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Overview of today’s lecture:

• Closure Properties for Regular Languages

• Decision Properties of Regular Languages

Properties of Regular Languagues

Closure Properties for Regular Languages

Let L and M be RL. Then L = L(R) = L(D) and M = L(S) = L(F ) for RE

R and S, and DFA D and F .

We have seen that RL are closed under the following operations:

• union : L ∪M = L(R + S) or L ∪M = L(D ⊕ F ) (slide 10, lect. 4).

• complement : L = L(D) (slide 11, lect. 4).

• intersection : L ∩M = L ∪M or L ∩M = L(D × F ) (slide 6, lect. 4).

• difference : L −M = L ∩M

• concatenation : LM = L(RS)

• closure (“star” operation) : L∗ = L(R∗)

• prefix : Prefix(L) See exercise 2 on DFA.

(Hint: in D, make final all states in a path from the start state to final

state)

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 1



Properties of Regular Languagues

Closure under Prefix

Another way to prove that the language of prefixes of a RL is regular is as

follows.

Define the following function over RE:

pre(∅) = ∅

pre(ǫ) = ǫ

pre(a) = ǫ + a

pre(R1 + R2) = pre(R1) + pre(R2)

pre(R1R2) = pre(R1) + R1pre(R2)

pre(R∗) = R∗pre(R)

and prove that L(pre(R)) = Prefix(L(R)).

Then, if L = L(R) for some RE R then Prefix(L) = Prefix(L(R)) = L(pre(R)).

Lecture 8 April 11th 2011 – TMV026/DIT321 Slide 2

Properties of Regular Languagues

More Closure Properties for Regular Languages

We shall now see that RL are also closed under the following operations:

• reversal

Recall that intuitively, rev(a1 . . . an) = an . . . a1.

See formal definition in slide 8, lecture 3.

Recall also that ∀x, rev(rev(x)) = x (see slide 9, lecture 3).

Given L, let Lr = {rev(x) | x ∈ L}.

• homomorphism (substitution of string by symbols)

• inverse homomorphism
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Closure under Reversal

We define the following function over RE:

∅r = ∅ ǫr = ǫ ar = a

(R1 + R2)
r = Rr

1 + Rr
2

(R1R2)
r = Rr

2R
r
1

(R∗)r = (Rr)∗

Theorem: If L is regular so is Lr.

Proof: (See theo. 4.11, pages 139–140). Let R be a RE such that L = L(R).

We need to prove by structural induction on R that L(Rr) = (L(R))r.

Hence Lr = (L(R))r = L(Rr) and Lr is regular.

Example: The reverse of the language defined by (0 + 1)∗0 can be defined

by 0(0 + 1)∗
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Closure under Reversal

Another way to prove this result is by constructing a ǫ-NFA for Lr.

Proof: Let N = (Q,Σ, δN , q0.F ) be a NFA such that L = L(N).

Define E = (Q ∪ {q}, Σ, δE , q.{q0}) with q /∈ Q and δE such that

r ∈ δE(s, a) iff s ∈ δN (r, a) for r, s ∈ Q

r ∈ δE(q, ǫ) iff r ∈ F
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Recall: Functions between Languages

(from slide 16, lecture 3)

Definition: A function f : Σ∗ → ∆∗ between 2 languages should be such

that it satisfies

f(ǫ) = ǫ

f(xy) = f(x)f(y)

Intuitively, f(a1 . . . an) = f(a1) . . . f(an).

Notice that f(a) ∈ ∆∗ if a ∈ Σ.

Definition: f is called coding iff f is injective.

Definition: f(L) = {f(x) | x ∈ L}.
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Languages are Monoids

Definition: A monoid is an algebraic structure with an associative binary

operation and an identity element.

Let Σ be an alphabet.

Then Σ∗ is a monoid if we consider the concatenation as binary operation and

ǫ as the identity element with respect to the binary operation.

Recall:

• Concatenation is associative: (xy)z = x(yz)

• xǫ = ǫx = ǫ

• Concatenation is in general not commutative (but this is not required in

the definition of a monoid)
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Homomorphisms

Definition: A homomorphism is a structure-preserving map between 2

algebraic structures.

Note: A function h : Σ∗ → ∆∗ satisfying

h(ǫ) = ǫ

h(xy) = h(x)h(y)

can be seen as a homomorphism between the monoids (languages) Σ∗ and ∆∗.

Recall we have then that h(a1 . . . an) = h(a1) . . . h(an).
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Closure under Homomorphisms

Theorem: If L is a RL over Σ and h : Σ∗ → ∆∗ is an homomorphism on

Σ then h(L) is also regular.

Proof: We define the following function over RE:

fh(∅) = ∅ fh(ǫ) = ǫ fh(a) = h(a)

fh(R1 + R2) = fh(R1) + fh(R2)

fh(R1R2) = fh(R1)fh(R2)

fh(R∗) = (fh(R))∗

We need to prove by structural induction on R that L(fh(R)) = h(L(R)).

Now, if L = L(R) then we have that h(L) is regular since

h(L) = h(L(R)) = L(fh(R)).

(See Theorem 4.14, pages 141–142.)
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Closure under Homomorphisms

Let h : Σ∗ → ∆∗ be a homomorphism and L a RL over Σ.

By the previous theorem and the definition of RL, we know that there exists a

DFA D over Σ and a DFA F over ∆ such that

L = L(D) and h(L) = L(F )

F can be constructed from the RE for L (via an ǫ-NFA).

Often not obvious how to construct the DFA directly.
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Inverse Homomorphisms

Definition: If h : Σ∗ → ∆∗ is a homomorphism and L is a language over

∆, h−1(L) (read h inverse of L) is the set of strings w such that h(w) ∈ L.

In other words, h−1(L) = {w ∈ Σ∗ | h(w) ∈ L}.

Note: h−1 does not necessarily correspond to a function!

Example: Imagine we have that h(a) = c, h(b) = c and L = {c}.

Then h−1(L) = {a, b} but h−1 itself is not a function.
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Closure under Inverse Homomorphisms

Theorem: Let h : Σ∗ → ∆∗ be a homomorphism. If L is a RL over ∆ then

h−1(L) is a RL over Σ.

Proof: Let D = (Q,∆, δ, q0, F ) be a DFA such that L = L(D).

We define the DFA D′ = (Q,Σ, δ′, q0, F ) over Σ such that

δ′(q, a) = δ̂(q, h(a))

By induction on |w| we prove that δ̂′(q, w) = δ̂(q, h(w))

(Recall that δ̂(q, xy) = δ̂(δ̂(q, x), y).)

Then D′ accepts w iff D accepts h(w) (since the set of accepting states is the

same in both DFA).

Note: Since h−1 might not be a function it seems difficult to directly define

the RE that corresponds to the h inverse of L.
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Example: L′ from Slide 19 Lecture 7

Example: We know L = {bmcm | m > 0} is not regular.

Let us consider L′ = a+L ∪ (b + c)∗.

We will prove that L′ is not regular. Let us assume it is.

Then a+L = L′ ∩ (b + c)∗ must be regular.

Then, L = h(a+L) must also be regular, where h is the following

homomorphism: h(a) = ǫ, h(b) = b, h(c) = c.

We arrive at a contradiction, hence L′ cannot be regular.
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Decision Properties of Regular Languages

We want to be able to answer YES/NO to questions such as

• Is this language empty?

• Is string w in the language L?

• Are these 2 languages equivalent?

In general languages are infinite so we cannot do a “manual” checking.

Instead we should work with the finite description of the languages (DFA,

NFA. ǫ-NFA, RE).

Which description is the most convenient depends on the property and on the

language.
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Testing Emptiness of Regular Languages

Given a FA for a language, testing whether the language is empty or not

amounts to checking if there is a path from the start state to a final state.

Let D = (Q,Σ, δ, q0, F ) be a DFA.

Recall the notion of accessible states from slide 31 in lecture 3:

Definition: The set Acc = {δ̂(q0, x) | x ∈ Σ∗} is the set of accessible states

(from the state q0).

Proposition: Given D as above, then D′ = (Q ∩ Acc, Σ, δ′, q0, F ∩ Acc),

where δ′ is the function δ restricted to the states in Q ∩ Acc, is a DFA such

that L(D) = L(D′).

In particular, L(D) = ∅ if F ∩ Acc = ∅.

(Actually, L(D) = ∅ iff F ∩ Acc = ∅ since if δ̂(q0, x) ∈ F then δ̂(q0, x) ∈ F ∩ Acc.)
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Testing Emptiness of Regular Languages

A recursive algorithm to test whether a state is accessible/reachable is as

follows:

Basis case: The start state q0 is reachable from q0.

Recursive step: If q is reachable from q0 and there is an arc from q to p

(with any label, including ǫ) then p is also reachable from q0.

(This algorithm is an instance of graph-reachability.)

If the set of reachable states contains at least one final state then the RL is

NOT empty.
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Functional Representation of Testing Emptiness for FA

import List(union)

data Q = ... deriving Eq

data S = ...

final :: Q -> Bool

delta :: Q -> S -> Q

isIn :: [Q] -> Q -> Bool

isIn = flip elem

isSuperSet :: [Q] -> [Q] -> Bool

isSuperSet as bs = and (map (isIn as) bs)
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Functional Representation of Testing Emptiness for FA

The first argument in the functions below is a list with all symbols in the S.

closure :: [S] -> (Q -> S -> Q) -> [Q] -> [Q]

closure cs delta qs =

let qs’ = qs >>= (\q -> map (delta q) cs)

in if isSuperSet qs qs’ then qs

else closure cs delta (union qs qs’)

accessible :: [S] -> (Q -> S -> Q) -> Q -> [Q]

accessible cs delta q = closure cs delta [q]

notEmpty :: [S] -> (Q -> S -> Q) -> Q -> Bool

notEmpty cs delta q0 = or (map final (accessible cs delta q0))
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Functional Representation of Testing Emptiness for FA

The closure function can be optimised by not computing the closure of the

same state twice.

closure :: [S] -> (Q -> S -> Q) -> [Q] -> [Q]

closure cs delta qs = clos [] qs

where clos :: [Q] -> [Q] -> [Q]

clos qs1 qs2 =

if qs2 == [] then qs1

else let qs = union qs1 qs2

qs’ = qs2 >>= (\q -> map (delta q) cs)

qs’’ = filter (\q -> not (isIn qs q)) qs’

in clos qs qs’’
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Testing Emptiness of Regular Languages (Again)

Given a RE for the language we can instead perform the following test:

Basis case: ∅ denotes the empty language while ǫ and a (any symbol from

the alphabet) do not.

Inductive step: Let R be our RE.

• If R = R1 + R2 then L(R) is empty iff both L(R1) and L(R2) are

empty.

• If R = R1R2 then L(R) is empty iff either L(R1) or L(R2) is empty.

• If R = R∗

1 is never empty since it always contains the word ǫ.
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Functional Representation of Testing Emptiness for RE

data RExp a = Empty | Epsilon | Atom a |

Plus (RExp a) (RExp a) | Concat (RExp a) (RExp a) |

Star (RExp a)

isEmpty :: RExp a -> Bool

isEmpty Empty = True

isEmpty (Plus e1 e2) = isEmpty e1 && isEmpty e2

isEmpty (Concat e1 e2) = isEmpty e1 || isEmpty e2

isEmpty _ = False
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Testing Membership in Regular Languages

Given a RL L and a word w over the alphabet of L, is w ∈ L ?

When L is given by a FA we can simply run the FA with the input w and see

if the word is accepted by the FA.

We have seen algorithms that simulate the running of a FA (see slides 27–28

in lecture 3 for DFA, slides 22–24 in lecture 4 for NFA, and slides 26 in lecture

5 and 4–5 in lecture 6 for ǫ-NFA).

Using derivatives (see exercises 4.2.3 and 4.2.5) there is a nice algorithm

checking membership on RE.

Let L = L(R) and w = a1 . . . an.

Let a\R = DaR = {x | ax ∈ L} (in the book
dL

da
).

DwR = Dan
(. . . (Da1

R) . . .).

It can then be shown that w ∈ L iff ǫ ∈ DwR.
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Other Testing Algorithms on Regular Expressions

Tests if a RE contains ǫ.

hasEpsilon :: RExp a -> Bool

hasEpsilon Epsilon = True

hasEpsilon (Star _) = True

hasEpsilon (Plus e1 e2) = hasEpsilon e1 || hasEpsilon e2

hasEpsilon (Concat e1 e2) = hasEpsilon e1 && hasEpsilon e2

hasEpsilon _ = False
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Other Testing Algorithms on Regular Expressions

Tests if L(R) ⊆ {ǫ}.

atMostEps :: RExp a -> Bool

atMostEps Empty = True

atMostEps Epsilon = True

atMostEps (Atom _) = False

atMostEps (Plus e1 e2) = atMostEps e1 && atMostEps e2

atMostEps (Concat e1 e2) = isEmpty e1 || isEmpty e2 ||

(atMostEps e1 && atMostEps e2)

atMostEps (Star e) = atMostEps e
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Other Testing Algorithms on Regular Expressions

Test if a regular expression denotes an infinite language.

infinite :: RExp a -> Bool

infinite (Star e) = not (atMostEps e)

infinite (Plus e1 e2) = infinite e1 || infinite e2

infinite (Concat e1 e2) = (infinite e1 && notIsEmpty e2) ||

(notIsEmpty e1 && infinite e2)

where notIsEmpty e = not (isEmpty e)

infinite _ = False
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