
Finite Automata and
Formal Languages

TMV026/DIT321– LP4 2011

Ana Bove

Lecture 5

March 29th 2011

Overview of today’s lecture:

• Equivalence between DFA and NFA

• More on NFA

• NFA with ǫ-Transitions

Equivalence between DFA and NFA – ǫ-NFA

Example: Subset Construction

Let us apply the subset construction to the NFA

q0 q1 q2

0, 1

0 1

We obtain the following DFA: q0 q0, q1 q0, q2

1

0

0

1

0

1

By only computing the accessible states (from the start state) we are able to

keep the total number of states to 3 (and not 8).

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 1

Equivalence between DFA and NFA – ǫ-NFA

Functional Representation of the Subset Construction

Given a (typed modified) δN function:

delta :: S -> Q -> [Q]

we can define the (typed modified) δD function:

pDelta :: S -> [Q] -> [Q]

pDelta a qs = concat (map (delta a) qs)

or (with the monadic notation)

pDelta a qs = qs >>= delta a

or

pDelta a qs = do p <- qs

delta a p

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 2

Equivalence between DFA and NFA – ǫ-NFA

Functional Representation of the Subset Construction

pFinal :: [Q] -> Bool

pFinal qs = or (map final qs)

pRun :: [S] -> [Q] -> [Q]

pRun [] qs = qs

pRun (a:xs) qs = pRun xs (pDelta a qs)

pAccepts :: [S] -> Bool

pAccepts xs = pFinal (pRun xs [Q0])

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 3

Equivalence between DFA and NFA – ǫ-NFA

Testing the Correction of the Subset Construction

test :: [S] -> Bool

test xs = run xs Q0 == pRun xs [Q0] -- run @ slides 22/23 lec 4

Informally, let xs be [x1,...,xn]. Then:

run [x1,...,xn] q = delta x1 q >>= run [x2,...,xn]

= delta x1 q >>= (\p -> delta x2 p >>= run [...,xn])

= delta x1 q >>= (\p -> ... >>= (\r -> delta xn r >>= return)...)

= delta x1 q >>= delta x2 >>= .. >>= delta xn

pRun [x1,...,xn] [q] = pDelta xn (... (pDelta x1 [q])...)

= [q] >>= delta x1 >>= ... >>>= delta xn

= delta x1 q >>= delta x2 >>= .. >>= delta xn

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 4

Equivalence between DFA and NFA – ǫ-NFA

Towards the Correction of the Subset Construction

Formally we have that

Proposition: ∀x.∀q. δ̂N (q, x) = δ̂D({q}, x).

Proof: By induction on x. Basis case is trivial.

The inductive step is:

δ̂N (q, ax) =
⋃

p∈δN (q,a) δ̂N (p, x) by definition of δ̂N

=
⋃

p∈δN (q,a) δ̂D({p}, x) by IH

= δ̂D(δN (q, a), x) see lemma below

= δ̂D(δD({q}, a), x) remark on slide 27 lecture 4

= δ̂D({q}, ax) by definition of δ̂D

Lemma: For all words x and set of states S, δ̂D(S, x) =
⋃

p∈S δ̂D({p}, x).

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 5

Equivalence between DFA and NFA – ǫ-NFA

Correction of the Subset Construction

Theorem: Given a NFA N , if D is the DFA constructed from N by the

subset construction then L(N) = L(D).

Proof: x ∈ L(N) iff δ̂N (q0, x) ∩ FN 6= ∅ iff δ̂N (q0, x) ∈ FD.

By the previous proposition, this is equivalent to δ̂D({q0}, x) ∈ FD.

Since {q0} is the starting state in D the above is equivalent to x ∈ L(D).

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 6

Equivalence between DFA and NFA – ǫ-NFA

Equivalence between DFA and NFA

Theorem: A language L is accepted by some DFA iff L is accepted by some

NFA.

Proof: The “if” part is the result of the previous theorem (correctness of

subset construction).

For the “only if” part we need to transform the DFA into a NFA.

Intuitively, each DFA can be seen as a NFA where there exists only one choice

at each stage.

Formally, given D = (Q,Σ, δD, q0, F) we define N = (Q,Σ, δN , q0, F) such

that, if δD(q, a) = p then δN (q, a) = {p}.

It only remains to show (by induction on x) that if δ̂D(q0, x) = p then

δ̂N (q0, x) = {p}.

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 7

Equivalence between DFA and NFA – ǫ-NFA

Application: Text Search

Suppose we are given a set of words, called keywords, and we want to find

occurrences of any of these words in a text.

An useful way to proceed is to design a NFA that enters in an accepting state

when it has recognised one of the keywords.

Then we could implement the NFA, or we could transform it to a DFA and

get a deterministic (efficient) program.

Since we have proved the subset construction correct, we know the DFA will

be correct (if the NFA is!).

This is a good example of a derivation of a program (the DFA) from a

specification (the NFA).

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 8

Equivalence between DFA and NFA – ǫ-NFA

Application: Text Search

The following (easy to write) NFA searches for the keyword web and ebay:

A

B C D

E F G H

a ∈ Σ
w

e b

e

b a y

a ∈ Σ a ∈ Σ

If one applies the subset construction one obtains the DFA of page 71 in the

book.

Observe that the obtained DFA has the same number of states as the NFA.

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 9

Equivalence between DFA and NFA – ǫ-NFA

Functional Representation: Text Search

data Q = A | B | C | D | E | F| G | H

delta :: Char -> Q -> [Q]

delta ’w’ A = [A,B]

delta ’e’ A = [A,E]

delta _ A = [A]

delta ’e’ B = [C]

delta ’b’ C = [D]

delta ’b’ E = [F]

delta ’a’ F = [G]

delta ’y’ G = [H]

delta _ D = [D]

delta _ H = [H]

delta _ _ = []

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 10

Equivalence between DFA and NFA – ǫ-NFA

Functional Representation: Text Search (cont.)

final :: Q -> Bool

final D = True

final H = True

final _ = False

run :: String -> Q -> [Q]

run [] q = return q

run (a:xs) q = delta a q >>= run xs

accepts :: String -> Bool

accepts xs = or (map final (run xs A))

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 11

Equivalence between DFA and NFA – ǫ-NFA

Example: NFA Representation of Gilbreath’s Principle

This is a model of Gilbreath’s principle when we shuffle 2 non-empty

alternating decks of cards, one starting with a red card and one starting with

a black one. Let Σ = {0, 1} represent a black or red card respectively.

q0

q1

q2

q3

q4

q5

1

0

0

1

01
1

0

0

1

0

1

q0 starts with 0 and 1

q1 both start with 0

q2 both start with 1

q3 starts with 0 and ǫ

q4 starts with 1 and ǫ

q5 both ǫ

What does the principle say? Let us build the corresponding DFA.

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 12

Equivalence between DFA and NFA – ǫ-NFA

Example: DFA Representation of Gilbreath’s Principle

q0

q1q3

q2q4

q2q4q5

q1q3q5

q0q3q4q5q

1

0

0

1

0

1

0

1

1

0

0

1

What does the principle say?

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 12

Equivalence between DFA and NFA – ǫ-NFA

A Bad Case for the Subset Construction

Proposition: Any DFA recognising the same language as the NFA below

has at least 2n states:

q0 q1 q2 qn−1 qn

0, 1

1 0, 1 0, 1 0, 1 0, 1

This NFA recognises strings over {0, 1} such that the nth symbol from the

end is a 1.

Proof: Let Ln = {x1u | x ∈ Σ∗, u ∈ Σn−1} and D = (Q,Σ, δ, q0, F) a DFA.

We want to show that if |Q| < 2n then L(D) 6= Ln.

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 13

Equivalence between DFA and NFA – ǫ-NFA

A Bad Case for the Subset Construction (Cont.)

Lemma: If |Q| < 2n then there exists x, y ∈ Σ∗ and u, v ∈ Σn−1 such that

δ̂(q0, x0u) = δ̂(q0, y1v).

Proof: Let us define a map Σn → Q such that z 7→ δ̂(q0, z).

This map cannot be injective because |Q| < 2n = |Σn|.

Hence, we have a1 . . . an 6= b1 . . . bn such that δ̂(q0, a1 . . . an) = δ̂(q0, b1 . . . bn).

Let us assume that ai = 0 and bi = 1.

Let x = a1 . . . ai−1, y = b1 . . . bi−1 and let

u = ai+1 . . . an0i−1 and v = bi+1 . . . bn0i−1

Recall that for a DFA, δ̂(q, zw) = δ̂(δ̂(q, z), w) (slide 24, lecture 3) and hence:

δ̂(q0, x0u) = δ̂(q0, a1 . . . an0i−1) = δ̂(δ̂(q0, a1 . . . an), 0i−1) =

δ̂(δ̂(q0, b1 . . . bn), 0i−1) = δ̂(q0, b1 . . . bn0i−1) = δ̂(q0, y1v)

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 14

Equivalence between DFA and NFA – ǫ-NFA

A Bad Case for the Subset Construction (Cont.)

Proof: (of the proposition: if |Q| < 2n then L(D) 6= Ln).

Assume L(D) = Ln.

Let x, y ∈ Σ∗ and u, v ∈ Σn−1 as in previous lemma.

Then we must have that y1v ∈ L(D) but x0u /∈ L(D),

That is, δ̂(q0, y1v) ∈ F but δ̂(q0, x0u) /∈ F .

However, this contradicts the previous lemma that says that

δ̂(q0, x0u) = δ̂(q0, y1v).

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 15

Equivalence between DFA and NFA – ǫ-NFA

Product Construction for NFA

Definition: Given 2 NFA N1 = (Q1,Σ, δ1, q1, F1) and

N2 = (Q2,Σ, δ2, q2, F2) over the same alphabet Σ, we define the product

N1 × N2 = (Q,Σ, δ, q0, F) as follows:

• Q = Q1 × Q2

• δ((p1, p2), a) = δ1(p1, a) × δ2(p2, a)

• q0 = (q1, q2)

• F = {(p1, p2) | p1 ∈ F1, p2 ∈ F2}

Lemma: (t1, t2) ∈ δ̂((p1, p2), x) iff t1 ∈ δ̂1(p1, x) and t2 ∈ δ̂(p2, x)

Proof: By induction on x.

Proposition: L(N1 × N2) = L(N1) ∩ L(N2).

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 16

Equivalence between DFA and NFA – ǫ-NFA

Complement for NFA

OBS: Given NFA N = (Q,Σ, δ, q, F) and N ′ = (Q,Σ, δ, q,Q − F) we do not

have in general that L(N ′) = Σ∗ − L(N).

Example: Let Σ = {a} and N and N ′ as follows:

q0 q1
a L(N) = {a}

q0 q1
a L(N ′) = ∅ 6= Σ∗ − {a}

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 17

Equivalence between DFA and NFA – ǫ-NFA

Regular Languages

Recall: A language L ⊆ Σ∗ is regular iff there exists a DFA D on the

alphabet Σ such that L = L(D).

Proposition: A language L ⊆ Σ∗ is regular iff there exists a NFA N such

that L = L(N).

Proof: If L is regular then L = L(D) for some DFA D. To any DFA D we

can associate a NFA ND such that L(D) = L(ND).

If D = (Q,Σ, δ, q0, F) we simply take ND = (Q,Σ, δ′, q0, F) with

δ′(q, a) = {δ(q, a)}. Notice that δ′ ∈ Q × Σ → Pow(Q).

In the other direction, if L = L(N) for some NFA N then, the subset

construction gives a DFA D such that L(N) = L(D) so L is regular.

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 18

Equivalence between DFA and NFA – ǫ-NFA

NFA with ǫ-Transitions

Another useful extension of automata that does not add more power is the

possibility to allow ǫ-transitions, that is, transitions from one state to another

without reading any input symbol.

Example: The following ǫ-NFA searches for the keyword web and ebay:

q0

q1 q2 q3 q4

q5 q6 q7 q8 q9

a ∈ Σ
ǫ

w e b

ǫ

e b a y

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 19

Equivalence between DFA and NFA – ǫ-NFA

ǫ-NFA Accepting Words of Length Divisible by 3 or by 5

Example: Let Σ = {1}.

ǫ ǫ

1 1

1

1 1

1
1

1

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 20

Equivalence between DFA and NFA – ǫ-NFA

ǫ-NFA Accepting Decimal Numbers

Example: A NFA accepting number with an optional +/- symbol and an

optional decimal part can be the following:

q0 q1

q2

q3q4

ǫ,+,−

0, 1, . . . , 9

.

0, 1, . . . , 9

0, 1, . . . , 9

0, 1, . . . , 9

ǫ

+,- . 0,1,. . . ,9 ǫ

→ q0 {q1} ∅ ∅ {q1}

q1 ∅ ∅ {q2} ∅

q2 ∅ {q3} {q2} {q4}

q3 ∅ ∅ {q4} ∅

∗q4 ∅ ∅ {q4} ∅

The uses of ǫ-transitions represent the optional symbol +/- and the optional

decimal part.

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 21

Equivalence between DFA and NFA – ǫ-NFA

NFA with ǫ-Transitions

Definition: A NFA with ǫ-transitions (ǫ-NFA) is a 5-tuple (Q,Σ, δ, q0, F)

consisting of:

1. A finite set Q of states

2. A finite set Σ of symbols (alphabet)

3. A transition function δ : Q × (Σ ∪ {ǫ}) → Pow(Q)

(“partial” function that takes as argument a state and a symbol or the

ǫ-transition, and returns a set of states)

4. A start state q0 ∈ Q

5. A set F ⊆ Q of final or accepting states

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 22

Equivalence between DFA and NFA – ǫ-NFA

ǫ-Closures

Informally, the ǫ-closure of a state q is the set of states we can reach by only

following paths labelled with ǫ.

Example: For the automaton

q0

q1 q2 q3

q4 q5 q6

ǫ

ǫ

ǫ
ǫ

a ǫ

b

the ǫ-closure of q0 is {q0, q1, q2, q3, q4}.

Informally, we recursively follow all transitions out of a state q that are

labelled ǫ.

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 23

Equivalence between DFA and NFA – ǫ-NFA

ǫ-Closures

Definition: Formally, we define the ǫ-closure of a set of states with the

following 2 rules:

q ∈ S

q ∈ ECLOSE(S)

q ∈ ECLOSE(S) p ∈ δ(q, ǫ)

p ∈ ECLOSE(S)

Definition: We say that S is ǫ-closed iff S = ECLOSE(S).

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 24

Equivalence between DFA and NFA – ǫ-NFA

ǫ-Closures: Remarks

• The ǫ-closure of a single state q can be computed as ECLOSE({q}).

• ECLOSE(∅) = ∅.

• S is ǫ-closed iff q ∈ S and p ∈ δ(q, ǫ) implies p ∈ S.

• Intuitively, p ∈ ECLOSE(S) iff there exists q ∈ S and a sequence of

ǫ-transitions such that

q1 ∈ δ(q, ǫ) q2 ∈ δ(q1, ǫ) · · · p ∈ δ(qn, ǫ)

• We can prove that ECLOSE(S) is the smallest subset of Q containing S

which is ǫ-closed.

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 25

Equivalence between DFA and NFA – ǫ-NFA

Functional Representation of ǫ-Closures

import List(union)

e_jump :: Q -> [Q]

e_jump Q0 = [Q1,Q4]

e_jump Q1 = [Q2]

e_jump Q2 = [Q3]

e_jump Q5 = [Q6]

e_jump _ = []

isSub :: [Q] -> [Q] -> Bool

isSub ps qs = and (map (\x -> elem x qs) ps)

closure :: [Q] -> [Q]

closure qs = let qs’ = qs >>= e_jump

in if isSub qs’ qs then qs

else closure (union qs qs’)

Lecture 5 March 29th 2011 – TMV026/DIT321 Slide 26

