Finite Automata and Formal Languages

 $TMV026/DIT321 - LP4 \ 2011$

Lecture 12 May 9th 2011

Overview of today's lecture:

- Normal Forms for Context-Free Languages
- Pumping Lemma for Context-Free Languages

Normal Forms and Pumping Lemma for CFL

Useful, Useless, Generating and Reachable Symbols

Let $G = (V, T, \mathcal{R}, S)$ be a CFG. Let $X \in V \cup T$ and let $\alpha, \beta \in (V \cup T)^*$.

Definition: The symbol X is *useful* if $S \Rightarrow^* \alpha X \beta \Rightarrow^* w$ for some $w \in T^*$.

Definition: *X* is *useless* iff it is not useful.

Definition: X is generating if $X \Rightarrow^* w$ for some $w \in T^*$.

Definition: X is *reachable* if $S \Rightarrow^* \alpha X \beta$.

We shall simplify the grammars by eliminating useless symbols.

Lecture 12

Eliminating Useless Symbols

If we eliminate useless symbols we do not change the language generated by the grammar.

A symbol that is useful should be generating and reachable.

It is important in which order we check these conditions.

Example: Consider the following grammar

 $S \to AB \mid a \qquad \qquad A \to b$

If we first check for generating symbols and then for reachability we find that an equivalent smaller grammar is

 $S \to a$

If we first check for reachability and then for generating we get

 $S \to a \qquad \qquad A \to b$

Lecture 12

May 9th 2011 - TMV026/DIT321

Slide 2

Normal Forms and Pumping Lemma for CFL

Computing the Generating Symbols

Let $G = (V, T, \mathcal{R}, S)$ be a CFG.

The following inductive procedure computes the generating symbols of G:

Basis Case: All elements of T are generating.

Inductive Step: If a production $A \to \alpha$ is such that all symbols of α are known to be generating, then A is also generating. Observe that α could be ϵ .

Theorem: The procedure above finds all and only the generating symbols of a grammar.

Proof: See Theorem 7.4 in the book.

Example: Generating Symbols

Consider the grammar over $\{a\}$ given by the rules:

a is generating.

U and V are generating since $U \to a$ and $V \to aa$.

S is generating since $S \to U$.

W is however not generating.

Lecture 12

May 9th 2011 - TMV026/DIT321

Slide 4

Normal Forms and Pumping Lemma for CFL

Computing the Reachable Symbols

Let $G = (V, T, \mathcal{R}, S)$ be a CFG.

The following inductive procedure computes the reachable symbols of G:

Basis Case: The start variable S is reachable.

Inductive Step: If A is reachable and we have a production $A \to \alpha$ then all symbols in α are reachable.

Theorem: The procedure above finds all and only the reachable symbols of a grammar.

Proof: See Theorem 7.6 in the book.

Example: Reachable Symbols

Consider the grammar given by the rules:

 $S \rightarrow aB \mid BC$ $A \rightarrow aA \mid c \mid aDb$ $B \rightarrow DB \mid C$ $C \rightarrow b$ $D \rightarrow B$

S is reachable.

Hence a, B and C are reachable.

Then b and D are reachable.

However A is not reachable.

Lecture 12

 $May 9th \ 2011 - TMV026/DIT321$

Slide 6

Normal Forms and Pumping Lemma for CFL

Eliminating Useless Symbols

Theorem: Let $G = (V, T, \mathcal{R}, S)$ be a CFG and let $\mathcal{L}(G) \neq \emptyset$. Let $G' = (V', T', \mathcal{R}', S)$ be constructed as follows:

- 1. Eliminate all non-generating symbols and all productions involving one or more of those symbols
- 2. In the same way, eliminate now all symbols that are not reachable in the grammar

Then G' has no useless symbols and $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof: See Theorem 7.2 in the book.

Example: Eliminating Useless Symbols

Consider the grammar given by the rules:

S	\rightarrow	$gAe \mid aYB \mid CY$	A	\rightarrow	$bBY \mid ooC$
В	\rightarrow	$dd \mid D$	C	\rightarrow	$jVB \mid gl$
D	\rightarrow	n	U	\rightarrow	kW
V	\rightarrow	$baXXX \mid oV$	W	\rightarrow	С
X	\rightarrow	fV	Y	\rightarrow	Yhm

The simplified grammar is:

 $\begin{array}{rrrr} S & \to & gAe \\ A & \to & ooC \\ C & \to & gl \end{array}$

Lecture 12

May 9th 2011 - TMV026/DIT321

Slide 8

Normal Forms and Pumping Lemma for CFL

Nullable Variables

Definition: A variable A is *nullable* if $A \Rightarrow^* \epsilon$.

Observe that only variables are nullable.

Let $G = (V, T, \mathcal{R}, S)$ be a CFG.

The following inductive procedure computes the nullable variables of G:

Basis Case: If $A \to \epsilon$ is a production then A is nullable.

Inductive Step: If $B \to X_1 X_2 \dots X_k$ is a production and all the X_i are nullable then B is also nullable.

Theorem: The procedure above finds all and only the nullable variables of a grammar.

Proof: See Theorem 7.7 in the book.

Eliminating ϵ -Productions

Definition: An ϵ -production is a production of the form $A \to \epsilon$.

Let $G = (V, T, \mathcal{R}, S)$ be a CFG.

The following procedure eliminates the ϵ -production of G:

- 1. Determine all nullable variables of G.
- Build P with all the productions of R plus a rule A → αβ whenever we have A → αBβ and B is nullable.
 Note: If A → X₁X₂...X_k and all X_i are nullable, we do not include the case where all the X_i are absent.
- 3. Construct $G' = (V, T, \mathcal{R}', S)$ where \mathcal{R}' contains all the productions in \mathcal{P} except for the ϵ -productions.

Theorem: The grammar G' constructed from the grammar G as above is such that $\mathcal{L}(G') = \mathcal{L}(G) - \{\epsilon\}.$

Proof: See Theorem 7.9 in the book.

Lecture 12

May 9th 2011 - TMV026/DIT321

Slide 10

Normal Forms and Pumping Lemma for CFL

Example: Eliminating ϵ -Productions

Example: Consider the grammar given by the rules:

$$S \to aSb \mid SS \mid \epsilon$$

By eliminating $\epsilon\text{-}\mathrm{productions}$ we obtain

$$S \to ab \mid aSb \mid S \mid SS$$

Example: Consider the grammar given by the rules:

$$S \to AB$$
 $A \to aAA \mid \epsilon$ $B \to bBB \mid \epsilon$

By eliminating ϵ -productions we obtain

 $S \to A \mid B \mid AB \qquad A \to a \mid aA \mid aAA \qquad B \to b \mid bB \mid bBB$

Eliminating Unit Productions

Definition: A *unit production* is a production of the form $A \rightarrow B$. This is similar to ϵ -transitions in a ϵ -NFA.

Let $G = (V, T, \mathcal{R}, S)$ be a CFG.

The following procedure eliminates the unit production of G:

- 1. Build \mathcal{P} with all the productions of \mathcal{R} plus a rule $A \to \alpha$ whenever we have $A \to B$ and $B \to \alpha$.
- 2. Construct $G' = (V, T, \mathcal{R}', S)$ where R' contains all the productions in \mathcal{P} except for the unit production.

Theorem: The grammar G' constructed from the grammar G as above is such that $\mathcal{L}(G') = \mathcal{L}(G)$.

Proof: See Theorem 7.13 in the book.

Lecture 12

May 9th 2011 - TMV026/DIT321

Slide 12

Normal Forms and Pumping Lemma for CFL

Example: Eliminating Unit Productions

Consider the grammar given by the rules:

S	\rightarrow	$CBh \mid D$	A	\rightarrow	aaC
В	\rightarrow	$Sf \mid ggg$	C	\rightarrow	$cA \mid d \mid C$
D	\rightarrow	$E \mid SABC$	E	\rightarrow	be

By eliminating unit productions we obtain:

$$S \rightarrow CBh \mid be \mid SABC \qquad A \rightarrow aaC$$

$$B \rightarrow Sf \mid ggg \qquad C \rightarrow cA \mid d$$

$$D \rightarrow be \mid SABC \qquad E \rightarrow be$$

Simplification of a Grammar

Theorem: Let $G = (V, T, \mathcal{R}, S)$ be a CFG whose language contains at least one string other than ϵ . If we construct G' by

- 1. Eliminating ϵ -productions
- 2. Eliminating unit productions
- 3. Eliminating useless symbols

using the procedures shown before then $\mathcal{L}(G') = \mathcal{L}(G) - \{\epsilon\}$. In addition, G' contains no ϵ -productions, no unit productions and no useless symbols.

Proof: See Theorem 7.14 in the book.

Note: It is important to apply the steps in this order!

Lecture 12

May 9th 2011 - TMV026/DIT321

Slide 14

Normal Forms and Pumping Lemma for CFL

Chomsky Normal Form

Definition: A CFG is in *Chomsky Normal Form* (CNF) if G has no useless symbols and all the productions are of the form $A \to BC$ or $A \to a$.

Observe that a CFG that is in CNF has no unit or ϵ -productions.

Theorem: For any CFG G whose language contains at least one string other than ϵ , there is a CFG G' that is in Chomsky Normal Form and such that $\mathcal{L}(G') = \mathcal{L}(G) - \{\epsilon\}.$

Proof: See Theorem 7.16 in the book.

Constructing a Chomsky Normal Form

Let us assume G has no ϵ - or unit productions and no useless symbols. Then every production is of the form $A \to a$ or $A \to X_1 X_2 \dots X_k$ for k > 1.

If X_i is a terminal introduce a new variable A_i and a new rule $A_i \to X_i$ (if no such rule exists for X_i).

Use A_i in place of X_i in any rule whose body has length > 1.

Now, all rules are of the form $B \to b$ or $B \to C_1 C_2 \dots C_k$ with all C_j variables.

Introduce k - 2 new variables and break each rule $B \to C_1 C_2 \dots C_k$ as

 $B \to C_1 D_1 \quad D_1 \to C_2 D_2 \quad \dots \quad D_{k-2} \to C_{k-1} C_k$

Lecture 12

May 9th 2011 - TMV026/DIT321

Slide 16

Normal Forms and Pumping Lemma for CFL

Example: Chomsky Normal Form

Consider the grammar given by the rules:

$$S \to aSb \mid SS \mid ab$$

We first obtain

$$S \to ASB \mid SS \mid AB \qquad A \to a \qquad B \to b$$

Then we build a grammar in Chomsky Normal Form

$$S \rightarrow AC \mid SS \mid AB$$
$$A \rightarrow a$$
$$B \rightarrow b$$
$$C \rightarrow SB$$

Pumping Lemma for Left Regular Languages

Let $G = (V, T, \mathcal{R}, S)$ be a left regular language and let n = |V|.

If $a_1 a_2 \ldots a_m \in \mathcal{L}(G)$ and m > n, then any derivation

 $S \Rightarrow a_1 A_1 \Rightarrow a_1 a_2 A_2 \Rightarrow \ldots \Rightarrow a_1 \ldots a_i A \Rightarrow \ldots \Rightarrow a_1 \ldots a_j A \Rightarrow \ldots \Rightarrow a_1 \ldots a_m$

has length m and there is at least one variable A which is used twice. (Pigeon-hole principle)

If $x = a_1 \dots a_i$, $y = a_{i+1} \dots a_j$ and $z = a_{j+1} \dots a_m$, we have $|xy| \leq n$ and $xy^k z \in \mathcal{L}(G)$ for all k.

Lecture 12

May 9th 2011 - TMV026/DIT321

Slide 18

Normal Forms and Pumping Lemma for CFL

Pumping Lemma for Context-Free Languages

Theorem: Let \mathcal{L} be a context-free language. Then, there exists a constant n such that if $w \in \mathcal{L}$ with $|w| \ge n$, then we can write w = xuyvz such that

- 1. $|uyv| \leq n$,
- 2. $uv \neq \epsilon$, that is, at least one of u and v is not empty,
- 3. $\forall k \ge 0, xu^k yv^k z \in \mathcal{L}.$

Proof: (Sketch)

We can assume that the language is presented by a grammar in Chomsky Normal Form, working with $\mathcal{L} - \{\epsilon\}$.

Observe that parse trees for grammars in CNF have at most 2 children.

A crucial remark is that if m + 1 is the height of a parse tree for w, then $|w| \leq 2^m$ (prove this as an exercise!).

Proof Sketch: Pumping Lemma for Context-Free Languages

Let |V| = m > 0. Take $n = 2^m$ and w such that $|w| \ge 2^m$.

Any parse tree for w has a path of length at least m + 1.

Let A_0, A_1, \ldots, A_k be the variables in the path. We have $k \ge m$.

Then at least 2 of the last m + 1 variables should be the same, say A_i and A_j .

Observe figures 7.6 and 7.7 in pages 282–283.

See Theorem 7.18 in the book for the complete proof.

Lecture 12

May 9th 2011 - TMV026/DIT321

Slide 20

Normal Forms and Pumping Lemma for CFL

Example: Pumping Lemma for Context-Free Languages

Consider the following grammar:

S	\rightarrow	$AC \mid AB$	A	\rightarrow	a
В	\rightarrow	b	C	\rightarrow	SB

Consider the derivation for the string *aaaabbbb*

 $S \Rightarrow AC \Rightarrow aC \Rightarrow aSB \Rightarrow aACB \Rightarrow aaCB \Rightarrow aaSBB \Rightarrow aaABBB$ $\Rightarrow aaaBBB \Rightarrow aaabBB \Rightarrow aaabbB \Rightarrow aaabbb$

Consider the parse tree and the last 2 occurrences of the symbol S. Then we have x = a, u = a, y = ab, v = b, z = b.

Example: Pumping Lemma for Context-Free Languages

Lemma: The language $\mathcal{L} = \{a^m b^m c^m \mid m > 0\}$ is not context-free.

Proof: Assume \mathcal{L} is context-free.

Then we have n as stated in the Pumping lemma.

Consider $w = a^n b^n c^n$. We have that $|w| \ge n$.

So we know that w = xuyvz such that

$$|uyv| \leqslant n \qquad |uv| > 0 \qquad \forall k \ge 0, \ xu^k yv^k z \in \mathcal{L}$$

Since $|uyv| \leq n$ there is one letter $d \in \{a, b, c\}$ that does not occur in uyv. Since |uv| > 0 there is another letter $e \in \{a, b, c\}, e \neq d$ that does occur in uv. Then e has more occurrences than d in xu^2yv^2z and this contradicts the fact that $xu^2yv^2z \in \mathcal{L}$.

Lecture 12

May 9th 2011 - TMV026/DIT321

Slide 22