Finite Automata and Formal Languages

 $TMV026/DIT321 - LP4 \ 2011$

Lecture 8 April 11th 2011

Overview of today's lecture:

- Closure Properties for Regular Languages
- Decision Properties of Regular Languages

Properties of Regular Languagues

Closure Properties for Regular Languages

Let \mathcal{L} and \mathcal{M} be RL. Then $\mathcal{L} = \mathcal{L}(R) = \mathcal{L}(D)$ and $\mathcal{M} = \mathcal{L}(S) = \mathcal{L}(F)$ for RE R and S, and DFA D and F.

We have seen that RL are closed under the following operations:

- union : $\mathcal{L} \cup \mathcal{M} = \mathcal{L}(R+S)$ or $\mathcal{L} \cup \mathcal{M} = \mathcal{L}(D \oplus F)$ (slide 10, lect. 4).
- complement : $\overline{\mathcal{L}} = \mathcal{L}(\overline{D})$ (slide 11, lect. 4).
- intersection : $\mathcal{L} \cap \mathcal{M} = \overline{\overline{\mathcal{L}} \cup \overline{\mathcal{M}}}$ or $\mathcal{L} \cap \mathcal{M} = \mathcal{L}(D \times F)$ (slide 6, lect. 4).
- difference : $\mathcal{L} \mathcal{M} = \mathcal{L} \cap \overline{\mathcal{M}}$
- concatenation : $\mathcal{LM} = \mathcal{L}(RS)$
- closure ("star" operation) : $\mathcal{L}^* = \mathcal{L}(R^*)$
- prefix : $\mathsf{Prefix}(\mathcal{L})$ See exercise 2 on DFA.

(Hint: in D, make final all states in a path from the start state to final state)

Closure under Prefix

Another way to prove that the language of prefixes of a RL is regular is as follows.

Define the following function over RE:

$$pre(\emptyset) = \emptyset$$

$$pre(\epsilon) = \epsilon$$

$$pre(a) = \epsilon + a$$

$$pre(R_1 + R_2) = pre(R_1) + pre(R_2)$$

$$pre(R_1R_2) = pre(R_1) + R_1 pre(R_2)$$

$$pre(R^*) = R^* pre(R)$$

and prove that $\mathcal{L}(pre(R)) = \mathsf{Prefix}(\mathcal{L}(R)).$

Then, if $\mathcal{L} = \mathcal{L}(R)$ for some RE R then $\mathsf{Prefix}(\mathcal{L}) = \mathsf{Prefix}(\mathcal{L}(R)) = \mathcal{L}(pre(R))$.

Lecture 8	April 11th 2011 – TMV026/DIT321	Slide 2
-----------	---------------------------------	---------

Properties of Regular Languagues

More Closure Properties for Regular Languages

We shall now see that RL are also closed under the following operations:

• reversal

Recall that intuitively, $\operatorname{rev}(a_1 \dots a_n) = a_n \dots a_1$. See formal definition in slide 8, lecture 3. Recall also that $\forall x, \operatorname{rev}(\operatorname{rev}(x)) = x$ (see slide 9, lecture 3). Given \mathcal{L} , let $\mathcal{L}^r = {\operatorname{rev}(x) \mid x \in \mathcal{L}}.$

- homomorphism (substitution of string by symbols)
- inverse homomorphism

Closure under Reversal

We define the following function over RE:

$$\emptyset^{\mathsf{r}} = \emptyset \qquad \epsilon^{\mathsf{r}} = \epsilon \qquad a^{\mathsf{r}} = a$$
$$(R_1 + R_2)^{\mathsf{r}} = R_1^{\mathsf{r}} + R_2^{\mathsf{r}}$$
$$(R_1 R_2)^{\mathsf{r}} = R_2^{\mathsf{r}} R_1^{\mathsf{r}}$$
$$(R^*)^{\mathsf{r}} = (R^{\mathsf{r}})^*$$

Theorem: If \mathcal{L} is regular so is \mathcal{L}^{r} .

Proof: (See theo. 4.11, pages 139–140). Let R be a RE such that $\mathcal{L} = \mathcal{L}(R)$. We need to prove by structural induction on R that $\mathcal{L}(R^r) = (\mathcal{L}(R))^r$. Hence $\mathcal{L}^r = (\mathcal{L}(R))^r = \mathcal{L}(R^r)$ and \mathcal{L}^r is regular.

Example: The reverse of the language defined by $(0 + 1)^*0$ can be defined by $0(0 + 1)^*$

Lecture 8	April 11th 2011 – TMV026/DIT321	Slide 4
	Properties of Regular Languagues	

Closure under Reversal

Another way to prove this result is by constructing a ϵ -NFA for \mathcal{L}^{r} .

Proof: Let $N = (Q, \Sigma, \delta_N, q_0.F)$ be a NFA such that $\mathcal{L} = \mathcal{L}(N)$. Define $E = (Q \cup \{q\}, \Sigma, \delta_E, q.\{q_0\})$ with $q \notin Q$ and δ_E such that

$$r \in \delta_E(s, a)$$
 iff $s \in \delta_N(r, a)$ for $r, s \in Q$
 $r \in \delta_E(q, \epsilon)$ iff $r \in F$

Recall: Functions between Languages

(from slide 16, lecture 3)

Definition: A function $f: \Sigma^* \to \Delta^*$ between 2 languages should be such that it satisfies

$$f(\epsilon) = \epsilon$$
$$f(xy) = f(x)f(y)$$

Intuitively, $f(a_1 \dots a_n) = f(a_1) \dots f(a_n)$. Notice that $f(a) \in \Delta^*$ if $a \in \Sigma$.

Definition: f is called *coding* iff f is *injective*.

Definition: $f(\mathcal{L}) = \{f(x) \mid x \in \mathcal{L}\}.$

Lecture 8	April 11th 2011 – TMV026/DIT321	Slide 6
	Properties of Regular Languagues	

Languages are Monoids

Definition: A *monoid* is an algebraic structure with an associative binary operation and an identity element.

Let Σ be an alphabet.

Then Σ^* is a monoid if we consider the concatenation as binary operation and ϵ as the identity element with respect to the binary operation.

Recall:

- Concatenation is associative: (xy)z = x(yz)
- $x\epsilon = \epsilon x = \epsilon$
- Concatenation is in general not commutative (but this is not required in the definition of a monoid)

Homomorphisms

Definition: A *homomorphism* is a structure-preserving map between 2 algebraic structures.

Note: A function $h: \Sigma^* \to \Delta^*$ satisfying

$$h(\epsilon) = \epsilon$$
$$h(xy) = h(x)h(y)$$

can be seen as a homomorphism between the monoids (languages) Σ^* and Δ^* .

Recall we have then that $h(a_1 \dots a_n) = h(a_1) \dots h(a_n)$.

Lecture 8

April 11th 2011 – TMV026/DIT321

Slide 8

Properties of Regular Languagues

Closure under Homomorphisms

Theorem: If \mathcal{L} is a RL over Σ and $h: \Sigma^* \to \Delta^*$ is an homomorphism on Σ then $h(\mathcal{L})$ is also regular.

Proof: We define the following function over RE:

$$f_h(\emptyset) = \emptyset \qquad f_h(\epsilon) = \epsilon \qquad f_h(a) = h(a)$$

$$f_h(R_1 + R_2) = f_h(R_1) + f_h(R_2)$$

$$f_h(R_1R_2) = f_h(R_1)f_h(R_2)$$

$$f_h(R^*) = (f_h(R))^*$$

We need to prove by structural induction on R that $\mathcal{L}(f_h(R)) = h(\mathcal{L}(R))$.

Now, if $\mathcal{L} = \mathcal{L}(R)$ then we have that $h(\mathcal{L})$ is regular since $h(\mathcal{L}) = h(\mathcal{L}(R)) = \mathcal{L}(f_h(R)).$

(See Theorem 4.14, pages 141–142.)

Lecture 8

Closure under Homomorphisms

Let $h: \Sigma^* \to \Delta^*$ be a homomorphism and \mathcal{L} a RL over Σ .

By the previous theorem and the definition of RL, we know that there exists a DFA D over Σ and a DFA F over Δ such that

$$\mathcal{L} = \mathcal{L}(D)$$
 and $h(\mathcal{L}) = \mathcal{L}(F)$

F can be constructed from the RE for \mathcal{L} (via an ϵ -NFA).

Often not obvious how to construct the DFA directly.

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 10

Properties of Regular Languagues

Inverse Homomorphisms

Definition: If $h: \Sigma^* \to \Delta^*$ is a homomorphism and \mathcal{L} is a language over Δ , $h^{-1}(\mathcal{L})$ (read *h inverse of* \mathcal{L}) is the set of strings *w* such that $h(w) \in \mathcal{L}$. In other words, $h^{-1}(\mathcal{L}) = \{ w \in \Sigma^* \mid h(w) \in \mathcal{L} \}.$

Note: h^{-1} does not necessarily correspond to a function!

Example: Imagine we have that h(a) = c, h(b) = c and $\mathcal{L} = \{c\}$. Then $h^{-1}(\mathcal{L}) = \{a, b\}$ but h^{-1} itself is not a function.

Closure under Inverse Homomorphisms

Theorem: Let $h: \Sigma^* \to \Delta^*$ be a homomorphism. If \mathcal{L} is a RL over Δ then $h^{-1}(\mathcal{L})$ is a RL over Σ .

Proof: Let $D = (Q, \Delta, \delta, q_0, F)$ be a DFA such that $\mathcal{L} = \mathcal{L}(D)$. We define the DFA $D' = (Q, \Sigma, \delta', q_0, F)$ over Σ such that

 $\delta'(q,a) = \hat{\delta}(q,h(a))$

By induction on |w| we prove that $\hat{\delta}'(q, w) = \hat{\delta}(q, h(w))$ (Recall that $\hat{\delta}(q, xy) = \hat{\delta}(\hat{\delta}(q, x), y)$.)

Then D' accepts w iff D accepts h(w) (since the set of accepting states is the same in both DFA).

Note: Since h^{-1} might not be a function it seems difficult to directly define the RE that corresponds to the *h* inverse of \mathcal{L} .

Lecture 8	April 11th 2011 – TMV026/DIT321	Slide 12

Properties of Regular Languagues

Example: \mathcal{L}' from Slide 19 Lecture 7

Example: We know $\mathcal{L} = \{b^m c^m \mid m \ge 0\}$ is not regular. Let us consider $\mathcal{L}' = a^+ \mathcal{L} \cup (b+c)^*$.

We will prove that \mathcal{L}' is not regular. Let us assume it is.

Then $a^+\mathcal{L} = \mathcal{L}' \cap \overline{(b+c)^*}$ must be regular.

Then, $\mathcal{L} = h(a^+\mathcal{L})$ must also be regular, where h is the following homomorphism: $h(a) = \epsilon, h(b) = b, h(c) = c.$

We arrive at a contradiction, hence \mathcal{L}' cannot be regular.

Decision Properties of Regular Languages

We want to be able to answer YES/NO to questions such as

- Is this language empty?
- Is string w in the language \mathcal{L} ?
- Are these 2 languages equivalent?

In general languages are infinite so we cannot do a "manual" checking.

Instead we should work with the finite description of the languages (DFA, NFA. $\epsilon\text{-}\mathrm{NFA},\,\mathrm{RE}).$

Which description is the most convenient depends on the property and on the language.

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 14

Properties of Regular Languagues

Testing Emptiness of Regular Languages

Given a FA for a language, testing whether the language is empty or not amounts to checking if there is a path from the start state to a final state.

Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Recall the notion of accessible states from slide 31 in lecture 3:

Definition: The set $Acc = \{\hat{\delta}(q_0, x) \mid x \in \Sigma^*\}$ is the set of *accessible* states (from the state q_0).

Proposition: Given D as above, then $D' = (Q \cap Acc, \Sigma, \delta', q_0, F \cap Acc)$, where δ' is the function δ restricted to the states in $Q \cap Acc$, is a DFA such that $\mathcal{L}(D) = \mathcal{L}(D')$.

In particular, $\mathcal{L}(D) = \emptyset$ if $F \cap \mathsf{Acc} = \emptyset$. (Actually, $\mathcal{L}(D) = \emptyset$ iff $F \cap \mathsf{Acc} = \emptyset$ since if $\hat{\delta}(q_0, x) \in F$ then $\hat{\delta}(q_0, x) \in F \cap \mathsf{Acc.}$)

Testing Emptiness of Regular Languages

A recursive algorithm to test whether a state is accessible/reachable is as follows:

Basis case: The start state q_0 is reachable from q_0 .

Recursive step: If q is reachable from q_0 and there is an arc from q to p (with any label, including ϵ) then p is also reachable from q_0 .

(This algorithm is an instance of *graph-reachability*.)

If the set of reachable states contains at least one final state then the RL is NOT empty.

Lecture 8

April 11th 2011 – TMV026/DIT321

Slide 16

Properties of Regular Languagues

Functional Representation of Testing Emptiness for FA

```
import List(union)
data Q = ... deriving Eq
data S = ...
final :: Q -> Bool
delta :: Q -> S -> Q
isIn :: [Q] -> Q -> Bool
isIn = flip elem
isSuperSet :: [Q] -> [Q] -> Bool
isSuperSet as bs = and (map (isIn as) bs)
```

Functional Representation of Testing Emptiness for FA

The first argument in the functions below is a list with *all* symbols in the S.

```
closure :: [S] \rightarrow (Q \rightarrow S \rightarrow Q) \rightarrow [Q] \rightarrow [Q]

closure cs delta qs =

let qs' = qs >>= (\q -> map (delta q) cs)

in if isSuperSet qs qs' then qs

else closure cs delta (union qs qs')

accessible :: [S] \rightarrow (Q \rightarrow S \rightarrow Q) \rightarrow Q \rightarrow [Q]

accessible cs delta q = closure cs delta [q]

notEmpty :: [S] \rightarrow (Q \rightarrow S \rightarrow Q) \rightarrow Q \rightarrow Bool

notEmpty cs delta q0 = or (map final (accessible cs delta q0))

Lecture 8

April 11th 2011 - TMV026/DIT321

Slide 18
```

Properties of Regular Languagues

Functional Representation of Testing Emptiness for FA

The closure function can be optimised by not computing the closure of the same state twice.

Testing Emptiness of Regular Languages (Again)

Given a RE for the language we can instead perform the following test:

Basis case: \emptyset denotes the empty language while ϵ and a (any symbol from the alphabet) do not.

Inductive step: Let R be our RE.

- If $R = R_1 + R_2$ then $\mathcal{L}(R)$ is empty iff both $\mathcal{L}(R_1)$ and $\mathcal{L}(R_2)$ are empty.
- If $R = R_1 R_2$ then $\mathcal{L}(R)$ is empty iff either $\mathcal{L}(R_1)$ or $\mathcal{L}(R_2)$ is empty.
- If $R = R_1^*$ is never empty since it always contains the word ϵ .

Lecture 8

April 11th 2011 – TMV026/DIT321

Slide 20

Properties of Regular Languagues

Functional Representation of Testing Emptiness for RE

Testing Membership in Regular Languages

Given a RL \mathcal{L} and a word w over the alphabet of \mathcal{L} , is $w \in \mathcal{L}$?

When \mathcal{L} is given by a FA we can simply run the FA with the input w and see if the word is accepted by the FA.

We have seen algorithms that simulate the running of a FA (see slides 27–28 in lecture 3 for DFA, slides 22–24 in lecture 4 for NFA, and slides 26 in lecture 5 and 4–5 in lecture 6 for ϵ -NFA).

Using *derivatives* (see exercises 4.2.3 and 4.2.5) there is a nice algorithm checking membership on RE.

Let $\mathcal{L} = \mathcal{L}(R)$ and $w = a_1 \dots a_n$. Let $a \setminus R = D_a R = \{x \mid ax \in \mathcal{L}\}$ (in the book $\frac{d\mathcal{L}}{da}$). $D_w R = D_{a_n}(\dots(D_{a_1}R)\dots)$. It can then be shown that $w \in \mathcal{L}$ iff $e \in D$. R

It can then be shown that $w \in \mathcal{L}$ iff $\epsilon \in D_w R$.

Lecture 8

April 11th 2011 – TMV026/DIT321

Slide 22

Properties of Regular Languagues

Other Testing Algorithms on Regular Expressions

Tests if a RE contains ϵ .

```
hasEpsilon :: RExp a -> Bool
hasEpsilon Epsilon = True
hasEpsilon (Star _) = True
hasEpsilon (Plus e1 e2) = hasEpsilon e1 || hasEpsilon e2
hasEpsilon (Concat e1 e2) = hasEpsilon e1 && hasEpsilon e2
hasEpsilon _ = False
```

Other Testing Algorithms on Regular Expressions

Tests if $\mathcal{L}(R) \subseteq \{\epsilon\}$.

Lecture 8

April 11th 2011 – TMV026/DIT321

Slide 24

Properties of Regular Languagues

Other Testing Algorithms on Regular Expressions

Test if a regular expression denotes an infinite language.