
Finite Automata and
Formal Languages

TMV026/DIT321 – LP4 2011

Lecture 8

April 11th 2011

Overview of today’s lecture:

• Closure Properties for Regular Languages

• Decision Properties of Regular Languages

Properties of Regular Languagues

Closure Properties for Regular Languages

Let L and M be RL. Then L = L(R) = L(D) and M = L(S) = L(F) for RE

R and S, and DFA D and F .

We have seen that RL are closed under the following operations:

• union : L ∪M = L(R + S) or L ∪M = L(D ⊕ F) (slide 10, lect. 4).

• complement : L = L(D) (slide 11, lect. 4).

• intersection : L ∩M = L ∪M or L ∩M = L(D × F) (slide 6, lect. 4).

• difference : L −M = L ∩M

• concatenation : LM = L(RS)

• closure (“star” operation) : L∗ = L(R∗)

• prefix : Prefix(L) See exercise 2 on DFA.

(Hint: in D, make final all states in a path from the start state to final

state)

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 1

Properties of Regular Languagues

Closure under Prefix

Another way to prove that the language of prefixes of a RL is regular is as

follows.

Define the following function over RE:

pre(∅) = ∅

pre(ǫ) = ǫ

pre(a) = ǫ + a

pre(R1 + R2) = pre(R1) + pre(R2)

pre(R1R2) = pre(R1) + R1pre(R2)

pre(R∗) = R∗pre(R)

and prove that L(pre(R)) = Prefix(L(R)).

Then, if L = L(R) for some RE R then Prefix(L) = Prefix(L(R)) = L(pre(R)).

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 2

Properties of Regular Languagues

More Closure Properties for Regular Languages

We shall now see that RL are also closed under the following operations:

• reversal

Recall that intuitively, rev(a1 . . . an) = an . . . a1.

See formal definition in slide 8, lecture 3.

Recall also that ∀x, rev(rev(x)) = x (see slide 9, lecture 3).

Given L, let Lr = {rev(x) | x ∈ L}.

• homomorphism (substitution of string by symbols)

• inverse homomorphism

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 3

Properties of Regular Languagues

Closure under Reversal

We define the following function over RE:

∅r = ∅ ǫr = ǫ ar = a

(R1 + R2)
r = Rr

1 + Rr
2

(R1R2)
r = Rr

2R
r
1

(R∗)r = (Rr)∗

Theorem: If L is regular so is Lr.

Proof: (See theo. 4.11, pages 139–140). Let R be a RE such that L = L(R).

We need to prove by structural induction on R that L(Rr) = (L(R))r.

Hence Lr = (L(R))r = L(Rr) and Lr is regular.

Example: The reverse of the language defined by (0 + 1)∗0 can be defined

by 0(0 + 1)∗

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 4

Properties of Regular Languagues

Closure under Reversal

Another way to prove this result is by constructing a ǫ-NFA for Lr.

Proof: Let N = (Q,Σ, δN , q0.F) be a NFA such that L = L(N).

Define E = (Q ∪ {q}, Σ, δE , q.{q0}) with q /∈ Q and δE such that

r ∈ δE(s, a) iff s ∈ δN (r, a) for r, s ∈ Q

r ∈ δE(q, ǫ) iff r ∈ F

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 5

Properties of Regular Languagues

Recall: Functions between Languages

(from slide 16, lecture 3)

Definition: A function f : Σ∗ → ∆∗ between 2 languages should be such

that it satisfies

f(ǫ) = ǫ

f(xy) = f(x)f(y)

Intuitively, f(a1 . . . an) = f(a1) . . . f(an).

Notice that f(a) ∈ ∆∗ if a ∈ Σ.

Definition: f is called coding iff f is injective.

Definition: f(L) = {f(x) | x ∈ L}.

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 6

Properties of Regular Languagues

Languages are Monoids

Definition: A monoid is an algebraic structure with an associative binary

operation and an identity element.

Let Σ be an alphabet.

Then Σ∗ is a monoid if we consider the concatenation as binary operation and

ǫ as the identity element with respect to the binary operation.

Recall:

• Concatenation is associative: (xy)z = x(yz)

• xǫ = ǫx = ǫ

• Concatenation is in general not commutative (but this is not required in

the definition of a monoid)

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 7

Properties of Regular Languagues

Homomorphisms

Definition: A homomorphism is a structure-preserving map between 2

algebraic structures.

Note: A function h : Σ∗ → ∆∗ satisfying

h(ǫ) = ǫ

h(xy) = h(x)h(y)

can be seen as a homomorphism between the monoids (languages) Σ∗ and ∆∗.

Recall we have then that h(a1 . . . an) = h(a1) . . . h(an).

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 8

Properties of Regular Languagues

Closure under Homomorphisms

Theorem: If L is a RL over Σ and h : Σ∗ → ∆∗ is an homomorphism on

Σ then h(L) is also regular.

Proof: We define the following function over RE:

fh(∅) = ∅ fh(ǫ) = ǫ fh(a) = h(a)

fh(R1 + R2) = fh(R1) + fh(R2)

fh(R1R2) = fh(R1)fh(R2)

fh(R∗) = (fh(R))∗

We need to prove by structural induction on R that L(fh(R)) = h(L(R)).

Now, if L = L(R) then we have that h(L) is regular since

h(L) = h(L(R)) = L(fh(R)).

(See Theorem 4.14, pages 141–142.)

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 9

Properties of Regular Languagues

Closure under Homomorphisms

Let h : Σ∗ → ∆∗ be a homomorphism and L a RL over Σ.

By the previous theorem and the definition of RL, we know that there exists a

DFA D over Σ and a DFA F over ∆ such that

L = L(D) and h(L) = L(F)

F can be constructed from the RE for L (via an ǫ-NFA).

Often not obvious how to construct the DFA directly.

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 10

Properties of Regular Languagues

Inverse Homomorphisms

Definition: If h : Σ∗ → ∆∗ is a homomorphism and L is a language over

∆, h−1(L) (read h inverse of L) is the set of strings w such that h(w) ∈ L.

In other words, h−1(L) = {w ∈ Σ∗ | h(w) ∈ L}.

Note: h−1 does not necessarily correspond to a function!

Example: Imagine we have that h(a) = c, h(b) = c and L = {c}.

Then h−1(L) = {a, b} but h−1 itself is not a function.

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 11

Properties of Regular Languagues

Closure under Inverse Homomorphisms

Theorem: Let h : Σ∗ → ∆∗ be a homomorphism. If L is a RL over ∆ then

h−1(L) is a RL over Σ.

Proof: Let D = (Q,∆, δ, q0, F) be a DFA such that L = L(D).

We define the DFA D′ = (Q,Σ, δ′, q0, F) over Σ such that

δ′(q, a) = δ̂(q, h(a))

By induction on |w| we prove that δ̂′(q, w) = δ̂(q, h(w))

(Recall that δ̂(q, xy) = δ̂(δ̂(q, x), y).)

Then D′ accepts w iff D accepts h(w) (since the set of accepting states is the

same in both DFA).

Note: Since h−1 might not be a function it seems difficult to directly define

the RE that corresponds to the h inverse of L.

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 12

Properties of Regular Languagues

Example: L′ from Slide 19 Lecture 7

Example: We know L = {bmcm | m > 0} is not regular.

Let us consider L′ = a+L ∪ (b + c)∗.

We will prove that L′ is not regular. Let us assume it is.

Then a+L = L′ ∩ (b + c)∗ must be regular.

Then, L = h(a+L) must also be regular, where h is the following

homomorphism: h(a) = ǫ, h(b) = b, h(c) = c.

We arrive at a contradiction, hence L′ cannot be regular.

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 13

Properties of Regular Languagues

Decision Properties of Regular Languages

We want to be able to answer YES/NO to questions such as

• Is this language empty?

• Is string w in the language L?

• Are these 2 languages equivalent?

In general languages are infinite so we cannot do a “manual” checking.

Instead we should work with the finite description of the languages (DFA,

NFA. ǫ-NFA, RE).

Which description is the most convenient depends on the property and on the

language.

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 14

Properties of Regular Languagues

Testing Emptiness of Regular Languages

Given a FA for a language, testing whether the language is empty or not

amounts to checking if there is a path from the start state to a final state.

Let D = (Q,Σ, δ, q0, F) be a DFA.

Recall the notion of accessible states from slide 31 in lecture 3:

Definition: The set Acc = {δ̂(q0, x) | x ∈ Σ∗} is the set of accessible states

(from the state q0).

Proposition: Given D as above, then D′ = (Q ∩ Acc, Σ, δ′, q0, F ∩ Acc),

where δ′ is the function δ restricted to the states in Q ∩ Acc, is a DFA such

that L(D) = L(D′).

In particular, L(D) = ∅ if F ∩ Acc = ∅.

(Actually, L(D) = ∅ iff F ∩ Acc = ∅ since if δ̂(q0, x) ∈ F then δ̂(q0, x) ∈ F ∩ Acc.)

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 15

Properties of Regular Languagues

Testing Emptiness of Regular Languages

A recursive algorithm to test whether a state is accessible/reachable is as

follows:

Basis case: The start state q0 is reachable from q0.

Recursive step: If q is reachable from q0 and there is an arc from q to p

(with any label, including ǫ) then p is also reachable from q0.

(This algorithm is an instance of graph-reachability.)

If the set of reachable states contains at least one final state then the RL is

NOT empty.

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 16

Properties of Regular Languagues

Functional Representation of Testing Emptiness for FA

import List(union)

data Q = ... deriving Eq

data S = ...

final :: Q -> Bool

delta :: Q -> S -> Q

isIn :: [Q] -> Q -> Bool

isIn = flip elem

isSuperSet :: [Q] -> [Q] -> Bool

isSuperSet as bs = and (map (isIn as) bs)

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 17

Properties of Regular Languagues

Functional Representation of Testing Emptiness for FA

The first argument in the functions below is a list with all symbols in the S.

closure :: [S] -> (Q -> S -> Q) -> [Q] -> [Q]

closure cs delta qs =

let qs’ = qs >>= (\q -> map (delta q) cs)

in if isSuperSet qs qs’ then qs

else closure cs delta (union qs qs’)

accessible :: [S] -> (Q -> S -> Q) -> Q -> [Q]

accessible cs delta q = closure cs delta [q]

notEmpty :: [S] -> (Q -> S -> Q) -> Q -> Bool

notEmpty cs delta q0 = or (map final (accessible cs delta q0))

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 18

Properties of Regular Languagues

Functional Representation of Testing Emptiness for FA

The closure function can be optimised by not computing the closure of the

same state twice.

closure :: [S] -> (Q -> S -> Q) -> [Q] -> [Q]

closure cs delta qs = clos [] qs

where clos :: [Q] -> [Q] -> [Q]

clos qs1 qs2 =

if qs2 == [] then qs1

else let qs = union qs1 qs2

qs’ = qs2 >>= (\q -> map (delta q) cs)

qs’’ = filter (\q -> not (isIn qs q)) qs’

in clos qs qs’’

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 19

Properties of Regular Languagues

Testing Emptiness of Regular Languages (Again)

Given a RE for the language we can instead perform the following test:

Basis case: ∅ denotes the empty language while ǫ and a (any symbol from

the alphabet) do not.

Inductive step: Let R be our RE.

• If R = R1 + R2 then L(R) is empty iff both L(R1) and L(R2) are

empty.

• If R = R1R2 then L(R) is empty iff either L(R1) or L(R2) is empty.

• If R = R∗

1 is never empty since it always contains the word ǫ.

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 20

Properties of Regular Languagues

Functional Representation of Testing Emptiness for RE

data RExp a = Empty | Epsilon | Atom a |

Plus (RExp a) (RExp a) | Concat (RExp a) (RExp a) |

Star (RExp a)

isEmpty :: RExp a -> Bool

isEmpty Empty = True

isEmpty (Plus e1 e2) = isEmpty e1 && isEmpty e2

isEmpty (Concat e1 e2) = isEmpty e1 || isEmpty e2

isEmpty _ = False

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 21

Properties of Regular Languagues

Testing Membership in Regular Languages

Given a RL L and a word w over the alphabet of L, is w ∈ L ?

When L is given by a FA we can simply run the FA with the input w and see

if the word is accepted by the FA.

We have seen algorithms that simulate the running of a FA (see slides 27–28

in lecture 3 for DFA, slides 22–24 in lecture 4 for NFA, and slides 26 in lecture

5 and 4–5 in lecture 6 for ǫ-NFA).

Using derivatives (see exercises 4.2.3 and 4.2.5) there is a nice algorithm

checking membership on RE.

Let L = L(R) and w = a1 . . . an.

Let a\R = DaR = {x | ax ∈ L} (in the book
dL

da
).

DwR = Dan
(. . . (Da1

R) . . .).

It can then be shown that w ∈ L iff ǫ ∈ DwR.

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 22

Properties of Regular Languagues

Other Testing Algorithms on Regular Expressions

Tests if a RE contains ǫ.

hasEpsilon :: RExp a -> Bool

hasEpsilon Epsilon = True

hasEpsilon (Star _) = True

hasEpsilon (Plus e1 e2) = hasEpsilon e1 || hasEpsilon e2

hasEpsilon (Concat e1 e2) = hasEpsilon e1 && hasEpsilon e2

hasEpsilon _ = False

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 23

Properties of Regular Languagues

Other Testing Algorithms on Regular Expressions

Tests if L(R) ⊆ {ǫ}.

atMostEps :: RExp a -> Bool

atMostEps Empty = True

atMostEps Epsilon = True

atMostEps (Atom _) = False

atMostEps (Plus e1 e2) = atMostEps e1 && atMostEps e2

atMostEps (Concat e1 e2) = isEmpty e1 || isEmpty e2 ||

(atMostEps e1 && atMostEps e2)

atMostEps (Star e) = atMostEps e

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 24

Properties of Regular Languagues

Other Testing Algorithms on Regular Expressions

Test if a regular expression denotes an infinite language.

infinite :: RExp a -> Bool

infinite (Star e) = not (atMostEps e)

infinite (Plus e1 e2) = infinite e1 || infinite e2

infinite (Concat e1 e2) = (infinite e1 && notIsEmpty e2) ||

(notIsEmpty e1 && infinite e2)

where notIsEmpty e = not (isEmpty e)

infinite _ = False

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 25

