Finite Automata and
Formal Languages

TMV026/DIT321- LP4 2011

Ana Bove
Lecture 5

March 29th 2011

Overview of today’s lecture:
e Equivalence between DFA and NFA
e More on NFA
e NFA with e-Transitions

Equivalence between DFA and NFA — e-NFA

Example: Subset Construction

Let us apply the subset construction to the NFA
0,1

@O

1
0
0 /1\
We obtain the following DFA: qo ,

By only computing the accessible states (from the start state) we are able to
keep the total number of states to 3 (and not 8).

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 1

Equivalence between DFA and NFA — e-NFA

Functional Representation of the Subset Construction

Given a (typed modified) 5 function:
delta :: S -> Q —> [Q]

we can define the (typed modified) §p function:

pDelta :: S -> [Q] -> [Q]
pDelta a gs = concat (map (delta a) gs)

or (with the monadic notation)

pDelta a gs = gs >>= delta a

or

pDelta a gqs = do p <- gs
delta a p

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 2

Equivalence between DFA and NFA — e-NFA

Functional Representation of the Subset Construction

pFinal :: [Q] -> Bool
pFinal gs = or (map final gs)

pRun :: [S] -> [Q] -> [Q]
pRun [] gs = gs
pRun (a:xs) gs = pRun xs (pDelta a gs)

pAccepts :: [S] -> Bool
pAccepts xs = pFinal (pRun xs [QO])

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 3

Equivalence between DFA and NFA — e-NFA

Testing the Correction of the Subset Construction

test :: [S] -> Bool

test xs = run xs QO == pRun xs [QO] -- run @ slides 22/23 lec 4
Informally, let xs be [x1,...,xn]. Then:

run [x1,...,xn] q = delta x1 q >>= run [x2,...,xn]

= delta x1 q >>= (\p -> delta x2 p >>= run [...,xn])

= delta x1 q >>= (\p -> ... >>= (\r -> delta xn r >>= return)...)
= delta x1 q >>= delta x2 >>= .. >>= delta xn

pRun [x1,...,xn] [q] = pDelta xn (... (pDelta x1 [q])...)

= [q] >>= delta x1 >>= ... >>>= delta xn

= delta x1 q >>= delta x2 >>= .. >>= delta xn

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 4

Equivalence between DFA and NFA — e-NFA

Towards the Correction of the Subset Construction

Formally we have that
Proposition: Va.¥q. én(q,2) = 6p({q},z).
Proof: By induction on x. Basis case is trivial.

The inductive step is:

~

on(g,ax) = LJPG&N(%G)gN(p,x) by definition of oy
= UpegN(q,a) 3D({p}, z) by IH
= 0p(on(g,a),x) see lemma below
= dp(dp({q},a),x) remark on slide 27 lecture 4
= bp({q},ax) by definition of 6

Lemma: For all words z and set of states S, ép(S,z) = Upes op({p},).

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 5

Equivalence between DFA and NFA — e-NFA

Correction of the Subset Construction

Theorem: Given a NFA N, if D is the DFA constructed from N by the
subset construction then L(N) = L(D).

Proof: z S ,C(N) iff SN(qo,x) N Fyn 7é 0 iff SN(QQ,IL’) € Fp.
By the previous proposition, this is equivalent to ép({qo},) € Fp.

Since {qo} is the starting state in D the above is equivalent to x € L(D).

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 6

Equivalence between DFA and NFA — e-NFA

Equivalence between DFA and NFA

Theorem: A language L is accepted by some DFA iff L is accepted by some
NFA.

Proof: The “if” part is the result of the previous theorem (correctness of
subset construction).

For the “only if” part we need to transform the DFA into a NFA.

Intuitively, each DFA can be seen as a NFA where there exists only one choice
at each stage.

Formally, given D = (Q, %, dp, qo, F') we define N = (Q, %, N, qo, F') such
that, if dp(q,a) = p then dn(q,a) = {p}.

It only remains to show (by induction on z) that if 6p(qo, z) = p then
on (g0,) = {p}-

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 7

Equivalence between DFA and NFA — e-NFA

Application: Text Search

Suppose we are given a set of words, called keywords, and we want to find
occurrences of any of these words in a text.

An useful way to proceed is to design a NFA that enters in an accepting state
when it has recognised one of the keywords.

Then we could implement the NFA, or we could transform it to a DFA and
get a deterministic (efficient) program.

Since we have proved the subset construction correct, we know the DFA will
be correct (if the NFA is!).

This is a good example of a derivation of a program (the DFA) from a
specification (the NFA).

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 8

Equivalence between DFA and NFA — e-NFA

Application: Text Search

The following (easy to write) NFA searches for the keyword web and ebay:

If one applies the subset construction one obtains the DFA of page 71 in the
book.

Observe that the obtained DFA has the same number of states as the NFA.

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 9

Equivalence between DFA and NFA — e-NFA

Functional Representation: Text Search
dataQ=A | B | CI|IDI|E| FlI GI|H
delta :: Char -> Q -> [Q]

delta ’w’ A = [A,B]
delta ’e’ A = [A,E]

delta _ A = [A]
delta ’e’ B = [C]
delta ’b’ C = [D]
delta ’b’ E = [F]
delta ’a’ F = [G]
delta ’y’ G = [H]
delta _ D = [D]
delta _ H = [H]
delta _ _ = []
Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 10

Equivalence between DFA and NFA — e-NFA

Functional Representation: Text Search (cont.)

final :: Q@ -> Bool

final D = True
final H = True
final _ = False

run :: String -> Q -> [Q]
run [] q = return q

run (a:xs) q = delta a q >>= run xs

accepts :: String -> Bool

accepts xs = or (map final (run xs A))

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 11

Equivalence between DFA and NFA — e-NFA

Example: NFA Representation of Gilbreath’s Principle

This is a model of Gilbreath’s principle when we shuffle 2 non-empty
alternating decks of cards, one starting with a red card and one starting with
a black one. Let ¥ = {0, 1} represent a black or red card respectively.

qo starts with 0 and 1
q1 both start with 0
qo both start with 1
q3 starts with 0 and €
q4 starts with 1 and €
qs both €

What does the principle say? Let us build the corresponding DFA.

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 12

Equivalence between DFA and NFA — e-NFA

Example: DFA Representation of Gilbreath’s Principle

S

(QOQ3Q4Q5

424495

What does the principle say?

414395

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 12

Equivalence between DFA and NFA — e-NFA

A Bad Case for the Subset Construction

Proposition: Any DFA recognising the same language as the NFA below
has at least 2™ states:

0,1

L\ 0,1 N\ 0,1 0,1 N\ 0,1 Q
q0 q1 q2 qn—1 dn
—/ —/ _/ -/

This NFA recognises strings over {0, 1} such that the nth symbol from the
end is a 1.

Proof: Let £, = {zlu |z € ¥*,u € X" "1} and D = (Q, %, d, qo, F') a DFA.
We want to show that if |Q| < 2™ then L£(D) # L,,.

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 13

Equivalence between DFA and NFA — e-NFA

A Bad Case for the Subset Construction (Cont.)

Lemma: If |Q| < 2" then there exists x,y € ¥* and u,v € X"~ such that
d(qo, z0u) = 6(qo, ylv).

Proof: Let us define a map X" — @ such that z — S(QO, z).

This map cannot be injective because |Q] < 2" = |X"].

Hence, we have ay ...a, # by ...b, such that 5((]0,(11 ceep) = 5(q0,b1 o).
Let us assume that a; = 0 and b; = 1.

Let r=ai...a;—1, y:bl...bi,1 and let
U= Qjt] - - - a, 0! and v = bit1... b, 001

Recall that for a DFA, S(q, Zw) = 5(5((], z),w) (slide 24, lecture 3) and hence:
S(q()? .I’OU) = 5(‘]0’ ag ... anoi_l) = 8(8((]0, aj ... an), Oi_l) =
5(5(%7 bl ce e bn), Oi_l) = 5((]0, bl e bnoi—l) = S(QO; yly)

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 14

Equivalence between DFA and NFA — e-NFA

A Bad Case for the Subset Construction (Cont.)

Proof: (of the proposition: if |Q| < 2™ then £(D) # L,,).
Assume L(D) = L,,.
Let z,y € ¥* and u,v € X" ! as in previous lemma.

Then we must have that ylv € £(D) but x0u ¢ L(D),
That is, 6(qo, y1v) € F but 6(qo, z0u) & F.

However, this contradicts the previous lemma that says that
d(qo, x0u) = 6(qo, ylv).

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 15

Equivalence between DFA and NFA — e-NFA

Product Construction for NFA

Definition: Given 2 NFA Ny = (Ql; Z,él,ql,Fl) and
Ny = (Q2,%, 2, g2, F3) over the same alphabet ¥, we define the product
N1 x Ny = (Q, X%, 9, qo, F) as follows:

° Q=01 xQ

® 6((p1,p2),a) = 61(p1,a) x 02(p2,q)
* qo = (q1,42)

o F={(p1,p2) | p1 € F1,p2 € Fo}

Lemma: (t,t2) € 6((p1,p2),) iff t1 € 01(p1,) and ty € 6(p2, x)

Proof: By induction on z.

Proposition: £(N; x N3) = L(Ny) N L(Nz).

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 16

Equivalence between DFA and NFA — e-NFA

Complement for NFA

OBS: Given NFA N = (Q,%,4,¢,F) and N’ = (Q,%,4,q,Q — F) we do not
have in general that L(N') = £* — L(N).

Example: Let ¥ = {a} and N and N’ as follows:

@ a @ L(N') =0 # %" —{a}

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 17

Equivalence between DFA and NFA — e-NFA

Regular Languages

Recall: A language £ C ©* is regular iff there exists a DFA D on the
alphabet ¥ such that £ = £(D).

Proposition: A language £ C X* is regular iff there exists a NFA N such
that £ = L(N).

Proof: If £ is regular then £ = £(D) for some DFA D. To any DFA D we
can associate a NFA Np such that £(D) = L(Np).

It D= (Q, 27 57 q0, F) we Slmply take Np = (Q7 27 5/7 q0, F) with

8’ (q,a) = {6(q,a)}. Notice that ¢’ € Q x ¥ — Pow(Q).

In the other direction, if £ = L(N) for some NFA N then, the subset
construction gives a DFA D such that L(N) = £(D) so L is regular.

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 18

Equivalence between DFA and NFA — e-NFA

NFA with e-Transitions

Another useful extension of automata that does not add more power is the
possibility to allow e-transitions, that is, transitions from one state to another

without reading any input symbol.

Example: The following e-NFA searches for the keyword web and ebay:

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 19

Equivalence between DFA and NFA — e-NFA

e-NFA Accepting Words of Length Divisible by 3 or by 5

Example: Let & = {1}.

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 20

Equivalence between DFA and NFA — e-NFA

e-NFA Accepting Decimal Numbers

Example: A NFA accepting number with an optional +/- symbol and an
optional decimal part can be the following:

()

+,- . 0,1,....,9 €

—qo || {a1} 0 0 o
q1 0 0 {QQ} 0

@ || 0 |{ast | {et |{aw}
q3 0 0 {qa} 0
*q4 0 0 {aa} 0

The uses of e-transitions represent the optional symbol +/- and the optional
decimal part.

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 21

Equivalence between DFA and NFA — e-NFA

NFA with e-Transitions

Definition: A NFA with e-transitions (e-NFA) is a 5-tuple (Q, %, 6, qo, F)
consisting of:

1. A finite set Q) of states
2. A finite set X of symbols (alphabet)
3. A transition function 6 : Q x (X U{e}) — Pow(Q)

(“partial” function that takes as argument a state and a symbol or the

e-transition, and returns a set of states)
4. A start state gy € Q

5. A set FF C Q of final or accepting states

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 22

Equivalence between DFA and NFA — e-NFA

e-Closures

Informally, the e-closure of a state g is the set of states we can reach by only
following paths labelled with e.

Example: For the automaton

< qs
b
€ de

the e-closure of qo is {qo, q1, 92,93, 44}

Informally, we recursively follow all transitions out of a state ¢ that are
labelled e.

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 23

Equivalence between DFA and NFA — e-NFA

e-Closures

Definition: Formally, we define the e-closure of a set of states with the
following 2 rules:

qge s q € ECLOSE(S) p € 6(q,€)
q € ECLOSE(S) p € ECLOSE(S)

Definition: We say that S is e-closed iff S = ECLOSE(S).

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 24

Equivalence between DFA and NFA — e-NFA

e-Closures: Remarks

The e-closure of a single state ¢ can be computed as ECLOSE({q}).

ECLOSE(0) = 0.

S is e-closed iff ¢ € S and p € §(q, €) implies p € S.

Intuitively, p € ECLOSE(S) iff there exists ¢ € S and a sequence of
e-transitions such that

@1 €0(q,€) g €(q,e) - pEIgn,€)

We can prove that ECLOSE(S) is the smallest subset of () containing S
which is e-closed.

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 25

Equivalence between DFA and NFA — e-NFA

Functional Representation of e-Closures

import List(union)

e_jump :: Q -> [Q]

e_jump Q0 = [Q1,Q4]
e_jump Q1 = [Q2]
e_jump Q2 = [Q3]
e_jump Q5 = [Q6]
e_jump _ = []

isSub :: [Q] -> [Q] -> Bool
isSub ps gs = and (map (\x -> elem x gs) ps)

closure :: [Q] -> [Q]
closure gs = let gs’ = gs >>= e_jump
in if isSub gs’ gs then gs

else closure (union gs gs’)

Lecture 5 March 29th 2011 — TMV026/DIT321 Slide 26

