q:qs) pps | or (map (elem q) pps) = add_singel qs pps

add_singel (q:qs) pps = [q] : add_singel qs pps

-- gives the base case of the test-filling algorithm and the rest

(rest,base_dist) = splitBy all_pairs

-- returns all equivalent classes

equiv_classes :: [[Q]]

equiv_classes =

add_singel states

(group_classes (equiv alphabet rest base_dist))

Lecture 9 April 12th 2011 – TMV026/DIT321 Slide 23

