Finite Automata and Formal Languages

TMV026/DIT321- LP4 2011

Ana Bove Lecture 6 April 4th 2011

Overview of today's lecture:

• NFA with ϵ -Transitions

• Regular Expressions

 ϵ -NFA – Regular Expressions

Recall: *e***-Closures**

Definition: Formally, we define the ϵ -closure of a set of states with the following 2 rules:

$$\frac{q \in S}{q \in \mathsf{ECLOSE}(S)} \qquad \qquad \frac{q \in \mathsf{ECLOSE}(S) \qquad p \in \delta(q, \epsilon)}{p \in \mathsf{ECLOSE}(S)}$$

Intuitively, $p \in \mathsf{ECLOSE}(S)$ iff there exists $q \in S$ and a sequence of $\epsilon\text{-transitions}$ such that

 $q_1 \in \delta(q, \epsilon) \quad q_2 \in \delta(q_1, \epsilon) \quad \cdots \quad p \in \delta(q_n, \epsilon)$

Definition: We say that S is ϵ -closed iff $S = \mathsf{ECLOSE}(S)$.

S is ϵ -closed iff $q \in S$ and $p \in \delta(q, \epsilon)$ implies $p \in S$.

Extending the Transition Function to Strings

Definition: Given an ϵ -NFA $E = (Q, \Sigma, \delta, q_0, F)$ we define

$$\begin{split} \hat{\delta} &: Q \times \Sigma^* \to [Q] \\ \hat{\delta}(q, \epsilon) &= \mathsf{ECLOSE}(\{q\}) \\ \hat{\delta}(q, ax) &= \bigcup_{p \in \Delta(\mathsf{ECLOSE}(\{q\}), a)} \hat{\delta}(p, x) \\ \text{where } \Delta(S, a) &= \cup_{p \in S} \delta(p, a) \end{split}$$

Remark: By definition we have that $\hat{\delta}(q, a) = \mathsf{ECLOSE}(\Delta(\mathsf{ECLOSE}(\{q\}), a)).$

Remark: We can prove by induction on x that all sets $\hat{\delta}(q, x)$ are ϵ -closed. This result uses that the union of ϵ -closed sets is also a ϵ -closed set.

Lecture 6

April 4th 2011 - TMV026/DIT321

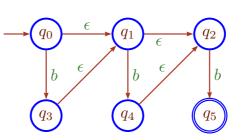
Slide 2

 $\epsilon\text{-NFA}$ – Regular Expressions

Language Accepted by a ϵ -NFA

Definition: The *language* accepted by the ϵ -NFA $(Q, \Sigma, \delta, q_0, F)$ is the set $\mathcal{L} = \{x \in \Sigma^* \mid \hat{\delta}(q_0, x) \cap F \neq \emptyset\}.$

Example: Let $\Sigma = \{b\}$.



The automaton accepts the language $\{b, bb, bbb\}$.

Note: Yet again, we could write a program that simulates a ϵ -NFA and let the program tell us whether a certain string is accepted or not.

Functional Representation of an ϵ -NFA

Let us implement the ϵ -NFA that recognises numbers (slide 21 lecture 5). data Q = Q0 | Q1 | Q2 | Q3 | Q4 deriving (Eq,Show)

April 4th 2011 - TMV026/DIT321

Slide 4

 ϵ -NFA – Regular Expressions

Functional Representation of an ϵ -NFA (cont.)

```
delta :: Char -> Q -> [Q]
delta a Q0 | elem a "+-" = [Q1]
delta a Q1 | elem a "0123456789" = [Q2]
delta a Q2 | elem a "0123456789" = [Q2]
delta '.' Q2 = [Q3]
delta a Q3 | elem a "0123456789" = [Q4]
delta a Q4 | elem a "0123456789" = [Q4]
delta _ _ = []
run :: String -> Q -> [Q]
run [] q = closure [q]
run (a:xs) q = closure [q] >>= delta a >>= run xs
accepts :: String -> Bool
accepts xs = or (map final (run xs Q0))
```

Eliminating ϵ -Transitions

Definition: Given an ϵ -NFA $E = (Q_E, \Sigma, \delta_E, q_E, F_E)$ we define a DFA $D = (Q_D, \Sigma, \delta_D, q_D, F_D)$ as follows:

- $Q_D = \{\mathsf{ECLOSE}(S) \mid S \in \mathcal{P}ow(Q_E)\}$
- $\delta_D(S, a) = \mathsf{ECLOSE}(\Delta(S, a))$ with $\Delta(S, a) = \cup_{p \in S} \delta(p, a)$
- $q_D = \mathsf{ECLOSE}(\{q_E\})$
- $F_D = \{ S \in Q_D \mid S \cap F_E \neq \emptyset \}$

Note: This construction is similar to the subset construction but now we need to ϵ -close after each step.

Lecture 6

April 4th 2011 - TMV026/DIT321

Slide 6

 ϵ -NFA – Regular Expressions

Eliminating ϵ -Transitions

Let E be an ϵ -NFA and D the corresponding DFA.

Lemma: $\forall x \in \Sigma^*$. $\hat{\delta}_E(q_E, x) = \hat{\delta}_D(q_D, x)$.

Proof: By induction on x.

Proposition: $\mathcal{L}(E) = \mathcal{L}(D)$.

Proof: $x \in \mathcal{L}(E)$ iff $\hat{\delta}_E(q_E, x) \cap F_E \neq \emptyset$ iff $\hat{\delta}_E(q_E, x) \in F_D$ iff (by previous lemma) $\hat{\delta}_D(q_D, x) \in F_D$ iff $x \in \mathcal{L}(D)$.

Example: Eliminating ϵ **-Transitions**

Let us eliminate the ϵ -transitions in the following ϵ -NFA.

$\rightarrow q_0 \xrightarrow{\epsilon, +, -} q_1$	1	1			l
		+,-	•	$0,1,\ldots,9$	ϵ
$0, 1, \ldots, 9$	$\rightarrow q_0$	$\{q_1\}$	Ø	Ø	$\{q_1\}$
$0, 1, \ldots, 9$	q_1	Ø	Ø	$\{q_2\}$	Ø
q_2	q_2	Ø	$\{q_3\}$	$\{q_2\}$	$\{q_4\}$
	q_3	Ø	Ø	$\{q_4\}$	Ø
	$*q_4$	Ø	Ø	$\{q_4\}$	Ø
$0, 1, \ldots, 9$ (q_4) (q_5) (q_3)					

Lecture 6

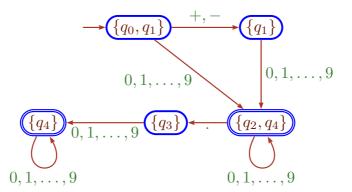
April 4th 2011 - TMV026/DIT321

Slide 8

 ϵ -NFA – Regular Expressions

Example: Eliminating ϵ **-Transitions**

We obtain the following DFA:



Functional Representation of Eliminating ϵ -Transitions

```
pDelta :: Char -> [Q] -> [Q]
pDelta a qs = closure (qs >>= delta a)
pRun :: [Char] -> [Q] -> [Q]
pRun [] qs = qs
pRun (a:x) qs = pRun x (pDelta a qs)
run :: String -> Q -> [Q]
run xs q = pRun xs (closure [q])
accepts :: String -> Bool
accepts xs = or (map final (run xs Q0))
```

Lecture 6

April 4th 2011 - TMV026/DIT321

Slide 9

 ϵ -NFA – Regular Expressions

Finite Automata and Regular Languages

We have shown that DFA, NFA and $\epsilon\text{-NFA}$ are equivalent in the sense that we can transform one to the other.

Hence, a language is *regular* iff there exists a finite automaton (DFA, NFA or ϵ -NFA) that accepts the language.

Regular Expressions

 $Regular \ expressions$ (RE) are an "algebraic" way to denote languages.

Given a RE R, it defines the language $\mathcal{L}(R)$.

We will show that RE are as expressive as DFA and hence, they define all and only the *regular languages*.

RE can also be seen as a declarative way to express the strings we want to accept and serve as input language for certain systems.

Example: grep command in UNIX (K. Thompson).

(Note: UNIX regular expressions are not exactly as the RE we will study in the course.)

Lecture 6

April 4th 2011 – TMV026/DIT321

Slide 11

 ϵ -NFA – Regular Expressions

Inductive Definition of Regular Expressions

Definition: Given an alphabet Σ , we can inductively define the *regular* expressions over Σ as:

Basis cases: • The constants \emptyset and ϵ are RE

• If $a \in \Sigma$ then a is a RE

Inductive steps: Given the RE R and S, we define the following RE:

- R + S and RS are RE
- R^* is RE

The precedence of the operands is the following:

- The closure operator * has the highest precedence
- Next comes concatenation
- Finally, comes the operator +
- We use parentheses (,) to change the precedences

Another Way to Define the Regular Expressions

A nicer way to define the regular expressions is by giving the following BNF (Backus-Naur Form), for $a \in \Sigma$:

$$R ::= \emptyset \mid \epsilon \mid a \mid R + R \mid RR \mid R^*$$

alternatively

$$R, S ::= \emptyset \mid \epsilon \mid a \mid R + S \mid RS \mid R^*$$

Question: Can you guess their meaning?

Note: BNF is a way to declare the syntax of a language.

It is very useful when describing *context-free grammars* and in particular the syntax of most programming languages.

Lecture 6

April 4th 2011 – TMV026/DIT321

Slide 13

 $\epsilon\text{-NFA}$ – Regular Expressions

Functional Representation of Regular Expressions

data RExp a = Empty | Epsilon | Atom a |
 Plus (RExp a) (RExp a) | Concat (RExp a) (RExp a) |
 Star (RExp a)

For example the expression $b + (bc)^*$ is given as

Plus (Atom "b") (Star (Concat (Atom "b") (Atom "c")))

Recall: Some Operations on Languages (Lecture 3)

Definition: Given \mathcal{L} , \mathcal{L}_1 and \mathcal{L}_2 languages then we define the following languages:

Union: $\mathcal{L}_1 \cup \mathcal{L}_2 = \{x \mid x \in \mathcal{L}_1 \text{ or } x \in \mathcal{L}_2\}$

Intersection: $\mathcal{L}_1 \cap \mathcal{L}_2 = \{x \mid x \in \mathcal{L}_1 \text{ and } x \in \mathcal{L}_2\}$

Concatenation: $\mathcal{L}_1\mathcal{L}_2 = \{x_1x_2 \mid x_1 \in \mathcal{L}_1, x_2 \in \mathcal{L}_2\}$

Closure: $\mathcal{L}^* = \bigcup_{n \in \mathbb{N}} \mathcal{L}^n$ where $\mathcal{L}^0 = \{\epsilon\}, \mathcal{L}^{n+1} = \mathcal{L}^n \mathcal{L}.$

> **Note:** We have then that $\emptyset^* = \{\epsilon\}$ and $\mathcal{L}^* = \mathcal{L}^0 \cup \mathcal{L}^1 \cup \mathcal{L}^2 \cup \ldots = \{\epsilon\} \cup \{x_1 \dots x_n \mid n > 0, x_i \in \mathcal{L}\}$

Notation: $\mathcal{L}^+ = \mathcal{L}^1 \cup \mathcal{L}^2 \cup \mathcal{L}^3 \cup \dots$ and $\mathcal{L}^2 = \mathcal{L} \cup \{\epsilon\}.$

Lecture 6

April 4th 2011 - TMV026/DIT321

Slide 15

 ϵ -NFA – Regular Expressions

Language Defined by the Regular Expressions

Definition: The *language* defined by a regular expression is defined by recursion on the expression:

Basis cases: • $\mathcal{L}(\emptyset) = \emptyset$

- $\mathcal{L}(\epsilon) = \{\epsilon\}$
- Given $a \in \Sigma$, $\mathcal{L}(a) = \{a\}$

Recursive cases: • $\mathcal{L}(R+S) = \mathcal{L}(R) \cup \mathcal{L}(S)$

- $\mathcal{L}(RS) = \mathcal{L}(R)\mathcal{L}(S)$
- $\mathcal{L}(R^*) = \mathcal{L}(R)^*$

Note: $x \in \mathcal{L}(R)$ iff x is generated/accepted by R.

Notation: We write $x \in R$ or $x \in \mathcal{L}(R)$ indistinctly.

Example of Regular Expressions

Let $\Sigma = \{0, 1\}.$

- (01)*
- $0^* + 1^*$
- $(0+1)^*$
- (000)*
- $01^* + 1$
- $((0(1^*)) + 1)$
- $(01)^* + 1$
- $(\epsilon + 1)(01)^*(\epsilon + 0)$
- $(01)^* + 1(01)^* + (01)^*0 + 1(01)^*0$

What do they mean? Are there expressions that are equivalent?

Lecture 6

April 4th 2011 - TMV026/DIT321

Slide 17

 ϵ -NFA – Regular Expressions

Algebraic Laws for Regular Expressions

The following equalities hold for any RE R, S and T:

- Associativity: R + (S + T) = (R + S) + T and R(ST) = (RS)T
- Commutativity: R + S = S + R
- In general, $RS \neq SR$
- Distributivity: R(S+T) = RS + RT and (S+T)R = SR + TR
- Identity: $R + \emptyset = \emptyset + R = R$ and $R\epsilon = \epsilon R = R$
- Annihilator: $R\emptyset = \emptyset R = \emptyset$
- Idempotent: R + R = R
- $\emptyset^* = \epsilon^* = \epsilon$
- $R? = \epsilon + R$
- $R^+ = RR^* = R^*R$
- $R^* = (R^*)^* = R^*R^* = \epsilon + R^+$

Algebraic Laws for Regular Expressions

Other useful laws to simplify regular expressions are

- Shifting rule: $R(SR)^* = (RS)^*R$
- Denesting rule: $(R^*S)^*R^* = (R+S)^*$

Note: By the shifting rule we also get $R^*(SR^*)^* = (R+S)^*$

• Variation of the denesting rule: $(R^*S)^* = \epsilon + (R+S)^*S$

Lecture 6

April 4th 2011 - TMV026/DIT321

Slide 19

 ϵ -NFA – Regular Expressions

Example: Proving Equalities Using the Algebraic Laws

Example: A proof that $a^*b(c + da^*b)^* = (a + bc^*d)^*bc^*$:

$a^*b(c+da^*b)^* = a^*b(c^*da^*b)^*c^*$	by denesting $(R = c, S = da^*b)$
$a^*b(c^*da^*b)^*c^* = (a^*bc^*d)^*a^*bc^*$	by shifting $(R = a^*b, S = c^*d)$
$(a^*bc^*d)^*a^*bc^* = (a+bc^*d)^*bc^*$	by denesting $(R = a, S = bc^*d)$

Example: The set of all words with no substring of more than two adjacent 0's is $(1 + 01 + 001)^* (\epsilon + 0 + 00)$. Now,

$$(1+01+001)^{*}(\epsilon+0+00) = ((\epsilon+0)(\epsilon+0)1)^{*}(\epsilon+0)(\epsilon+0)$$

= $(\epsilon+0)(\epsilon+0)(1(\epsilon+0)(\epsilon+0))^{*}$ by shifting
= $(\epsilon+0+00)(1+10+100)^{*}$

Then $(1+01+001)^*(\epsilon+0+00) = (\epsilon+0+00)(1+10+100)^*$

Equality of Regular Expressions

Remember that RE are a way to denote languages.

Then, for RE R and S, R = S actually means $\mathcal{L}(R) = \mathcal{L}(S)$.

Hence we can prove the equality of RE in the same way we can prove the equality of languages.

Example: Let us prove that $R^* = R^*R^*$. Let $\mathcal{L} = \mathcal{L}(R)$.

 $\mathcal{L}^* \subseteq \mathcal{L}^* \mathcal{L}^*$ since $\epsilon \in \mathcal{L}^*$.

Conversely, if $\mathcal{L}^*\mathcal{L}^* \subseteq \mathcal{L}^*$ then $x = x_1x_2$ with $x_1 \in \mathcal{L}^*$ and $x_2 \in \mathcal{L}^*$. If $x_1 = \epsilon$ or $x_2 = \epsilon$ then it is clear that $x \in \mathcal{L}^*$. Otherwise $x_1 = u_1u_2\ldots u_n$ with $u_i \in \mathcal{L}$ and $x_2 = v_1v_2\ldots v_m$ with $v_j \in \mathcal{L}$. Then $x = x_1x_2 = u_1u_2\ldots u_nv_1v_2\ldots v_m$ is in \mathcal{L}^* .

Lecture 6

April 4th 2011 - TMV026/DIT321

Slide 21

 ϵ -NFA – Regular Expressions

Proving Algebraic Laws for Regular Expressions

Given the RE R and S we can prove the law R = S as follows:

1. Convert R and S into *concrete* regular expressions C and D, respectively, by replacing each variable in the RE R and S by (different) concrete symbols.

Example: $R(SR)^* = (RS)^*R$ can be converted into $a(ba)^* = (ab)^*a$.

2. Prove or disprove whether $\mathcal{L}(C) = \mathcal{L}(D)$. If $\mathcal{L}(C) = \mathcal{L}(D)$ then R = S is a true law, otherwise it is not.

Theorem: The above procedure correctly identifies the true laws for RE. Proof: See theorems 3.14 and 3.13 in pages 121 and 120 respectively.

Example: Proving the shifting law was (somehow) one of the exercises in assignment 1: prove that for all n, $a(ba)^n = (ab)^n a$.

Example: Proving the Denesting Rule

We can state $(R^*S)^*R^* = (R+S)^*$ by proving $\mathcal{L}((a^*b)^*a^*) = \mathcal{L}((a+b)^*)$:

 \subseteq : Let $x \in (a^*b)^*a^*$, then x = vw with $v \in (a^*b)^*$ and $w \in a^*$.

By induction on v.

If $v = \epsilon$ we are done. Otherwise v = av' or v = bv'.

Observe that in both cases $v' \in (a^*b)^*$ hence by IH $v'w \in (a+b)^*$ and so is vw.

```
Q: Let x \in (a + b)^*. By induction on x. If x = \epsilon then done.
Otherwise x = x'a or x = x'b and x' \in (a + b)^*.
By IH x' \in (a^*b)^*a^* and then x' = vw with v \in (a^*b)^* and w \in a^*.
If x'a = v(wa) \in (a^*b)^*a^* since v \in (a^*b)^* and (wa) \in a^*.
If x'b = (v(wb))\epsilon \in (a^*b)^*a^* since v(wb) \in (a^*b)^* and \epsilon \in a^*.
```

Lecture 6

April 4th 2011 - TMV026/DIT321

Slide 23

 ϵ -NFA – Regular Expressions

Regular Languages and Regular Expressions

Theorem: If \mathcal{L} is a regular language then there exists a regular expression R such that $\mathcal{L} = \mathcal{L}(R)$.

Proof: Recall that each regular language has an automata that recognises it. We shall construct a regular expression from such automata.

The book shows 2 ways of constructing a regular expression from an automata (sections 3.2.1 –computing $R_{ij}^{(k)}$ – and 3.2.2. –eliminating states–).

From FA to RE: Computing $R_{ij}^{(k)}$ from an Automaton A

Let $Q_A = \{1, 2, ..., n\}$ with 1 being the initial state.

We construct a collection of RE that progressively describe the paths in the transition diagram of A:

Let $R_{ij}^{(k)}$ be the RE whose language is the set of strings w which label a path from state i to state j in A without passing by an intermediate state bigger than k.

Note that neither i nor j are intermediate states!

We define $R_{ij}^{(k)}$ by induction on k.

If $F_A = \{f_1, \ldots, f_r\}$ then our final regular expression is

Lecture 6

April 4th 2011 - TMV026/DIT321

 $R_{1f_1}^{(n)} + \ldots + R_{1f_r}^{(n)}$

Slide 25

 ϵ -NFA – Regular Expressions

Base Case: $R_{ii}^{(0)}$

We have no intermediate states here! We have the following scenarios:

- Arcs from state *i* to *j*?:
 - * If there are no arc then $R_{ij}^{(0)} = \emptyset$
 - * If there is one arc labelled a then $R_{ij}^{(0)} = a$

* If there are *m* arcs labelled a_1, \ldots, a_m then $R_{ij}^{(0)} = a_1 + \ldots + a_m$ **Note:** If i = j then we must consider the loops from *i* to itself.

• We have a path of length 0 from i to itself.

In a ϵ -NFA we can also have paths of length 0 between *i* and *j*.

Such a path is represented as an $\epsilon\text{-transition}$ in the automaton and as the RE $\epsilon.$

Then we need to add ϵ to the corresponding case above, obtaining then $R_{ij}^{(0)} = \epsilon$, $R_{ij}^{(0)} = \epsilon + a$ or $R_{ij}^{(0)} = \epsilon + a_1 + \ldots + a_m$ respectively.

Inductive Step: from $R_{ij}^{(k)}$ to $R_{ij}^{(k+1)}$

Given a path from state *i* to state *j* without passing by an intermediate state bigger than (k + 1), we have 2 possible cases:

- The path does not actually pass by state (k + 1). Hence the label of the path is in the language of the RE $R_{ij}^{(k)}$.
- The path goes through (k + 1) at least once.
 We can break the path into pieces that do not pass through k + 1: first from i to (k + 1), one or more from (k + 1) to (k + 1), last from (k + 1) to j.
 The label for this path is represented by the RE
 R^(k)_{i(k+1)}(R^(k)_{(k+1)(k+1)})*R^(k)_{(k+1)j}.

The resulting RE is $R_{ij}^{(k+1)} = R_{ij}^{(k)} + R_{i(k+1)}^{(k)} (R_{(k+1)(k+1)}^{(k)})^* R_{(k+1)j}^{(k)}$

Lecture 6

April 4th 2011 - TMV026/DIT321

Slide 27

 ϵ -NFA – Regular Expressions

Remarks on the Method for Computing $R_{ij}^{(k)}$

- Works for any kind of FA (DFA, NFA and ϵ -NFA).
- The method is similar to Floyd-Warshall algorithm (graph analysis algorithm for finding shortest paths in a weighted, directed graph). See Wikipedia.
- It is expensive: we need to compute n² RE! It also produces very big and complicated expressions! The (intermediate) RE can usually be simplified. Still not trivial!

Example: See example 3.5 in the book (pages 95-97).

