
Finite Automata and
Formal Languages

TMV026/DIT321– LP4 2011

Ana Bove

Lecture 4

March 28th 2011

Overview of today’s lecture:

• More on Deterministic Finite Automata

• Non-deterministic Finite Automata

• Equivalence between DFA and NFA

DFA – NFA – Equivalence between DFA and NFA

Example: Product of Automata

Given an automaton that determines whether the number of p0’s is even or

odd

A B

p0

p0

p1

p1

and an automaton that determines whether the number of p1’s is even or odd

C D

p1

p1

p0

p0

how to combine them so we keep track of the parity of both p0 and p1?

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 1

DFA – NFA – Equivalence between DFA and NFA

Product Construction

Definition: Given two DFA D1 = (Q1,Σ, δ1, q1, F1) and

D2 = (Q2,Σ, δ2, q2, F2) with the same alphabet Σ, we can define the product

D = D1 × D2 as follows:

• Q = Q1 × Q2

• δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a))

• q0 = (q1, q2)

• F = F1 × F2

Proposition: δ̂((r1, r2), x) = (δ̂1(r1, x), δ̂2(r2, x)).

Proof: By induction on x.

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 2

DFA – NFA – Equivalence between DFA and NFA

Example: Product of Automata (cont.)

The product automaton that keeps track of the parity of both p0 and p1 is:

AC BC

AD BD

p0

p0

p0

p0

p1p1 p1p1

If after reading the word w we are in the state AD we know that w contains

an even number of p0’s and an odd number of p1’s.

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 3

DFA – NFA – Equivalence between DFA and NFA

Example: Product of Automata

Let us model a system where users have three states: idle, requesting and

using.

Let us assume we have 2 users.

Each user is represented by a simple automaton, for k = 1, 2:

rk

ik

uk

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 4

DFA – NFA – Equivalence between DFA and NFA

Example: Product of Automata (cont.)

The complete system is represented by the product of these 2 automata and it

has 3 * 3 = 9 states.

i1i2 r1i2 u1i2

i1r2 r1r2 u1r2

i1u2 r1u2 u1u2

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 5

DFA – NFA – Equivalence between DFA and NFA

Language Accepted by a Product Automaton

Proposition: Given two DFA D1 and D2, then

L(D1 × D2) = L(D1) ∩ L(D2).

Proof: δ̂(q0, x) = (δ̂1(q1, x), δ̂2(q2, x)) ∈ F iff δ̂1(q1, x) ∈ F1 and δ̂2(q2, x) ∈ F2,

that is, x ∈ L(D1) and x ∈ L(D2).

Example: Let Mk be an automaton that accepts multiples of k such that

L(Mk) = {an | k divides n}.

Then M6 × M9 is M18 (6 divides k and 9 divides k iff 18 divides k.)

Note: It can be quite difficult to directly build an automaton accepting the

intersection of two languages.

Example: Build a DFA for the language that contains the subword abb

twice and an even number of a’s.

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 6

DFA – NFA – Equivalence between DFA and NFA

Application: Automatic Theorem Proving

Assume Σ = {a, b}.

Let L be the set of x ∈ Σ∗ such that any a in x is followed by a b.

Let L′ be the set of x ∈ Σ∗ such that any b in x is followed by a a.

How to prove that L ∩ L′ = {ǫ}?

Intuitively:

• if x 6= ǫ in L we have that if x = . . . a . . . then it should actually be

x = . . . a . . . b . . .

• if x 6= ǫ in L′ we have that if x = . . . b . . . then it should actually be

x = . . . b . . . a . . .

Hence a non-empty word in L ∩ L′ should be infinite.

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 7

DFA – NFA – Equivalence between DFA and NFA

Application: Automatic Theorem Proving (cont.)

Formally we can automatically prove that L ∩ L′ = {ǫ} with an automaton.

Define a DFA D such that L(D) = L.

Define a DFA D′ such that L(D′) = L′.

Now we can compute D × D′ and check that

L ∩ L′ = L(D × D′) = {ǫ}

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 8

DFA – NFA – Equivalence between DFA and NFA

Application: Control System

Assume we have several machines working concurrently and that we need to

forbid certain sequences of actions.

Example:

If we have two machines MA and MB we

may want to make sure that MB cannot be

on when MA is on.

The alphabet will contain: onA, offA, onB

and offB.

qo q1

q2

onA

offA

onB offB

Another condition may be that onA should always appear before onB.

We can take the product of the two automata to express the two conditions as

one automaton representing a control system.

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 9

DFA – NFA – Equivalence between DFA and NFA

Variation of the Product

Definition: We define D1 ⊕ D2 similarly to D1 × D2 but with a different

notion of accepting state:

a state (r1, r2) is accepting iff r1 ∈ F1 or r2 ∈ F2

Proposition: Given two DFA D1 and D2, then

L(D1 ⊕ D2) = L(D1) ∪ L(D2).

Example: We define the automaton accepting multiples of 3 or of 5 by

taking M3 ⊕ M5.

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 10

DFA – NFA – Equivalence between DFA and NFA

Complement

Definition: Given the automaton D = (Q,Σ, δ, q0, F) we define the

complement D of D as the automaton D = (Q,Σ, δ, q0, Q − F).

Proposition: Given a DFA D we have that L(D) = Σ∗ − L(D).

Remark: We have that D1 ⊕ D2 = D1 × D2.

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 11

DFA – NFA – Equivalence between DFA and NFA

Regular Languages

Recall: Given an alphabet Σ, a language L is a subset of Σ∗, that is,

L ⊆ Σ∗.

Definition: A language L ⊆ Σ∗ is regular iff there exists a DFA D on the

alphabet Σ such that L = L(D).

Proposition: If L1 and L2 are regular languages then so are L1 ∩ L2,

L1 ∪ L2 and Σ∗ − L1.

Proof: . . .

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 12

DFA – NFA – Equivalence between DFA and NFA

Non-deterministic Finite Automata

A non-deterministic finite automata (NFA) can be in several states at once.

That is, given a state and the next symbol, the automata can “move” to many

states.

q0

q1

q2

5 kr

5 kr

choc

coffee

Intuitively, the vending machine can choose between different states.

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 13

DFA – NFA – Equivalence between DFA and NFA

When Does a NFA Accepts a Word?

Intuitively, the automaton accepts w iff there is at least one computation path

starting from the start state to an accepting state.

It is helpful to think that the automaton can guess the successful computation

if there is one.

q0 q1 q2

0, 1

0 1

NFA accepting words that end in 01

What are all possible computations for the string 10101?

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 14

DFA – NFA – Equivalence between DFA and NFA

NFA Accepting Words of Length Divisible by 3 or by 5

Let Σ = {1}.

1 1

1 1

1

1 1

1
1

1

The automaton guesses the right direction and then verifies that |w| is correct!

What would be the equivalent DFA?

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 15

DFA – NFA – Equivalence between DFA and NFA

NFA Accepting the word “then”

q0 q1 q2 q3 q4
t h e n

Observe that we do not need a dead state here.

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 16

DFA – NFA – Equivalence between DFA and NFA

Non-deterministic Finite Automata

Definition: A non-deterministic finite automaton (NFA) is a 5-tuple

(Q,Σ, δ, q0, F) consisting of:

1. A finite set Q of states

2. A finite set Σ of symbols (alphabet)

3. A transition function δ : Q × Σ → Pow(Q)

(“partial” function that takes as argument a state and a symbol and

returns a set of states)

4. A start state q0 ∈ Q

5. A set F ⊆ Q of final or accepting states

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 17

DFA – NFA – Equivalence between DFA and NFA

Example: NFA

Let us define an automaton accepting only the words such that the second

last symbol from the right is 1.

q0 q1 q2

0, 1

1 0, 1

0 1

→ q0 {q0} {q0, q1}

q1 {q2} {q2}

∗q2 ∅ ∅

The automaton guesses when the word finishes.

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 18

DFA – NFA – Equivalence between DFA and NFA

Extending the Transition Function to Strings

As before, we want to be able to determine δ̂(q, x).

We define this by recursion on x.

Definition:
δ̂ : Q × Σ∗ → Pow(Q)

δ̂(q, ǫ) = {q}

δ̂(q, ax) =
⋃

p∈δ(q,a) δ̂(p, x)

That is, if δ(q, a) = {p1, . . . , pn} then

δ̂(q, ax) = δ̂(p1, x) ∪ . . . ∪ δ̂(pn, x)

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 19

DFA – NFA – Equivalence between DFA and NFA

Language Accepted by a NFA

Definition: The language accepted by the NFA N = (Q,Σ, δ, q0, F) is the

set L(N) = {x ∈ Σ∗ | δ̂(q0, x) ∩ F 6= ∅}.

That is, a word x is accepted if δ̂(q0, x) contains at least one accepting state.

Note: Again, we could write a program that simulates a NFA and let it tell

us whether a certain string is accepted or not.

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 20

DFA – NFA – Equivalence between DFA and NFA

Functional Representation of a NFA

Consider the following functions:

-- map f [x1, ... ,xn] = [f x1, ... ,f xn]

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

-- [x1,...,xn] ++ [y1,...,ym] = [x1,...,xn,y1,...,ym]

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : xs ++ ys

-- concat [xs1,...,xsn] = xs1 ++ ... ++ xsn

concat :: [[a]] -> [a]

concat [] = []

concat (xs:xss) = xs ++ concat xss

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 21

DFA – NFA – Equivalence between DFA and NFA

Functional Representation of a NFA

data Q = ...

data S = ...

final :: Q -> Bool

...

delta :: S -> Q -> [Q] -- Observe change in the type

...

run :: [S] -> Q -> [Q] -- Idem

run [] q = [q]

run (a:xs) q = concat (map (run xs) (delta a q))

accepts :: [S] -> Bool

accepts xs = or (map final (run xs Q0))

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 22

DFA – NFA – Equivalence between DFA and NFA

Functional Representation of a NFA

A nicer way is to use “monadic” lists, which is a clever notation for programs

using lists.

-- return :: a -> [a]

return x = [x]

-- (>>=) :: [a] -> (a -> [b]) -> [b]

xs >>= f = concat (map f xs)

run :: [S] -> Q -> [Q]

run [] q = return q

run (a:xs) q = delta a q >>= run xs

Note: The actual types of return and (>>=) are more general than those

above...

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 23

DFA – NFA – Equivalence between DFA and NFA

Functional Representation of a NFA

An alternative notation for

run :: [S] -> Q -> [Q]

run [] q = return q

run (a:xs) q = delta a q >>= run xs

is

run :: [S] -> Q -> [Q]

run [] q = return q

run (a:xs) q = do p <- delta a q

run xs p

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 24

DFA – NFA – Equivalence between DFA and NFA

Transforming a NFA into a DFA

We have seen that for same examples it is much simpler to define a NFA than

a DFA.

For example, the language with words of length divisible by 3 or by 5.

However, any language accepted by a NFA is also accepted by a DFA.

In general, the number of states of the DFA is about the number of states in

the NFA although it often has many more transitions.

In the worst case, if the NFA has n states, a DFA accepting the same

language might have 2n states.

The algorithm transforming a NFA into an equivalent DFA is called the subset

construction.

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 25

DFA – NFA – Equivalence between DFA and NFA

The Subset Construction

Definition: Given a NFA N = (QN ,Σ, δN , q0, FN) we will construct a DFA

D = (QD,Σ, δD, {q0}, FD) such that L(D) = L(N) as follows:

• QD = Pow(QN)

• δD : QD × Σ → QD (that is, δD : Pow(QN) × Σ → Pow(QN))

δD(X, a) =
⋃

q∈X δN (q, a)

• FD = {S ⊆ QN | S ∩ FN 6= ∅}

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 26

DFA – NFA – Equivalence between DFA and NFA

Remarks: Subset Construction

• If |QN | = n then |QD| = 2n.

If some of the states in QD are not accessible from the start state of D we

can safely remove them (we will see how to do this later on in the course).

• If X = {q1, . . . , qn} then δD(X, a) = δN (q1, a) ∪ . . . ∪ δN (qn, a).

In addition,

δD(∅, a) = ∅ δD({q}, a) = δN (q, a) δD(X, a) =
⋃

q∈X

δD({q}, a)

and

δD(X1 ∪ X2, a) = δD(X1, a) ∪ δD(X2, a)

• Each accepting state (set) S in FD contains at least one accepting state of

N .

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 27

DFA – NFA – Equivalence between DFA and NFA

Example: Subset Construction

Let us convert this NFA into a DFA q0 q1 q2

0, 1

1 0, 1

The DFA we construct will start from {q0}. Only accessible states matter ...

From {q0}, if we get 0, we can only go to the state q0 so δD({q0}, 0) = {q0}.

From {q0}, if we get 1, we can go to q0 or to q1. We represent this by the

state {q0, q1} and the transaction δD({q0}, 1) = {q0, q1}.

From {q0, q1}, if we get 0, we can go to q0 or to q2. Then we get a new state

{q0, q2} and also δD({q0, q1}, 0) = {q0, q2}.

From {q0, q1}, if we get 1, we can go to q0 or q1 or q2. Then we get a new

state {q0, q1, q2} and also δD({q0, q1}, 1) = {q0, q1, q2}.

etc...

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 28

DFA – NFA – Equivalence between DFA and NFA

Example: Subset Construction (cont.)

The complete (and simplified) DFA from the previous NFA is:

q0

q0, q1

q0, q2

q0, q1, q2

0 1

0

1

1

0 0

1

The DFA remembers the last two bits seen and accepts a word if the

next-to-last bit is 1.

Lecture 4 March 28th 2011 – TMV026/DIT321 Slide 29

