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Overview of today’s lecture:

• NFA with ǫ-Transitions

• Regular Expressions

ǫ-NFA – Regular Expressions

Recall: ǫ-Closures

Definition: Formally, we define the ǫ-closure of a set of states with the

following 2 rules:

q ∈ S

q ∈ ECLOSE(S)

q ∈ ECLOSE(S) p ∈ δ(q, ǫ)

p ∈ ECLOSE(S)

Intuitively, p ∈ ECLOSE(S) iff there exists q ∈ S and a sequence of

ǫ-transitions such that

q1 ∈ δ(q, ǫ) q2 ∈ δ(q1, ǫ) · · · p ∈ δ(qn, ǫ)

Definition: We say that S is ǫ-closed iff S = ECLOSE(S).

S is ǫ-closed iff q ∈ S and p ∈ δ(q, ǫ) implies p ∈ S.
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ǫ-NFA – Regular Expressions

Extending the Transition Function to Strings

Definition: Given an ǫ-NFA E = (Q,Σ, δ, q0, F ) we define

δ̂ : Q × Σ∗ → [Q]

δ̂(q, ǫ) = ECLOSE({q})

δ̂(q, ax) =
⋃

p∈∆(ECLOSE({q}),a) δ̂(p, x)

where ∆(S, a) = ∪p∈Sδ(p, a)

Remark: By definition we have that

δ̂(q, a) = ECLOSE(∆(ECLOSE({q}), a)).

Remark: We can prove by induction on x that all sets δ̂(q, x) are ǫ-closed.

This result uses that the union of ǫ-closed sets is also a ǫ-closed set.
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ǫ-NFA – Regular Expressions

Language Accepted by a ǫ-NFA

Definition: The language accepted by the ǫ-NFA (Q,Σ, δ, q0, F ) is the set

L = {x ∈ Σ∗ | δ̂(q0, x) ∩ F 6= ∅}.

Example: Let Σ = {b}.
q0 q1 q2

q3 q4 q5

ǫ
ǫ

ǫ ǫ
b b b

The automaton accepts the language {b, bb, bbb}.

Note: Yet again, we could write a program that simulates a ǫ-NFA and let

the program tell us whether a certain string is accepted or not.
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ǫ-NFA – Regular Expressions

Functional Representation of an ǫ-NFA

Let us implement the ǫ-NFA that recognises numbers (slide 21 lecture 5).

data Q = Q0 | Q1 | Q2 | Q3 | Q4 deriving (Eq,Show)

final :: Q -> Bool

final Q4 = True

final _ = False

e_jump :: Q -> [Q]

e_jump Q0 = [Q1]

e_jump Q2 = [Q4]

e_jump _ = []

isSub :: [Q] -> [Q] -> Bool

closure :: [Q] -> [Q]
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ǫ-NFA – Regular Expressions

Functional Representation of an ǫ-NFA (cont.)

delta :: Char -> Q -> [Q]

delta a Q0 | elem a "+-" = [Q1]

delta a Q1 | elem a "0123456789" = [Q2]

delta a Q2 | elem a "0123456789" = [Q2]

delta ’.’ Q2 = [Q3]

delta a Q3 | elem a "0123456789" = [Q4]

delta a Q4 | elem a "0123456789" = [Q4]

delta _ _ = []

run :: String -> Q -> [Q]

run [] q = closure [q]

run (a:xs) q = closure [q] >>= delta a >>= run xs

accepts :: String -> Bool

accepts xs = or (map final (run xs Q0))
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ǫ-NFA – Regular Expressions

Eliminating ǫ-Transitions

Definition: Given an ǫ-NFA E = (QE ,Σ, δE , qE , FE) we define a DFA

D = (QD,Σ, δD, qD, FD) as follows:

• QD = {ECLOSE(S) | S ∈ Pow(QE)}

• δD(S, a) = ECLOSE(∆(S, a)) with ∆(S, a) = ∪p∈Sδ(p, a)

• qD = ECLOSE({qE})

• FD = {S ∈ QD | S ∩ FE 6= ∅}

Note: This construction is similar to the subset construction but now we

need to ǫ-close after each step.
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ǫ-NFA – Regular Expressions

Eliminating ǫ-Transitions

Let E be an ǫ-NFA and D the corresponding DFA.

Lemma: ∀x ∈ Σ∗. δ̂E(qE , x) = δ̂D(qD, x).

Proof: By induction on x.

Proposition: L(E) = L(D).

Proof: x ∈ L(E) iff δ̂E(qE , x) ∩ FE 6= ∅ iff δ̂E(qE , x) ∈ FD iff (by previous

lemma) δ̂D(qD, x) ∈ FD iff x ∈ L(D).
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ǫ-NFA – Regular Expressions

Example: Eliminating ǫ-Transitions

Let us eliminate the ǫ-transitions in the following ǫ-NFA.

q0 q1

q2

q3q4

ǫ,+,−

0, 1, . . . , 9

.

0, 1, . . . , 9

0, 1, . . . , 9

0, 1, . . . , 9

ǫ

+,- . 0,1,. . . ,9 ǫ

→ q0 {q1} ∅ ∅ {q1}

q1 ∅ ∅ {q2} ∅

q2 ∅ {q3} {q2} {q4}

q3 ∅ ∅ {q4} ∅

∗q4 ∅ ∅ {q4} ∅
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ǫ-NFA – Regular Expressions

Example: Eliminating ǫ-Transitions

We obtain the following DFA:

{q0, q1} {q1}

{q2, q4}{q3}{q4}

+,−

0, 1, . . . , 90, 1, . . . , 9

.
0, 1, . . . , 9

0, 1, . . . , 90, 1, . . . , 9
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ǫ-NFA – Regular Expressions

Functional Representation of Eliminating ǫ-Transitions

pDelta :: Char -> [Q] -> [Q]

pDelta a qs = closure (qs >>= delta a)

pRun :: [Char] -> [Q] -> [Q]

pRun [] qs = qs

pRun (a:x) qs = pRun x (pDelta a qs)

run :: String -> Q -> [Q]

run xs q = pRun xs (closure [q])

accepts :: String -> Bool

accepts xs = or (map final (run xs Q0))
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ǫ-NFA – Regular Expressions

Finite Automata and Regular Languages

We have shown that DFA, NFA and ǫ-NFA are equivalent in the sense that we

can transform one to the other.

Hence, a language is regular iff there exists a finite automaton (DFA, NFA or

ǫ-NFA) that accepts the language.
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ǫ-NFA – Regular Expressions

Regular Expressions

Regular expressions (RE) are an “algebraic” way to denote languages.

Given a RE R, it defines the language L(R).

We will show that RE are as expressive as DFA and hence, they define all and

only the regular languages.

RE can also be seen as a declarative way to express the strings we want to

accept and serve as input language for certain systems.

Example: grep command in UNIX (K. Thompson).

(Note: UNIX regular expressions are not exactly as the RE we will study in the course.)
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ǫ-NFA – Regular Expressions

Inductive Definition of Regular Expressions

Definition: Given an alphabet Σ, we can inductively define the regular

expressions over Σ as:

Basis cases: • The constants ∅ and ǫ are RE

• If a ∈ Σ then a is a RE

Inductive steps: Given the RE R and S, we define the following RE:

• R + S and RS are RE

• R∗ is RE

The precedence of the operands is the following:

• The closure operator ∗ has the highest precedence

• Next comes concatenation

• Finally, comes the operator +

• We use parentheses (,) to change the precedences
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ǫ-NFA – Regular Expressions

Another Way to Define the Regular Expressions

A nicer way to define the regular expressions is by giving the following BNF

(Backus-Naur Form), for a ∈ Σ:

R ::= ∅ | ǫ | a | R + R | RR | R∗

alternatively

R,S ::= ∅ | ǫ | a | R + S | RS | R∗

Question: Can you guess their meaning?

Note: BNF is a way to declare the syntax of a language.

It is very useful when describing context-free grammars and in particular the

syntax of most programming languages.
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ǫ-NFA – Regular Expressions

Functional Representation of Regular Expressions

data RExp a = Empty | Epsilon | Atom a |

Plus (RExp a) (RExp a) | Concat (RExp a) (RExp a) |

Star (RExp a)

For example the expression b + (bc)∗ is given as

Plus (Atom "b") (Star (Concat (Atom "b") (Atom "c")))
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ǫ-NFA – Regular Expressions

Recall: Some Operations on Languages (Lecture 3)

Definition: Given L, L1 and L2 languages then we define the following

languages:

Union: L1 ∪ L2 = {x | x ∈ L1 or x ∈ L2}

Intersection: L1 ∩ L2 = {x | x ∈ L1 and x ∈ L2}

Concatenation: L1L2 = {x1x2 | x1 ∈ L1, x2 ∈ L2}

Closure: L∗ =
⋃

n∈N Ln

where L0 = {ǫ}, Ln+1 = LnL.

Note: We have then that ∅∗ = {ǫ} and

L∗ = L0 ∪ L1 ∪ L2 ∪ . . . = {ǫ} ∪ {x1 . . . xn | n > 0, xi ∈ L}

Notation: L+ = L1 ∪ L2 ∪ L3 ∪ . . . and L? = L ∪ {ǫ}.
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ǫ-NFA – Regular Expressions

Language Defined by the Regular Expressions

Definition: The language defined by a regular expression is defined by

recursion on the expression:

Basis cases: • L(∅) = ∅

• L(ǫ) = {ǫ}

• Given a ∈ Σ, L(a) = {a}

Recursive cases: • L(R + S) = L(R) ∪ L(S)

• L(RS) = L(R)L(S)

• L(R∗) = L(R)∗

Note: x ∈ L(R) iff x is generated/accepted by R.

Notation: We write x ∈ R or x ∈ L(R) indistinctly.
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ǫ-NFA – Regular Expressions

Example of Regular Expressions

Let Σ = {0, 1}.

• (01)∗

• 0∗ + 1∗

• (0 + 1)∗

• (000)∗

• 01∗ + 1

• ((0(1∗)) + 1)

• (01)∗ + 1

• (ǫ + 1)(01)∗(ǫ + 0)

• (01)∗ + 1(01)∗ + (01)∗0 + 1(01)∗0

What do they mean? Are there expressions that are equivalent?
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ǫ-NFA – Regular Expressions

Algebraic Laws for Regular Expressions

The following equalities hold for any RE R, S and T :

• Associativity: R + (S + T ) = (R + S) + T and R(ST ) = (RS)T

• Commutativity: R + S = S + R

• In general, RS 6= SR

• Distributivity: R(S + T ) = RS + RT and (S + T )R = SR + TR

• Identity: R + ∅ = ∅ + R = R and Rǫ = ǫR = R

• Annihilator: R∅ = ∅R = ∅

• Idempotent: R + R = R

• ∅∗ = ǫ∗ = ǫ

• R? = ǫ + R

• R+ = RR∗ = R∗R

• R∗ = (R∗)∗ = R∗R∗ = ǫ + R+
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ǫ-NFA – Regular Expressions

Algebraic Laws for Regular Expressions

Other useful laws to simplify regular expressions are

• Shifting rule: R(SR)∗ = (RS)∗R

• Denesting rule: (R∗S)∗R∗ = (R + S)∗

Note: By the shifting rule we also get R∗(SR∗)∗ = (R + S)∗

• Variation of the denesting rule: (R∗S)∗ = ǫ + (R + S)∗S
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ǫ-NFA – Regular Expressions

Example: Proving Equalities Using the Algebraic Laws

Example: A proof that a∗b(c + da∗b)∗ = (a + bc∗d)∗bc∗:

a∗b(c + da∗b)∗ = a∗b(c∗da∗b)∗c∗ by denesting (R = c, S = da∗b)

a∗b(c∗da∗b)∗c∗ = (a∗bc∗d)∗a∗bc∗ by shifting (R = a∗b, S = c∗d)

(a∗bc∗d)∗a∗bc∗ = (a + bc∗d)∗bc∗ by denesting (R = a, S = bc∗d)

Example: The set of all words with no substring of more than two adjacent

0’s is (1 + 01 + 001)∗(ǫ + 0 + 00). Now,

(1 + 01 + 001)∗(ǫ + 0 + 00) = ((ǫ + 0)(ǫ + 0)1)∗(ǫ + 0)(ǫ + 0)

= (ǫ + 0)(ǫ + 0)(1(ǫ + 0)(ǫ + 0))∗ by shifting

= (ǫ + 0 + 00)(1 + 10 + 100)∗

Then (1 + 01 + 001)∗(ǫ + 0 + 00) = (ǫ + 0 + 00)(1 + 10 + 100)∗
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ǫ-NFA – Regular Expressions

Equality of Regular Expressions

Remember that RE are a way to denote languages.

Then, for RE R and S, R = S actually means L(R) = L(S).

Hence we can prove the equality of RE in the same way we can prove the

equality of languages.

Example: Let us prove that R∗ = R∗R∗. Let L = L(R).

L∗ ⊆ L∗L∗ since ǫ ∈ L∗.

Conversely, if L∗L∗ ⊆ L∗ then x = x1x2 with x1 ∈ L∗ and x2 ∈ L∗.

If x1 = ǫ or x2 = ǫ then it is clear that x ∈ L∗.

Otherwise x1 = u1u2 . . . un with ui ∈ L and x2 = v1v2 . . . vm with vj ∈ L.

Then x = x1x2 = u1u2 . . . unv1v2 . . . vm is in L∗.
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ǫ-NFA – Regular Expressions

Proving Algebraic Laws for Regular Expressions

Given the RE R and S we can prove the law R = S as follows:

1. Convert R and S into concrete regular expressions C and D, respectively,

by replacing each variable in the RE R and S by (different) concrete

symbols.

Example: R(SR)∗ = (RS)∗R can be converted into a(ba)∗ = (ab)∗a.

2. Prove or disprove whether L(C) = L(D). If L(C) = L(D) then R = S is a

true law, otherwise it is not.

Theorem: The above procedure correctly identifies the true laws for RE.

Proof: See theorems 3.14 and 3.13 in pages 121 and 120 respectively.

Example: Proving the shifting law was (somehow) one of the exercises in

assignment 1: prove that for all n, a(ba)n = (ab)na.
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ǫ-NFA – Regular Expressions

Example: Proving the Denesting Rule

We can state (R∗S)∗R∗ = (R + S)∗ by proving L((a∗b)∗a∗) = L((a + b)∗):

⊆: Let x ∈ (a∗b)∗a∗, then x = vw with v ∈ (a∗b)∗ and w ∈ a∗.

By induction on v.

If v = ǫ we are done. Otherwise v = av′ or v = bv′.

Observe that in both cases v′ ∈ (a∗b)∗ hence by IH v′w ∈ (a+ b)∗ and so is vw.

⊇: Let x ∈ (a + b)∗. By induction on x. If x = ǫ then done.

Otherwise x = x′a or x = x′b and x′ ∈ (a + b)∗.

By IH x′ ∈ (a∗b)∗a∗ and then x′ = vw with v ∈ (a∗b)∗ and w ∈ a∗.

If x′a = v(wa) ∈ (a∗b)∗a∗ since v ∈ (a∗b)∗ and (wa) ∈ a∗.

If x′b = (v(wb))ǫ ∈ (a∗b)∗a∗ since v(wb) ∈ (a∗b)∗ and ǫ ∈ a∗.
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ǫ-NFA – Regular Expressions

Regular Languages and Regular Expressions

Theorem: If L is a regular language then there exists a regular expression

R such that L = L(R).

Proof: Recall that each regular language has an automata that recognises it.

We shall construct a regular expression from such automata.

The book shows 2 ways of constructing a regular expression from an automata

(sections 3.2.1 –computing R
(k)
ij – and 3.2.2. –eliminating states–).
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ǫ-NFA – Regular Expressions

From FA to RE: Computing R
(k)
ij from an Automaton A

Let QA = {1, 2, . . . , n} with 1 being the initial state.

We construct a collection of RE that progressively describe the paths in the

transition diagram of A:

Let R
(k)
ij be the RE whose language is the set of strings w which label

a path from state i to state j in A without passing by an intermediate

state bigger than k.

Note that neither i nor j are intermediate states!

We define R
(k)
ij by induction on k.

If FA = {f1, . . . , fr} then our final regular expression is

R
(n)
1f1

+ . . . + R
(n)
1fr
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ǫ-NFA – Regular Expressions

Base Case: R
(0)
ij

We have no intermediate states here! We have the following scenarios:

• Arcs from state i to j?:

∗ If there are no arc then R
(0)
ij = ∅

∗ If there is one arc labelled a then R
(0)
ij = a

∗ If there are m arcs labelled a1, . . . , am then R
(0)
ij = a1 + . . . + am

Note: If i = j then we must consider the loops from i to itself.

• We have a path of length 0 from i to itself.

In a ǫ-NFA we can also have paths of length 0 between i and j.

Such a path is represented as an ǫ-transition in the automaton and as the

RE ǫ.

Then we need to add ǫ to the corresponding case above, obtaining then

R
(0)
ij = ǫ, R

(0)
ij = ǫ + a or R

(0)
ij = ǫ + a1 + . . . + am respectively.
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ǫ-NFA – Regular Expressions

Inductive Step: from R
(k)
ij to R

(k+1)
ij

Given a path from state i to state j without passing by an intermediate state

bigger than (k + 1), we have 2 possible cases:

• The path does not actually pass by state (k + 1).

Hence the label of the path is in the language of the RE R
(k)
ij .

• The path goes through (k + 1) at least once.

We can break the path into pieces that do not pass through k + 1: first

from i to (k + 1), one or more from (k + 1) to (k + 1), last from (k + 1) to j.

The label for this path is represented by the RE

R
(k)
i(k+1)(R

(k)
(k+1)(k+1))

∗R
(k)
(k+1)j .

The resulting RE is R
(k+1)
ij = R

(k)
ij + R

(k)
i(k+1)(R

(k)
(k+1)(k+1))

∗R
(k)
(k+1)j
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ǫ-NFA – Regular Expressions

Remarks on the Method for Computing R
(k)
ij

• Works for any kind of FA (DFA, NFA and ǫ-NFA).

• The method is similar to Floyd-Warshall algorithm (graph analysis

algorithm for finding shortest paths in a weighted, directed graph).

See Wikipedia.

• It is expensive: we need to compute n2 RE!

It also produces very big and complicated expressions!

The (intermediate) RE can usually be simplified. Still not trivial!

Example: See example 3.5 in the book (pages 95-97).

1 2

1

0
0, 1
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