Finite Automata and

Formal Languages

TMV026/DIT321- LP4 2011

Ana Bove
Lecture 6

April 4th 2011

Overview of today’s lecture:
e NFA with e-Transitions

e Regular Expressions

e-NFA — Regular Expressions

Recall: e-Closures

Definition: Formally, we define the e-closure of a set of states with the

following 2 rules:

qgeS q € ECLOSE(S) p € 6(q,€)

q € ECLOSE(S) p € ECLOSE(S)

Intuitively, p € ECLOSE(SS) iff there exists ¢ € S and a sequence of

e-transitions such that

q1 € 5(Q7 6) g2 € 5((]17 6) e pE 5(qn7 6)

Definition: We say that S is e-closed iff S = ECLOSE(S).

S is e-closed iff ¢ € S and p € §(q, €) implies p € S.

Lecture 6 April 4th 2011 — TMV026,/DIT321

Slide 1

e-NFA — Regular Expressions

Extending the Transition Function to Strings

Definition: Given an e-NFA E = (Q, %, 4, qo, F') we define

5 Q x X" — [Q]
S(Q, €) = ECLOSE({q})

~ ~

(g, ax) = UpeA(ECLOSE({q}),a) o(p,)
where A(S, a) = Upesd(p, a)

Remark: By definition we have that
6(q,a) = ECLOSE(A(ECLOSE({¢}), a)).

Remark: We can prove by induction on z that all sets d(¢, z) are e-closed.

This result uses that the union of e-closed sets is also a e-closed set.

Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 2

e-NFA — Regular Expressions

Language Accepted by a e-NFA

Definition: The language accepted by the e-NFA (Q, X, 6, qo, F) is the set
L={xeX|dqg,z)NF +£0}.

Example: Let ¥ = {b}.

The automaton accepts the language {b, bb, bbb}.

Note: Yet again, we could write a program that simulates a e-NFA and let

the program tell us whether a certain string is accepted or not.

Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 3

e-NFA — Regular Expressions

Functional Representation of an e-NFA

Let us implement the e-NFA that recognises numbers (slide 21 lecture 5).

data Q = Q0 | Q1 | Q2 | Q3 | Q4 deriving (Eq,Show)
final :: Q -> Bool

final Q4 = True
final _ = False

e_jump :: Q -> [Q]

e_jump Q0 = [Q1]
e_jump Q2 = [Q4]
e_jump _ = []

isSub :: [Q] -> [Q] -> Bool

closure :: [Q] -> [Q]

Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 4

e-NFA — Regular Expressions

Functional Representation of an ¢-NFA (cont.)

delta :: Char —> Q -> [Q]
delta a Q0 | elem a "+-" = [Q1]

delta a Q1 | elem a "0123456789" = [Q2]
delta a Q2 | elem a "0123456789" = [Q2]
delta ’.’ Q2 = [Q3]

delta a Q3 | elem a "0123456789" = [Q4]
delta a Q4 | elem a "0123456789" = [Q4]

delta = [

run :: String -> Q -> [Q]
run [] q = closure [q]
run (a:xs) q = closure [q] >>= delta a >>= run xs

accepts :: String -> Bool
accepts xs = or (map final (run xs QO0))

Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 5

e-NFA — Regular Expressions

Eliminating e-Transitions
Definition: Given an e-NFA E = (Qg, X, 6, qg, Fg) we define a DFA
D =(Qp,%,dp,qp, Fp) as follows:
e Qp = {ECLOSE(S) | S € Pow(Qg)}
e 6p(S,a) = ECLOSE(A(S,a)) with A(S,a) = Upesd(p, a)
® gp = ECLOSE({qE})

QFD:{SEQD|SQFE7£®}

Note: This construction is similar to the subset construction but now we
need to e-close after each step.

Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 6

e-NFA — Regular Expressions

Eliminating e-Transitions

Let E be an e-NFA and D the corresponding DFA.

Lemma: Vz € ©*. dp(qg,z) = ép(qp,).

Proof: By induction on z.

Proposition: L(E) = L(D).

Proof: z € L(E) iff p(qp,) N Fg # 0 iff 5(qp, x) € Fp iff (by previous
lemma) 6p(qp,z) € Fp iff 2 € L(D).

Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 7

e-NFA — Regular Expressions

Example: Eliminating e-Transitions

Let us eliminate the e-transitions in the following e-NFA.

+,- . 0,1,....9 €
—q | {a}t | 0 0 {a1}
¢ 0 0 {q2} 0
@2 | 0 |{ar| {et |{«}
3 0 0 {qa} 0
*q4 0 0 {qa} 0
0,1,...,9
Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 8
e-NFA — Regular Expressions
Example: Eliminating e-Transitions
We obtain the following DFA:
, 9
0,1 ,9 0,1, 9
Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 8

e-NFA — Regular Expressions

Functional Representation of Eliminating e-Transitions

pDelta :: Char -> [Q] -> [Q]
pDelta a gs = closure (gs >>= delta a)

pRun :: [Char] -> [Q] -> [Q]
pRun [] gs = gs
pRun (a:x) gs = pRun x (pDelta a gs)

run :: String -> Q -> [Q]

run xs q = pRun xs (closure [q])

accepts :: String -> Bool

accepts xs = or (map final (run xs QO0))

Lecture 6 April 4th 2011 — TMV026,/DIT321

e-NFA — Regular Expressions

Slide 9

Finite Automata and Regular Languages

We have shown that DFA, NFA and e-NFA are equivalent in the sense that we

can transform one to the other.

Hence, a language is reqular iff there exists a finite automaton (DFA, NFA or

e-NFA) that accepts the language.

Lecture 6 April 4th 2011 — TMV026,/DIT321

Slide 10

e-NFA — Regular Expressions

Regular Expressions

Regular expressions (RE) are an “algebraic” way to denote languages.

Given a RE R, it defines the language L(R).

We will show that RE are as expressive as DFA and hence, they define all and

only the reqular languages.

RE can also be seen as a declarative way to express the strings we want to

accept and serve as input language for certain systems.
Example: grep command in UNIX (K. Thompson).

(Note: UNIX regular expressions are not exactly as the RE we will study in the course.)

Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 11

e-NFA — Regular Expressions

Inductive Definition of Regular Expressions

Definition: Given an alphabet 3, we can inductively define the regular
eTpressions over Y as:

Basis cases: e The constants () and € are RE
e Ifa €)Y then ais a RE

Inductive steps: Given the RE R and S, we define the following RE:
e R+ S and RS are RE
e R*is RE

The precedence of the operands is the following:
e The closure operator * has the highest precedence
e Next comes concatenation
e Finally, comes the operator +

e We use parentheses (,) to change the precedences

Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 12

e-NFA — Regular Expressions

Another Way to Define the Regular Expressions

A nicer way to define the regular expressions is by giving the following BNF
(Backus-Naur Form), for a € 3:

R:=0|e|la|R+R|RR|R"
alternatively
R,S:=0|e|la|R+S|RS|R"

Question: Can you guess their meaning?

Note: BNF is a way to declare the syntax of a language.

It is very useful when describing context-free grammars and in particular the

syntax of most programming languages.

Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 13

e-NFA — Regular Expressions

Functional Representation of Regular Expressions

data RExp a = Empty | Epsilon | Atom a |
Plus (RExp a) (RExp a) | Concat (RExp a) (RExp a) |
Star (RExp a)

For example the expression b+ (bc)* is given as

Plus (Atom "b") (Star (Concat (Atom "b") (Atom "c")))

Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 14

e-NFA — Regular Expressions

Recall: Some Operations on Languages (Lecture 3)

Definition: Given £, £; and £, languages then we define the following
languages:

Union: LiULy={x |z € LyorxzeE Ly}
Intersection: L1 N Ly ={z |z € Ly and z € Lo}
Concatenation: £1Ly = {z122 | 21 € L1, 22 € Lo}

Closure: L* =], cn £
where £0 = {e}, LT = L"L.

Note: We have then that (* = {¢} and
cr=L0uctuciu...={euf{ri...z, | n>0,2; € L}

Notation: £t =£'uL?2UL3U... and L?= LU {e}.

Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 15

e-NFA — Regular Expressions

Language Defined by the Regular Expressions

Definition: The language defined by a regular expression is defined by

recursion on the expression:
Basis cases: o L(()) =

o L(€) = {e}
e Given a € ¥, L(a)
(

{a}

Recursive cases: o L(R+S) = L(R)UL(S)
e L(RS)=L(R)L(S)
o L(R*)=L(R)*

Note: x € L(R) iff 2 is generated/accepted by R.

Notation: We write z € R or z € L(R) indistinctly.

Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 16

e-NFA — Regular Expressions

Example of Regular Expressions

Let ¥ = {0,1}.
e (01)*
o 0"+ 1
e (0+1)*
(000)*
01" +1
((o(1)) 1)
(01)* +
(e +1)(01)"(e +0)
(01)* 4+ 1(01)* + (01)*0 + 1(01)*0

What do they mean? Are there expressions that are equivalent?

Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 17

e-NFA — Regular Expressions

Algebraic Laws for Regular Expressions

The following equalities hold for any RE R, S and T
e Associativity: R+ (S+T)=(R+S)+ T and R(ST) = (RS)T
e Commutativity: R+S =5+ R
e In general, RS # SR
e Distributivity: R(S+T)= RS+ RT and (S+T)R=SR+TR
e Identity: R+0 =0+ R=Rand Re=¢R=R
e Annihilator: R) =)R =)
e Idempotent: R+ R=R
o)*=¢*=c¢
e R7=€e¢+ R
e RT = RR*=R*R
e R*=(R*)*=R*R*=¢+ R"

Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 18

e-NFA — Regular Expressions

Algebraic Laws for Regular Expressions

Other useful laws to simplify regular expressions are

e Shifting rule: R(SR)* = (RS)*R

e Denesting rule: (R*S)*R* = (R+ 5)*

Note: By the shifting rule we also get R*(SR*)* = (R+ S)*

e Variation of the denesting rule: (R*S)* = e+ (R+ 5)*S

Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 19

e-NFA — Regular Expressions

Example: Proving Equalities Using the Algebraic Laws

Example: A proof that a*b(c + da*b)* = (a + bc*d)*bc*:

a*b(c+ da*b)* = a*b(c*da*b)*c* by denesting (R = ¢, S = da*b)
a*b(c*da*b)*c* = (a*be*d)*a*be* by shifting (R = a*b, S = c¢*d)
(a*bc*d)*a*be* = (a + bc*d)*be* by denesting (R = a, S = bc*d)

Example: The set of all words with no substring of more than two adjacent
0% is (1 4 01+ 001)*(e + 0 + 00). Now,

(14+01+001)*(e4+0+00)=((e+0)(e+0)1)*(e+0)(e+0)
=(e+0)(e+0)(1(e+0)(e+0))* by shifting
(e 4+ 0+ 00)(1 + 10 + 100)*

Then (1 + 01 + 001)*(e + 0 + 00) = (¢ + 0 + 00)(1 + 10 + 100)*

Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 20

e-NFA — Regular Expressions

Equality of Regular Expressions

Remember that RE are a way to denote languages.

Then, for RE R and S, R = S actually means L(R) = L(S5).

Hence we can prove the equality of RE in the same way we can prove the

equality of languages.

Example: Let us prove that R* = R*R*. Let £ = L(R).
L* C L*L* since € € L*.

Conversely, if L*L* C L* then x = x122 with 1 € £L* and x5 € L*.
If 1 = € or z9 = € then it is clear that =z € L*.
Otherwise 1 = ujus ... u, with u; € £ and xo = viva ... vy, with v; € L.

Then x = 120 = UqUs . .. UpVIV2 ... Uy 1S In LF.

Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 21

e-NFA — Regular Expressions

Proving Algebraic Laws for Regular Expressions

Given the RE R and S we can prove the law R = S as follows:

1. Convert R and S into concrete regular expressions C' and D, respectively,
by replacing each variable in the RE R and S by (different) concrete
symbols.

Example: R(SR)* = (RS)*R can be converted into a(ba)* = (ab)*a.
2. Prove or disprove whether £(C) = L(D). If L(C) = L(D) then R= S is a

true law, otherwise it is not.

Theorem: The above procedure correctly identifies the true laws for RE.

Proof: See theorems 3.14 and 3.13 in pages 121 and 120 respectively.

Example: Proving the shifting law was (somehow) one of the exercises in
assignment 1: prove that for all n, a(ba)™ = (ab)™a.

Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 22

e-NFA — Regular Expressions

Example: Proving the Denesting Rule

We can state (R*S)*R* = (R+ S)* by proving L((a*b)*a*) = L((a + b)*):

C: Let z € (a*b)*a*, then z = vw with v € (a*b)* and w € a*.
By induction on v.
If v = € we are done. Otherwise v = av’ or v = bv'.

Observe that in both cases v" € (a*b)* hence by IH v'w € (a+b)* and so is vw.

2t Let x € (a+ b)*. By induction on z. If x = € then done.
Otherwise z = 2’a or = 2’b and 2’ € (a + b)*.

By IH 2’ € (a*b)*a* and then 2’ = vw with v € (a*b)* and w € a*.
If 2’a = v(wa) € (a*b)*a* since v € (a*b)* and (wa) € a*.

If 'b = (v(wb))e € (a*b)*a* since v(wb) € (a*b)* and € € a*.

Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 23

e-NFA — Regular Expressions

Regular Languages and Regular Expressions

Theorem: If L is a reqular language then there exists a reqular expression
R such that £ = L(R).

Proof: Recall that each regular language has an automata that recognises it.

We shall construct a regular expression from such automata.

The book shows 2 ways of constructing a regular expression from an automata
(sections 3.2.1 —computing Rg?)f and 3.2.2. —eliminating states—).

Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 24

e-NFA — Regular Expressions

From FA to RE: Computing Rx-ﬁ) from an Automaton A

Let Qa4 = {1,2,...,n} with 1 being the initial state.

We construct a collection of RE that progressively describe the paths in the
transition diagram of A:

Let R,E;?) be the RE whose language is the set of strings w which label
a path from state 7 to state j in A without passing by an intermediate
state bigger than k.

Note that neither ¢ nor j are intermediate states!

We define Rg?) by induction on k.

If Fo ={f1,..., fr} then our final regular expression is

R} +...+ R

Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 25

e-NFA — Regular Expressions

0
Base Case: REj)
We have no intermediate states here! We have the following scenarios:

e Arcs from state i to j7:

* If there are no arc then RS) =0
* If there is one arc labelled a then RE?) =a

« If there are m arcs labelled aq,...,a,, then Rg)) =a1+...+an,

Note: If i = j then we must consider the loops from i to itself.

e We have a path of length 0 from i to itself.
In a e-NFA we can also have paths of length 0 between 7 and j.
Such a path is represented as an e-transition in the automaton and as the
RE e.
Then we need to add € to the corresponding case above, obtaining then
RI(?) =e, RE?) =€e+a or Rg;)) =€+4ay+...+a, respectively.

Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 26

e-NFA — Regular Expressions

Inductive Step: from Rg?) to REfH)

Given a path from state ¢ to state j without passing by an intermediate state
bigger than (k 4 1), we have 2 possible cases:

e The path does not actually pass by state (k + 1).
Hence the label of the path is in the language of the RE RZ(-;?).

e The path goes through (k + 1) at least once.

We can break the path into pieces that do not pass through k + 1: first
from i to (k + 1), one or more from (k + 1) to (k + 1), last from (k+ 1) to j.

The label for this path is represented by the RE

(k) (k) x p(k)
Rty By o) By
. : (k+1) _ p(k) (k) (k) « p(k)
The resulting RE is R;; " = Ri;" + Ry (Rl o) Bk,
Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 27

e-NFA — Regular Expressions

Remarks on the Method for Computing RZ(-;C)
e Works for any kind of FA (DFA, NFA and e-NFA).

e The method is similar to Floyd-Warshall algorithm (graph analysis
algorithm for finding shortest paths in a weighted, directed graph).
See Wikipedia.

e It is expensive: we need to compute n? RE!
It also produces very big and complicated expressions!

The (intermediate) RE can usually be simplified. Still not triviall

Example: See example 3.5 in the book (pages 95-97).

Lecture 6 April 4th 2011 — TMV026,/DIT321 Slide 28

