
Finite Automata and
Formal Languages

TMV026/DIT321 – LP4 2011

Lecture 11

May 3rd 2011

Overview of today’s lecture:

• Abstract Syntax

• Ambiguity in Grammars

• Chomsky Hierarchy

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Parse Trees and Abstract Syntax

Concrete syntax describes the way documents are written while abstract

syntax describes the pure structure of a document.

The abstract syntax of some data is its structure described as a data type.

A parse tree also describe the structure of data.

Parse trees are similar to abstract syntax trees but they also contain features

such as parentheses which are syntactically significant but also implicit in the

structure of the abstract syntax tree.

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 1

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Example: Abstract Syntax of Simple Expressions

Given the grammar

E → 0 | 1 | E + E | if B then E else E

B → True | False | E < E | E == E

its abstract syntax can be defined by the following data types:

data Exp = Z | O | Plus Exp Exp | IfThenElse BExp Exp Exp

data BExp = T | F | Less Exp Exp | Eq Exp Exp

bexp = Less Z (Plus O (Plus Z Z))

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 2

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Ambiguous Grammars

Example: Consider the following grammar

E → E + E | E ∗ E | 0 | 1

The sentential form E + E ∗ E has the following 2 possible derivations

1. E ⇒ E + E ⇒ E + E ∗ E

2. E ⇒ E ∗ E ⇒ E + E ∗ E

Observe the difference of the corresponding parse tree for each derivation.

Intuitively, there are 2 possible meanings for the words.

What would be the result of 1 + 1 * 0 in each case?

1. 1 + (1 * 0) = 1

2. (1 + 1) * 0 = 0

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 3

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Ambiguous Grammars

Definition: A CFG grammar G = (V, T,R, S) is ambiguous if there is at

least a string w ∈ T ∗ for which we can find two (or more) parse trees, each

with root S and yield w.

If each string has at most one parse tree we say that the grammar is

unambiguous.

Note: The existence of different derivations for a certain string does not

necessarily mean the existence of different parse trees.

1. E ⇒ E + E ⇒ 1 + E ⇒ 1 + 0

2. E ⇒ E + E ⇒ E + 0 ⇒ 1 + 0

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 4

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Example: Ambiguous Grammar

The following (simplified part of a) grammar produces ambiguity in

programming languages with conditionals:

C → if b then C else C

C → if b then C

C → s

The expression “if b then if b then s else s” can be interpreted in the following

2 different ways:

1. if b then (if b then s else s)

2. if b then (if b then s) else s

How should the parser of this language understand the expression?

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 5

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Removing Ambiguity from Grammars

Unfortunately, there is no algorithm that can tell us if a grammar is

ambiguous.

In addition, there is no algorithm that can remove ambiguity in a grammar.

Some context-free languages have only ambiguous grammars. These languages

are called inherently ambiguous.

In these cases removal of ambiguity is impossible.

For the other cases, there are well-known techniques for eliminating ambiguity.

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 6

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Problems with the Grammar of Expressions (Slide 3)

Observe: There are 2 causes of ambiguity in the following grammar

E → E + E | E ∗ E | 0 | 1

1. The precedence of the operators was not taken into account.

∗ has stronger precedence than + but this is not reflected in the grammar.

2. A sequence of identical operator can be grouped either from the right or

from the left.

We will have 2 parse trees for E + E + E.

Even if the operator is associative in the language we define, we need to

pick one way of grouping the operator.

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 7

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Solution for the Grammar of Expressions (Slide 3)

To enforce precedence we introduce different variables representing those

expressions with the same “binding strength”. Namely:

• A factor is an expression that cannot be broken apart by any adjacent

operators: either 0 or 1, or a parenthesised expression.

• A term is an expression that cannot be broken by the + operator, that is

a sequence of one or more factors.

• An expression is a sequence of terms connected by +.

Terms and expressions will associate to the left.

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 8

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Unambiguous Grammar for Expressions

We have then the following grammar:

F → (E) | 0 | 1

T → F | T ∗ F

E → T | E + T

We have now either E ⇒∗ 1 + 1 ∗ 0 with the usual meaning or

E ⇒∗ (1 + 1) ∗ 0 if we want to change the precedence of the operators.

Even E ⇒∗ 1 + 0 + 1 has now only one derivation.

Note: It is not obvious that this is an unambiguous grammar!

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 9

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Leftmost/Rightmost Derivations and Ambiguity

We have seen that derivations might not be unique even if the grammar is

unambiguous.

However, in an unambiguous grammars both the leftmost and the rightmost

derivations will be unique.

Example: The grammar of slide 3 must be ambiguous since we have 2

leftmost derivations for 1 + 0 * 1:

1. E
lm
⇒ E + E

lm
⇒ 1 + E

lm
⇒ 1 + E ∗ E

lm
⇒ 1 + 0 ∗ E

lm
⇒ 1 + 0 ∗ 1

2. E
lm
⇒ E ∗ E

lm
⇒ E + E ∗ E

lm
⇒ 1 + E ∗ E

lm
⇒ 1 + 0 ∗ E

lm
⇒ 1 + 0 ∗ 1

Note: In general we have

Number of leftmost derivations = number of rightmost derivations =

number of parse trees.

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 10

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Leftmost/Rightmost Derivations and Ambiguity

Theorem: Let G = (V, T,R, S) be a CFG and let w ∈ T ∗. w has 2 distinct

parse trees iff w has 2 distinct leftmost (rightmost) derivations from S.

Proof: We sketch the proof dealing with leftmost derivations.

If) Start the tree with S. Examine each step in the derivation. Only the

leftmost variable will be replaced. This variable corresponds to the leftmost

node in the tree being constructed. The production used determines the

children of this subtree. 2 different derivations will produce a subtree with

different children.

Only-if) In Lecture 10 slides 26–27 we constructed a leftmost derivation form

a parse tree. Observe that if the trees have a node where different productions

are used then so will the leftmost derivations.

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 11

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Example: The Polish Notation

Consider the following grammar for arithmetical expressions:

E → ∗ E E | + E E | a | b

Theorem: This grammar is not ambiguous.

Proof: By induction on |w| we prove the following lemma:

Lemma: For any k, there is at most one leftmost derivation of Ek
lm

⇒∗ w.

It follows from this result that we have the following property:

Corollary: If ∗u1u2 = ∗v1v2 ∈ L(E) then u1 = v1 and u2 = v2. Similarly if

+u1u2 = +v1v2 ∈ L(E) then u1 = v1 and u2 = v2.

In addition, the result also says that if w ∈ L(E) then there is a unique parse

tree for w.

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 12

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Example: The Polish Notation

Proof: (Of the lemma) By induction on |w|. Let i be either a or b.

Basis case: If |w| = 1 then w = i. Then k must be 1 and E
lm
⇒ i.

Inductive step: If |w| = n + 1 with n > 0 then we have 3 cases:

1. w = ∗v: The derivation must be of the form EEk lm
⇒ ∗EEEk

lm

⇒∗ ∗v.

Then Ek+2
lm

⇒∗ v with |v| = n.

By IH we know this derivation is unique and so must be that of w.

2. w = +v: The derivation must be of the form EEk lm
⇒ +EEEk

lm

⇒∗ +v.

Similarly as above.

3. w = iv: The derivation must be of the form EEk lm
⇒ iEk

lm

⇒∗ iv.

Then Ek
lm

⇒∗ v and we conclude by IH as before.

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 13

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Example: Balanced Parentheses

The following grammar of parenthesis expressions is ambiguous

E → ǫ | EE | (E)

Let us consider the following grammar instead:

S → (S)S | ǫ

We have:

Lemma: L(S) = L(E).

Theorem: The grammar for S is not ambiguous.

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 14

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Example: Balanced Parentheses (Cont.)

Lemma: L(S)L(S) ⊆ L(S).

Proof: By induction on |w| we prove that if w ∈ L(S) then wL(S) ⊆ L(S).

Basis case: If |w| = 0 then ǫL(S) = L(S).

Inductive step: If |w| = n + 1 then w = (u)v with u, v ∈ L(S) and

|u|, |v| 6 n.

By IH we have that vL(S) ⊆ L(S).

Now

wL(S) = (u)vL(S) ⊆ (u)L(S) ⊆ L(S)

since u ∈ L(S) and (L(S))L(S) ⊆ L(S) because S → (S)S is a production.

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 15

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Example: Balanced Parentheses (Cont.)

Lemma: L(S) = L(E).

Proof: Let w ∈ L(S) and x ∈ L(E).

L(S) ⊆ L(E): By induction on |w|. Basis case is trivial.

Otherwise w = (u)v with u, v ∈ L(S) and |u|, |v| 6 n.

By IH u, v ∈ L(E). Using the productions of E we conclude that w ∈ L(E).

L(E) ⊆ L(S): By induction on the length of E ⇒∗ x.

If E ⇒ ǫ = x then x ∈ L(S).

If E ⇒ EE ⇒∗ yz = x then by IH y, z ∈ L(S) and by previous lemma then

x = yz ∈ L(S)L(S) ⊆ L(S).

If E ⇒ (E) ⇒∗ (y) = x then by IH y ∈ L(S) and x = (y)ǫ ∈ L(S).

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 16

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Example: Balanced Parentheses (Cont.)

Theorem: The grammar for S is not ambiguous.

Proof: Not trivial. Let w ∈ {(,)}∗.

One tries to show that there is at most one leftmost derivation S
lm

⇒∗ w.

If w = ǫ then it is trivial.

Otherwise, w =)v and there is no derivation or w = (v and we have that

S
lm
⇒ (S)S.

We now prove that

Lemma: Given u, for any k, there is at most one leftmost

derivation S〈)S〉k
lm

⇒∗ u.

Now we use this lemma with v and k = 1 to conclude that there is at most

one leftmost derivation S)S
lm

⇒∗ v.

Then, there is at most one leftmost derivation S
lm
⇒ (S)S

lm

⇒∗ (v = w.

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 17

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Example: Balanced Parentheses (Cont.)

Lemma: Given u, for any k, there is at most one leftmost derivation

S〈)S〉k
lm

⇒∗ u.

Proof: By induction on |u|.

If |u| = 0 then u = ǫ. Here k must be 0 and we have S〈)S〉0 = S ⇒ ǫ.

If |u| = n + 1 then u = (x or u =)x with |x| = n. By IH there is at most one

leftmost derivation S〈)S〉k
lm

⇒∗ x for any k. We have 2 cases:

• u = (x: Then S〈)S〉k
lm
⇒ (S)S〈)S〉k = (S〈)S〉k+1

lm

⇒∗ (x

for a derivation S〈)S〉k+1
lm

⇒∗ x which, if it exists, it is unique.

• u =)x: Then S〈)S〉k
lm
⇒ ǫ〈)S〉k =)S〈)S〉k−1

lm

⇒∗)x

for a derivation S〈)S〉k−1
lm

⇒∗ x which, if it exists, it is unique.

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 18

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Inherent Ambiguity

Definition: A context-free language L is said to be inherently ambiguous if

all its grammars are ambiguous.

Note: It is enough that 1 grammar for the L is unambiguous for L to be

unambiguous.

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 19

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Example: Inherent Ambiguity

The following language is inherently ambiguous:

L = {anbncmdm | n,m > 1} ∪ {anbmcmdn | n,m > 1}.

L is context-free and generated by the following grammar:

S → AB | C

A → aAb | ab

B → cBd | cd

C → aCd | aDd

D → bDc | bc

Strings of the form anbncndn for n > 0 have 2 different leftmost derivations.

See pages 214–215 in the book for the intuition of why L is inherent

ambiguous. The proof is complex!

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 20

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Chomsky Hierarchy

This hierarchy of grammars was described by Noam Chomsky in 1956:

Type 0: Unrestricted grammars.

They generate exactly all languages that can be recognised by a Turing

machine.

Type 1: Context-sensitive grammars.

Rules are of the form αAβ → αγβ. α and β may be empty, but γ must be

non-empty.

Type 2: Context-free grammars.

Are used to produce the syntax of most programming languages.

Type 3: Regular grammars.

Rules are of the form A → Ba, A → aB or A → ǫ.

We have that Type 3 ⊂ Type 2 ⊂ Type 1 ⊂ Type 0.

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 21

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Regular Languages and Context-Free Languages

Theorem: If L is a regular language then L is context-free.

Proof: If L is a regular language then L = L(D) for a DFA D.

Let D = (Q,Σ, δ, q0, F).

We define a CFG G = (Q,Σ,R, q0) where R is the set of productions:

• p → aq if δ(p, a) = q

• p → ǫ if p ∈ F

We must prove by induction on |w| that p ⇒∗ wq iff δ̂(p, w) = q and p ⇒∗ w

iff δ̂(p, w) ∈ F . Then, in particular w ∈ L(G) iff w ∈ L(D).

Note: A grammar where all rules are of the form A → aB or A → ǫ is called

left regular (and right regular if all rules are of the form A → Ba or A → ǫ).

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 22

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Regular Languages and Context-Free Languages

• If |w| = 0 then w = ǫ.

Given the rules in the grammar, p ⇒∗ q only when p = q and p ⇒∗ ǫ only

when p → ǫ.

We have δ̂(p, ǫ) = p by definition of δ̂ and p ∈ F by the way we defined the

grammar.

• Suppose |w| = n + 1, then w = av. δ̂(p, av) = δ̂(δ(p, a), v) with |v| = n.

By IH δ(p, a) ⇒∗ vq iff δ̂(δ(p, a), v) = q.

By construction we have a rule p → aδ(p, a).

Then p ⇒ aδ(p, a) ⇒∗ avq iff δ̂(p, av) = δ̂(δ(p, a), v) = q.

By IH δ(p, a) ⇒∗ v iff δ̂(δ(p, a), v) ∈ F .

Now p ⇒ aδ(p, a) ⇒∗ av iff δ̂(p, av) = δ̂(δ(p, a), v) ∈ F .

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 23

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Example

A DFA that generates the language over {0, 1} with an even number of 0’s is

q0 q1

0

0

1

1

The left regular grammar for this language is

q0 → ǫ | 0q1 | 1q0

q1 → 0q0 | 1q1

with q0 as the start variable.

Are the strings 01011 and 01010 in the language?

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 24

CFG – Abstract Syntax – Ambigous Grammars – Chomsky Hierarchy

Example

Consider the following

DFA over {0, 1}:

q0 q1 q2
0

1

0

1 0 1
The left regular grammar for this language is

q0 → 0q1 | 1q0 q1 → 0q1 | 1q2 q2 → ǫ | 0q1 | 1q2

with q0 as the start variable.

q0 ⇒ 1q0 ⇒ 10q1 ⇒ 100q1 ⇒ 1001q2 ⇒ 10010q1 ⇒ 100101q2 ⇒ 1001011q2 ⇒ 1001011

The right regular grammar for this language is

q0 → ǫ | q01 q1 → q00 | q10 | q20 q2 → q11 | q21

with q2 as the start variable.

q2 ⇒ q21 ⇒ q111 ⇒ q2011 ⇒ q11011 ⇒ q101011 ⇒ q0001011 ⇒ q01001011 ⇒ 1001011

Lecture 11 May 3rd 2011 – TMV026/DIT321 Slide 25

