
Finite Automata and
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TMV026/DIT321– LP4 2011

Lecture 7

April 5th 2011

Overview of today’s lecture:

• Equivalence between Finite Automata and Regular Expressions

• Pumping Lemma for Regular Languages

Equivalence between FA and RE – Pumping Lemma for Regular Languages

From FA to RE: Eliminating States in an Automaton A

This method of constructing a RE from a FA involves eliminating states.

When we eliminate the state s, all the paths that went through s do not

longer exists!

To preserve the language of the automaton we must include, on an arc that

goes directly from q to p, the labels of the paths that went from q to p passing

through s.

Labels now are not just symbols but (possible an infinite number of) strings:

hence we will use RE as labels.

Lecture 7 April 5th 2011 – TMV026/DIT321 Slide 1



Equivalence between FA and RE – Pumping Lemma for Regular Languages

Eliminating State s in A

q1

qk

s

p1

pm

Q1

Qk

P1

Pm

S

R11

Rkm

R1m

Rk1

If an arc does not exist in A,

then it is labelled ∅ here.

For simplification, we

assume the q’s are

different from the p’s.
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Equivalence between FA and RE – Pumping Lemma for Regular Languages

Eliminating State s in A

q1

qk

p1

pm

R11 + Q1S
∗P1

Rkm + QkS∗Pm

R1m + Q1S
∗PmRk1 + QkS∗P1
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Equivalence between FA and RE – Pumping Lemma for Regular Languages

Eliminating States in A

For each accepting state q we proceed as before until we have only q0 and q

left. For each q we have 2 cases: q0 6= q or q0 = q.

If q0 6= q:

q0 q

R U

S

T
The expression is (R + SU∗T )∗SU∗

If q0 = q:

q0

R

The expression is R∗

The final expression is the sum of the expressions derived for each final state.
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Equivalence between FA and RE – Pumping Lemma for Regular Languages

Example: Regular Expression Representing Gilbreath’s

Principle

Recall:

q0

q1q3

q2q4

q2q4q5

q1q3q5

q0q3q4q5
q

1

0

0

1

0

1

0

1

1

0

0

1

Observe: Eliminating q is trivial. Eliminating q1q3 and q2q4 is also easy.
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Equivalence between FA and RE – Pumping Lemma for Regular Languages

Example: Regular Expression Representing Gilbreath’s

Principle

After eliminating q, q1q3 and q2q4 we get:

q0

q2q4q5

q1q3q5

q0q3q4q5

10 + 01

0

1

0

1

• RE when final state is q0q3q4q5: (10 + 01)(10 + 01)∗ = (10 + 01)+

• RE when final state is q2q4q5: (10 + 01)(10)∗0(1(10)∗0)∗

• RE when final state is q1q3q5: (10 + 01)(01)∗1(0(01)∗1)∗

Lecture 7 April 5th 2011 – TMV026/DIT321 Slide 6

Equivalence between FA and RE – Pumping Lemma for Regular Languages

Example: Regular Expression Representing Gilbreath’s

Principle

The final RE is the sum of the 3 previous expressions.

Let us first do some simplifications.

(10 + 01)(10)∗0(1(10)∗0)∗ = (10 + 01)(10)∗(01(10)∗)∗0 by shifting

= (10 + 01)(10 + 01)∗0 by the shifted-denesting rule

= (10 + 01)+0

Similarly (10 + 01)(01)∗1(0(01)∗1)∗ = (10 + 01)+1.

Hence the final RE is

(10 + 01)+ + (10 + 01)+0 + (10 + 01)+1

which is equivalent to

(10 + 01)+(ǫ + 0 + 1)
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Equivalence between FA and RE – Pumping Lemma for Regular Languages

From Regular Expressions to Finite Automata

Proposition: Every language defined by a RE is accepted by a FA.

Proof: Let L = L(R) for some RE R. By induction on R we construct a

ǫ-NFA E with only one final state and no arcs into the initial state or out of

the final state, and such that L = L(E).

Basis cases are ∅, ǫ and a ∈ Σ. The corresponding ǫ-NFA recognising the

languages ∅, {ǫ} and {a} respectively, are:

ǫ a
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Equivalence between FA and RE – Pumping Lemma for Regular Languages

From RE to FA: Inductive Step

Given the RE R and S and FA for them, we construct the FA for R + S, RS

and R∗ recognising the languages L(R) ∪ L(S), L(R)L(S) and L(R)∗

respectively:

ǫ

ǫ

ǫ

ǫ

R

S

ǫ
R S

ǫ ǫ

ǫ

ǫ

R
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Equivalence between FA and RE – Pumping Lemma for Regular Languages

Example: From RE to FA

Let us follow this method to construct a FA for the RE 0∗1.

ǫ 0

ǫ

ǫ

ǫ ǫ 1

Compare it with the following FA:

0

1
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Equivalence between FA and RE – Pumping Lemma for Regular Languages

How to Identify Regular Languages?

We have seen that a language is regular iff there is a DFA that accepts the

language.

Then we saw that DFA, NFA and ǫ-NFA are equivalent in the sense that we

can convert between them.

Hence FA accept all and only the regular languages (RL).

Now we have seen how to convert between FA and RE.

Thus RE also define all and only the RL.
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Equivalence between FA and RE – Pumping Lemma for Regular Languages

How to Prove that a Language is NOT Regular?

In a FA with n states, any path

q1

a1→ q2

a2→ q3

a3→ . . .
am−1
→ qm

am→ qm+1

has a loop if m > n.

That is, we have i < j such that qi = qj in the path above.

This can be seen as an application of the Pigeonhole Principle, which is an

important reasoning technique in mathematics and computer science.

(See Wikipedia.)
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Equivalence between FA and RE – Pumping Lemma for Regular Languages

The Pigeonhole Principle

“If you have more pigeons than pigeonholes and each pigeon flies into some

pigeonhole, then there must be at least one hole with more than one pigeon.”

More formally: if f : X → Y and |X| > |Y | then f cannot be injective

and there must exist at least 2 different elements with the same image, that

is, there must exist x, z ∈ X such that x 6= z and f(x) = f(z).

This principle is often used to show the existence of an object without

building this object explicitly.

Example: In a room with at least 13 people, at least 2 of them are born

the same month (maybe on different years).

We know the existence of these 2 people, maybe without being able to know

exactly who they are.
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Equivalence between FA and RE – Pumping Lemma for Regular Languages

How to Prove that a Language is Not Regular?

Example: Let us prove that L = {0m1m|m > 0} is not a RL.

Let us assume it is: then L = L(A) for some FA A with n states.

Let k > n > 0 and let w = 0k1k ∈ L.

Then there must be an accepting path q0

w
→ q ∈ F .

Since there are only n states and k > n we know there is a loop (by the

pigeonhole principle) at some point when reading the 0’s.

Then w = xyz with |xy| = j 6 n, y 6= ǫ and z = 0k−j1k such that

q0

x
→ ql

y
→ ql

z
→ q ∈ F

Observe that the following path is also an accepting path

q0

x
→ ql

z
→ q ∈ F

However y must be of the form 0i with i > 0 hence xz = 0k−i1k /∈ L.

This contradicts the fact that A accepts L.
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Equivalence between FA and RE – Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Theorem: Let L be a RL. Then, there exists a constant n (which depends

on L) such that for every string w ∈ L and |w| > n, we can break w into 3

strings x, y and z such that w = xyz and

1. y 6= ǫ

2. |xy| 6 n

3. ∀k > 0, xykz ∈ L
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Equivalence between FA and RE – Pumping Lemma for Regular Languages

Proof of the Pumping Lemma

Assume we have a FA A that accepts the language, then L = L(A).

Let n be the number of states in A.

Then any path of length m > n has a loop.

Let us consider w = a1a2 . . . am ∈ L.

We have an accepting path and a loop such that

q0

x
→ ql

y
→ ql

z
→ q ∈ F

with w = xyz ∈ L, y 6= ǫ, |xy| 6 n.

Then we also have

q0

x
→ ql

yk

→ ql
z
→ q ∈ F

for any k, that is, ∀k > 0, xykz ∈ L.
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Equivalence between FA and RE – Pumping Lemma for Regular Languages

Application of the Pumping Lemma

Example: Let us use the Pumping lemma to prove that {0m1m|m > 0} is

not a RL.

We assume it is.

Let n be the constant given by the lemma and let w = 0n1n, hence |w| > n.

By the lemma we know that w = xyz with y 6= ǫ, |xy| 6 n and

∀k > 0, xykz ∈ L.

Since y 6= ǫ and |xy| 6 n, we know that y = 0i with i > 1.

However, we have a contradiction since xykz /∈ L for k 6= 1.

Note: The Pumping lemma is connected to the fact that a FA has finite

memory ! If we could build a machine with infinitely many states it would be

able to recognise the language.
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Equivalence between FA and RE – Pumping Lemma for Regular Languages

Another Application of the Pumping Lemma

Example: Let us prove that L = {0i1j |i 6 j} is not a RL.

Let n be given by the Pumping lemma and let w = 0n1n+1 ∈ L, hence |w| > n.

Then we know that w = xyz with y 6= ǫ, |xy| 6 n and ∀k > 0, xykz ∈ L.

Since y 6= ǫ and |xy| 6 n, we know that y = 0r with r > 1.

However, we have a contradiction since xykz /∈ L for k > 2.

(Even for k = 2 if r > 1.)

Example: What about the languages {0i1j | i > j}, {0i1j | i > j} and

{0i1j | i 6= j}? Does the Pumping lemma help?
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Equivalence between FA and RE – Pumping Lemma for Regular Languages

Pumping Lemma is not a Necessary Condition

By showing that the Pumping lemma does not apply to a certain language L

we prove that L is not regular.

However, if the Pumping lemma does apply to L, I cannot conclude whether

L is regular or not!

Example: We know L = {bmcm | m > 0} is not regular.

Let us consider L′ = a+L ∪ (b + c)∗.

L′ is not regular. If L′ would be regular, then we can prove that L is regular

(can be proved with the closure properties we will see soon).

However, the Pumping lemma does apply for L′ with n = 1.

This shows the Pumping lemma is not a necessary condition for a language to

be regular.
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