Chapter 7
Network Flow

Aloithm Desi

JON KLEINBERG - EVA TARDOS

PEARSON|  Slides by Kevin Wayne.
RN

A% All rights reserved.

Matching

Matching.
« Input: undirected graph G = (V, E).
« M C E is amatching if each node appears in at most edge in M.
» Max matching: find a max cardinality matching.

7.5 Bipartite Matching
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Bipartite Matching

Bipartite matching.
«» Input: undirected, bipartite graph 6 = (L U R, E).
« M CE isamatching if each node appears in at most edge in M.
» Max matching: find a max cardinality matching.

matching
1-2',3-1',4-5'




Bipartite Matching

Bipartite matching.
« Input: undirected, bipartite graph G = (L U R, E).
« M CE is amatching if each node appears in at most edge in M.
« Max matching: find a max cardinality matching.
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Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in 6 = value of max flow in G'.
Pf. <

« Given max matching M of cardinality k.

« Consider flow f that sends 1 unit along each of k paths.

« fisaflow, and has cardinality k. =

®
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Bipartite Matching

Max flow formulation.
» Create digraph 6' = (LURU {s, 1}, E").
. Direct all edges from L to R, and assign infinite (or unit) capacity.
. Add source s, and unit capacity edges from s to each node in L.
« Add sink t, and unit capacity edges from each node in R to t.

Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in 6 = value of max flow in G'.
Pf. =
«» Let f be amax flow in G' of value k.
« Integrality theorem = ks integral and can assume f is O-1.
» Consider M = set of edges from L to R with f(e) = 1.
- each node in L and R participates in at most one edge in M
- |M] = ki consider cut (LUs,RU1T) =

®
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Perfect Matching

Def. A matching M C E is perfect if each node appears in exactly one
edge in M.

Q. When does a bipartite graph have a perfect matching?
Structure of bipartite graphs with perfect matchings.
« Clearly we must have [L| = |R].

» What other conditions are necessary?
» What conditions are sufficient?

Marriage Theorem

Marriage Theorem. [Frobenius 1917, Hall 1935] Let 6= (L UR,E) bea
bipartite graph with |L| = |R|. Then, 6 has a perfect matching iff
IN(S)| = |S| for all subsets S CL.

Pf. = This was the previous observation.

No perfect matching:
S$={2,4,5}
N()={2',5"}.

Perfect Matching

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes
adjacent to nodes in S.

Observation. If a bipartite graph 6 = (L U R, E), has a perfect
matching, then IN(S)| = |S| for all subsets SC L.
Pf. Each node in S has to be matched to a different node in N(S).

No perfect matching:
5={(2,4,5}
N(s)={2',5"}.

Proof of Marriage Theorem

Pf. < Suppose G does not have a perfect matching.
» Formulate as a max flow problem and let (A, B) be min cut in G'.
« By max-flow min-cut, cap(A, B) < | L|.
« DefinelL,=LNA, Lg=LNB, Ry=RNA.
« cap(A,B) = |Lg|+ R4
» Since min cut can't use « edges: N(L,) C R,.
« INLA)I=IRAl = cap(A,B)-[Lgl < [LI-ILgl = [ L4l
« Choose S=1L,. =

L.={2, 4,5}
Lg={1,3}

® Ry={2,5%
N(La) ={2",5}



Bipartite Matching: Running Time

Which max flow algorithm to use for bipartite matching?
» Generic augmenting path: O(m val(f*) ) = O(mn).
. Capacity scaling: O(m? log C) = O(m?).
. Shortest augmenting path: O(m nl/2).

Non-bipartite matching.
« Structure of non-bipartite graphs is more complicated, but
well-understood. [Tutte-Berge, Edmonds-Galai]
. Blossom algorithm: O(n4). [Edmonds 1965]
« Best known: O(m n'/2), [Micali-Vazirani 1980]

Edge Disjoint Paths

Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t,
find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.

7.6 Disjoint Paths

Edge Disjoint Paths

Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t,
find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.




Edge Disjoint Paths Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge. Max flow formulation: assign unit capacity to every edge.
O
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Theorem. Max number edge-disjoint s-t paths equals max flow value. Theorem. Max number edge-disjoint s-+ paths equals max flow value.
Pf. = Pf. =

« Suppose there are k edge-disjoint paths Py, ..., P,. « Suppose max flow value is k.

« Set f(e) = 1if e participates in some path P;; else set f(e) = 0. « Integrality theorem = there exists O-1 flow f of value k.

« Since paths are edge-disjoint, f is a flow of value k. = «» Consider edge (s, u) with f(s, u) = 1.

- by conservation, there exists an edge (u, v) with f(u, v) = 1
- continue until reach t, always choosing a new edge
«» Produces k (not necessarily simple) edge-disjoint paths. =

can eliminate cycles to get simple paths if desired

Network Connectivity Edge Disjoint Paths and Network Connectivity
Network connectivity. Given a digraph 6 = (V, E) and two nodes s and *, Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is
find min number of edges whose removal disconnects t from s. equal to the min number of edges whose removal disconnects t from s.
Def. A set of edges F C E disconnects 1 from s if every s-t path uses Pf. <

« Suppose the removal of F C E disconnects t from s, and |F| = k.
« Every s-t path uses at least one edge in F.
Hence, the number of edge-disjoint paths is at most k. =

at least one edge in F.




Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is
equal to the min number of edges whose removal disconnects t from s.

Pf. =
« Suppose max number of edge-disjoint paths is k.
« Then max flow value is k.
» Max-flow min-cut = cut (A, B) of capacity k.
« Let F be set of edges going from A to B.
« |F| = k and disconnects t froms. =

Circulation with Demands

Circulation with demands.
« Directed graph 6 = (V, E).
. Edge capacities c(e), e € E.

« Node supply and demands d(v), vE V.
t

demand if d(v) > O; supply if d(v) < O; transshipment if d(v) = 0

Def. A circulation is a function that satisfies:

. Foreache€E: 0 = f(e) = c(e) (capacity)
« ForeachveV: Sfle) - Yfle) = dv) (conservation)
eintov eoutof v

Circulation problem: given (V, E, ¢, d), does there exist a circulation?
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7.7 Extensions to Max Flow

Circulation with Demands

Necessary condition: sum of supplies = sum of demands.

2d) =

v:id(v)>0

> -d(v) == D

vid(v)< 0

Pf. Sum conservation constraints for every demand node v.
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Circulation with Demands

Max flow formulation.

4
-7
3 4 1

10 0 I
demand
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Circulation with Demands

Integrality theorem. If all capacities and demands are integers, and
there exists a circulation, then there exists one that is integer-valued.

Pf. Follows from max flow formulation and integrality theorem for max
flow.

Characterization. Given (V, E, ¢, d), there does not exists a circulation
iff there exists a hode partition (A, B) such that =, d, > cap(A, B)

demand by nodes in B exceeds supply
of nodes in B plus max capacity of
edges going from A to B

Pf idea. Look at min cut in G'.
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Circulation with Demands

Max flow formulation.
. Add new source s and sink t.
. For each v with d(v) < 0, add edge (s, v) with capacity -d(v).
« For each v with d(v) > 0, add edge (v, t) with capacity d(v).
« Claim: G has circulation iff 6' has max flow of value D.

saturates all edges

/ﬂ leaving s and entering t
7 8

b ——— supply

7 7 I
6 4 9
4
0
lo\@/“N

demand
Circulation with Demands and Lower Bounds
Feasible circulation.
« Directed graph 6 = (V, E).
« Edge capacities c(e) and lower bounds /(e), e € E.
« Node supply and demands d(v), v E V.
Def. A circulation is a function that satisfies:
. Foreache€E: l(e) = f(e) = c(e) (capacity)
« ForeachveV: 2fe) - Yfle) = dv) (conservation)
eintov eoutof v

Circulation problem with lower bounds. Given (V, E, ¢, c, d), does there
exists a a circulation?



Circulation with Demands and Lower Bounds

Idea. Model lower bounds with demands.
« Send Ae) units of flow along edge e.

« Update demands of both endpoints.

lower bound upper bound capacity
i !
@— 251 —@ @—"—@
d(v) G d(w) dv)+2 d(w) - 2
'

Theorem. There exists a circulation in G iff there exists a circulation
in G'. If all demands, capacities, and lower bounds in G are integers,
then there is a circulation in G that is integer-valued.

Pf sketch. f(e)is a circulation in G iff f'(e) = f(e) - Ae) is a circulation
inG'.
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Survey Design

one survey question per product

Survey design.
. Design survey asking n, consumers about n, products.
« Can only survey consumer i about product j if they own it.
» Ask consumer i between c; and ¢;' questions.
» Ask between p; and p;" consumers about product j.

Goal. Design a survey that meets these specs, if possible.

Bipartite perfect matching. Special case whenc;=¢,' =p,=p;' = 1.

31

7.8 Survey Design

Survey Design

Algorithm. Formulate as a circulation problem with lower bounds.

« Include an edge (i, j) if consumer j owns product i.
. Integer circulation < feasible survey design.

consumers

products




Image Segmentation

710 Image Segmenfafion Image segmentation.

» Central problem in image processing.

«» Divide image into coherent regions.

Ex: Three people standing in front of complex background scene.
Identify each person as a coherent object.

Image Segmentation Image Segmentation
Foreground / background segmentation. Formulate as min cut problem.
« Label each pixel in picture as belonging to « Maximization.
foreground or background. ¢ « No source or sink.
« V = set of pixels, E = pairs of neighboring pixels. B « Undirected graph.
. a;= 0is likelihood pixel i in foreground. °
« b;= 0 is likelihood pixel i in background. Turn into minimization problem.
- p;;= 0 is separation penalty for labeling one of i
and j as foreground, and the other as background. » Maximizing iEEA“i +/g§’j _(,- 5 EE”’J‘
‘ | AN} =1
Goals.
« Accuracy: if a; > b; inisolation, prefer to label i in foreground. is equivalent to minimizing (Eiev a; +3 ey bj) - Ya;, - 3b; + Ip;
« Smoothness: if many neighbors of i are labeled foreground, we - A ek \(fii(;fif;\:l
should be inclined to label i as foreground.
« Find partition (A, B) that maximizes:  Ya,+ 3b, - 3 p; « or alternatively Ya;+3yb + I p;
/ i€A JEB (i.))EE JEB i€A (ij)EE

foreground background [AN{ij3]=1 [ AN{i.j3] =1

35



Image Segmentation
O«—p; —0O

P S

Formulate as min cut problem.
« 6'=(V',E).
« Add source to correspond to foreground;
add sink to correspond to background
. Use two anti-parallel edges instead of
undirected edge.

37

7.11 Project Selection

Image Segmentation

Consider min cut (A, B) inG'.
« A =foreground.
cap(A,B) = Eaj+ Sb,+ Y P

jeB " i€a (i.j))EE
€A, JEB +—

if i and j on different sides,
p;; counted exactly once

« Precisely the quantity we want to minimize.

Project Selection

. . L. can be positive or negative
Projects with prerequisites. |

« Set P of possible projects. Project v has associated revenue p,.

- some projects generate money: create interactive e-commerce interface,

redesignh web page
- others cost money: upgrade computers, get site license
. Set of prerequisites E. If (v, w) € E, can't do project v and unless
also do project w.
= A subset of projects A C P is feasible if the prerequisite of every
project in A also belongs to A.

Project selection. Choose a feasible subset of projects o maximize
revenue.

40



Project Selection: Prerequisite Graph Project Selection: Min Cut Formulation

Prerequisite graph. Min cut formulation.
« Include an edge from v to w if can't do v without also doing w. =« Assign capacity « to all prerequisite edge.
« {v,w, x} is feasible subset of projects. « Add edge (s, v) with capacity p, if p, > 0.
« {v, x} is infeasible subset of projects. . Add edge (v, t) with capacity -p, if p, < O.

« For notational convenience, define p, = p, = 0.

feasible infeasible
Project Selection: Min Cut Formulation Open Pit Mining
Claim. (A, B) is min cut iff A - {s}is optimal set of projects. Open-pit mining. (studied since early 1960s)
« Infinite capacity edges ensure A - { s} is feasible. « Blocks of earth are extracted from surface to retrieve ore.
» Max revenue because: cap(A, B) = Sp, + S(-p,) « Each block v has net value p, = value of ore - processing cost.

VEB:p, >0 VEA:p, <0

2Py~ 2Py

vip,>0 vVEA
—

. Can't remove block v before w or x.

constant

43




Baseball Elimination

7.12 Baseball Elimination Teon Wrs | Lases | 7ol
WIRICRENAYTY
1 6 1

Atlanta 8
"See that thing in the paper last week about Einstein? . . . Philly 80 79 3 1 - 0 2
Some reporter asked him to figure out the mathematics of New York 78 78 6 6 0 - 0
the pennant race. You know, one team wins so many of their
remaining games, the other teams win this number or that 7 e : : 0 :
number. What are the myriad possibilities? Who's got the
edge?"
"The hell does he know?" Which teams have a chance of finishing the season with most wins?
"Apparently not much. He picked the Dodgers UNDERWORLD « Montreal eliminated since it can finish with at most 80 wins, but
to eliminate the Giants last Friday." : Atlanta already has 83.
B B, U] = Witri<w; = team i eliminated.
et = Only reason sports writers appear to be aware of.
« Sufficient, but not necessary!
Baseball Elimination Baseball Elimination
ik | { g
ERERECANT ol iimE SPOR'"NG G
Atlanta 8 1 6 1 | ‘ \
Philly 80 79 3 - 0 2 49
New York 78 78 6 6 0 - o0 [ er S YOUI‘Ig Gel' Blg Bre(
Montreal 7 82 3 El Lo T & G R
Which teams have a chance of finishing the season with most wins? o R ,’ 2 .\,}.::{yg::; 43 e et
« Philly can win 83, but still eliminated . . . 1 ea : o
' | ve th |
« If Atlanta loses a game, then some other team wins one. | ¢ Veugny ¢ NL weSf Race f\l

Financing in py
or Gy iace
m (:nu Now Swd:um

! [“canomas
GIAMS

Remark. Answer depends not just on how many games already won and
left to play, but also on whom they're against.

10 5983 wity ,." e
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Baseball Elimination Baseball Elimination: Max Flow Formulation

Baseball elimination problem. Can team 3 finish with most wins?
« Set of teams S. « Assume team 3 wins all remaining games = ws + rz wins.
« Distinguished team s € S. = Divvy remaining games so that all teams have = w3 + r3 wins.

« Team x has won w, games already.

. Teams x and y play each other r,, additional times.

«» Is there any outcome of the remaining games in which team s
finishes with the most (or tied for the most) wins?

team 4 can still
win this many

/@ more games
o0

games left

/
@ ®0 6606

® req=7 0 ——p(@)—— w3 15 - Wy ——(t)
game nodes team nodes
49
Baseball Elimination: Max Flow Formulation Baseball Elimination: Explanation for Sports Writers

Theorem. Team 3 is not eliminated iff max flow saturates all edges : 2
leavi Team Wins | Losses | To play Against = ry;
NY 75 59 3 8 7 3

« Integrality theorem = each remaining game between x and y added 28 -
to number of wins for team x or team y.

« Capacity on (x, t) edges ensure no team wins oo many games. Baltimore 71 63 28 3 - 2 4 4
Boston 69 66 27 8 2 - 0 0
Toronto 63 72 27 7 7 0 - -
= ® 49 86 27 |3 |4 o o -
team 4 can still AL East: August 30, 1996

win this many

games left /® more games
15 * Which teams have a chance of finishing the season with most wins?
. Detroit could finish season with 49 + 27 = 76 wins.

2-5
game nodes @ team nodes
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Baseball Elimination: Explanation for Sports Writers

NY 75 59 3 8 7 3

28 -
Baltimore 71 63 8 3 - 2 7 4
Boston 69 66 27 8 2 - 0 0
Toronto 63 72 27 7 7 0 - =

49 86 27 (3| 4 o o | -

AL East: August 30, 1996

Which teams have a chance of finishing the season with most wins?
« Detroit could finish season with 49 + 27 = 76 wins.

Certificate of elimination. R = {NY, Bal, Bos, Tor}
» Have already won w(R) = 278 games.
« Must win at least r(R) = 27 more.
«» Average team in R wins at least 305/4 > 76 games.

53

Baseball Elimination: Explanation for Sports Writers

Pf of theorem.
= Use max flow formulation, and consider min cut (A, B).
« Define T* = feam nodes on source side of min cut.
« Observe x-y € A iff bothx € T*andy € T*.
- infinite capacity edges ensure if x-y € Athenx € Aandy € A
-if x€ Aandy € A but x-y € T, then adding x-y to A decreases
capacity of cut

team x can still win this
many more games

games left

wy+r, - Wx—®

55

Baseball Elimination: Explanation for Sports Writers

Certificate of elimination.

# wins # remaining games

——N—

TCS, wT)= > w,, gT)= S8y
€T (xyyC T

LB on avg # games won

——
1f wD+ed)

T >w,+g, thenziseliminated (by subset T).

Theorem. [Hoffman-Rivlin 1967] Team z is eliminated iff there exists
a subset T* that eliminates z.

Proof idea. Let T = feam nodes on source side of min cut.
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Baseball Elimination: Explanation for Sports Writers

Pf of theorem.
« Use max flow formulation, and consider min cut (A, B).
. Define T* = team nodes on source side of min cut.
« Observe x-y € A iff bothx € T"andy € T*.
= g(S-{z}) > cap(A, B)

capacity of game edges leaving s capacity of team edges leaving s

8S-{z})-gT*) +  Xw +g -w,)

XET*

g —{zh)-g(T* — w(T*) + IT*I(w,+g,)

w(T™)+g(T*)

= Rearranging tferms:  w_+g. < T

56



Extra Slides

k-Regular Bipartite Graphs

Dancing problem.
« Exclusive Ivy league party attended by n men and n women.

k-Regular Bipartite Graphs Have Perfect Matchings

Theorem. [Kdnig 1916, Frobenius 1917] Every k-regular bipartite graph
has a perfect matching.
Pf. Size of max matching = value of max flow in G'. Consider flow:
Uk if (u,v)EE
flu,v) = 41

0 otherwise

if u=s or v=t¢

« fisaflowand its value =n = perfect matching. =

@ 11/k @
1 > flow f
1 @ @ 11
6 ® ® ©) ®
@
® ®

« Each man knows exactly k women; each woman knows exactly k men.
« Acquaintances are mutual.
« Is it possible to arrange a dance so that each woman dances

with a different man that she knows?

(D 1)
Mathematical reformulation. Does every k-regular
bipartite graph have a perfect matching? ® @)
Ex. Boolean hypercube. ® 3
® @)
® 5
women men
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Census Tabulation (Exercise 7.39)

Feasible matrix rounding.
= Given a p-by-q matrix D = {d;;} of real numbers.
» Row i sum = g;, column j sum b;.
» Round each djj;, a;, b; up or down to integer so that sum of rounded
elements in each row (column) equals row (column) sum.
« Original application: publishing US Census data.

Goal. Find a feasible rounding, if one exists.

314 68 73 B 3 7

96 24 07 0 2

36 12 65 3 1

5

original matrix feasible rounding

1
1
1

I\‘H\‘
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Census Tabulation

Feasible matrix rounding.
- Given a p-by-q matrix D = {d;; } of real numbers.
- Row i sum = g;, column j sum b;.
= Round each d;j, a;, b; up or down to integer so that sum of rounded
elements in each row (column) equals row (column) sum.
« Original application: publishing US Census data.

Goal. Find a feasible rounding, if one exists.
Remark. "Threshold rounding" can fail.

035 035 035 [Pl 0o o0 1

055 055 055 1 1 0
[ 09 | 09 [ 09 |

original matrix feasible rounding
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Census Tabulation

Theorem. Feasible matrix rounding always exists.
Pf. Formulate as a circulation problem with lower bounds.
« Original data provides circulation (all demands = 0).

« Integrality theorem = integral solution = feasible rounding. =

314 68 73
9.6 24 0.7
3.6 1.2 6.5

17.24
12.7
11.3

lower bound

upper bound

column
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