
CS 473: Algorithms

Chandra Chekuri
chekuri@cs.uiuc.edu

3228 Siebel Center

University of Illinois, Urbana-Champaign

Fall 2008

Chekuri CS473ug

Minimum Spanning Tree

Part I

Greedy Algorithms: Minimum Spanning Tree

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Minimum Spanning Tree

Input Connected graph G = (V ,E) with edge costs

Goal Find T ⊆ E such that (V ,T) is connected and total
cost of all edges in T is smallest

T is the minimum spanning tree (MST) of G

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Minimum Spanning Tree

Input Connected graph G = (V ,E) with edge costs

Goal Find T ⊆ E such that (V ,T) is connected and total
cost of all edges in T is smallest

T is the minimum spanning tree (MST) of G

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Applications

Network Design

Designing networks with minimum cost but maximum
connectivity

Approximation algorithms

Can be used to bound the optimality of algorithms to
approximate Travelling Salesman Problem, Steiner Trees, etc.

Cluster Analysis

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Greedy Template

Initially E is the set of all edges in G

T is empty (* T will store edges of a MST *)

while E is not empty

choose i ∈ E

if (i satisfies condition)

add i to T

return the set T

Main Task: In what order should edges be processed? When
should we add edge to spanning tree?

KA PA RD

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Kruskal’s Algorithm

Process edges in the order of their costs (starting from the least)
and add edges to T as long as they don’t form a cycle.

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Graph G

1 2

3

45

6 7

3

17

23
1

4

9

Figure: MST of G

Back

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Kruskal’s Algorithm

Process edges in the order of their costs (starting from the least)
and add edges to T as long as they don’t form a cycle.

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Graph G

1 2

3

45

6 7

3

17

23

1

4

9

Figure: MST of G

Back

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Kruskal’s Algorithm

Process edges in the order of their costs (starting from the least)
and add edges to T as long as they don’t form a cycle.

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Graph G

1 2

3

45

6 7

3

17

23

1

4

9

Figure: MST of G

Back

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Kruskal’s Algorithm

Process edges in the order of their costs (starting from the least)
and add edges to T as long as they don’t form a cycle.

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Graph G

1 2

3

45

6 7

3

17

23

1
4

9

Figure: MST of G

Back

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Kruskal’s Algorithm

Process edges in the order of their costs (starting from the least)
and add edges to T as long as they don’t form a cycle.

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Graph G

1 2

3

45

6 7

3

17

23

1
4

9

Figure: MST of G

Back

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Kruskal’s Algorithm

Process edges in the order of their costs (starting from the least)
and add edges to T as long as they don’t form a cycle.

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Graph G

1 2

3

45

6 7

3

17

23

1
4

9

Figure: MST of G

Back

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Kruskal’s Algorithm

Process edges in the order of their costs (starting from the least)
and add edges to T as long as they don’t form a cycle.

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Graph G

1 2

3

45

6 7

3

17

23
1

4

9

Figure: MST of G

Back

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Prim’s Algorithm

T maintained by algorithm will be a tree. Start with a node in T .
In each iteration, pick edge with least attachment cost to T .

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Graph G

1 2

3

45

6 7

3

17

23
1

4

9

Figure: MST of G

Back

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Prim’s Algorithm

T maintained by algorithm will be a tree. Start with a node in T .
In each iteration, pick edge with least attachment cost to T .

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Graph G

1 2

3

45

6 7

3

17

23

1

4

9

Figure: MST of G

Back

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Prim’s Algorithm

T maintained by algorithm will be a tree. Start with a node in T .
In each iteration, pick edge with least attachment cost to T .

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Graph G

1 2

3

45

6 7

3

17

23

1
4

9

Figure: MST of G

Back

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Prim’s Algorithm

T maintained by algorithm will be a tree. Start with a node in T .
In each iteration, pick edge with least attachment cost to T .

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Graph G

1 2

3

45

6 7

3

17

23

1
4

9

Figure: MST of G

Back

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Prim’s Algorithm

T maintained by algorithm will be a tree. Start with a node in T .
In each iteration, pick edge with least attachment cost to T .

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Graph G

1 2

3

45

6 7

3

17

23

1
4

9

Figure: MST of G

Back

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Prim’s Algorithm

T maintained by algorithm will be a tree. Start with a node in T .
In each iteration, pick edge with least attachment cost to T .

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Graph G

1 2

3

45

6 7

3

17

23

1
4

9

Figure: MST of G

Back

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Prim’s Algorithm

T maintained by algorithm will be a tree. Start with a node in T .
In each iteration, pick edge with least attachment cost to T .

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Graph G

1 2

3

45

6 7

3

17

23
1

4

9

Figure: MST of G

Back

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Reverse Delete Algorithm

Initially E is the set of all edges in G

T is E (* T will store edges of a MST *)

while E is not empty

choose i ∈ E of largest cost

if removing i does not disconnect T

remove i from T

return the set T

Returns a minimum spanning tree. Back

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Correctness of MST Algorithms

Many different MST algorithms

All of them rely on some basic properties of MSTs, in
particular the Cut Property to be seen shortly.

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

And for now . . .

Assumption

Edge costs are distinct, that is no two edge costs are equal.

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Safe and Unsafe Edges

Definition

An edge e = (u, v) is a safe edge if there is some partition of V
into S and V \ S and e is the unique minimum cost edge crossing
S (one end in S and the other in V \ S).

Definition

An edge e = (u, v) is an unsafe edge if there is some cycle C such
that e is the unique maximum cost edge in C .

Proposition

If edge costs are distinct then every edge is either safe or unsafe.

Proof.

Exercise.

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Safe and Unsafe Edges

Definition

An edge e = (u, v) is a safe edge if there is some partition of V
into S and V \ S and e is the unique minimum cost edge crossing
S (one end in S and the other in V \ S).

Definition

An edge e = (u, v) is an unsafe edge if there is some cycle C such
that e is the unique maximum cost edge in C .

Proposition

If edge costs are distinct then every edge is either safe or unsafe.

Proof.

Exercise.

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Safe and Unsafe Edges

Definition

An edge e = (u, v) is a safe edge if there is some partition of V
into S and V \ S and e is the unique minimum cost edge crossing
S (one end in S and the other in V \ S).

Definition

An edge e = (u, v) is an unsafe edge if there is some cycle C such
that e is the unique maximum cost edge in C .

Proposition

If edge costs are distinct then every edge is either safe or unsafe.

Proof.

Exercise.

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Example

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Graph with unique edge costs.

Safe edges are red, rest are unsafe.

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Example

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Graph with unique edge costs. Safe edges are red, rest are unsafe.

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Key Observation: Cut Property

Lemma

If e is a safe edge then every minimum spanning tree contains e.

Proof.

Suppose (for contradiction) e is not in MST T .

Since e is safe there is an S ⊂ V such that e is the unique
min cost edge crossing S .

Since T is connected, there must be some edge f with one
end in S and the other in V \ S

Since cf > ce , T ′ = (T \ {f }) ∪ {e} is a spanning tree of
lower cost!

Error: T ′ may not be a spanning tree!!

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Key Observation: Cut Property

Lemma

If e is a safe edge then every minimum spanning tree contains e.

Proof.

Suppose (for contradiction) e is not in MST T .

Since e is safe there is an S ⊂ V such that e is the unique
min cost edge crossing S .

Since T is connected, there must be some edge f with one
end in S and the other in V \ S

Since cf > ce , T ′ = (T \ {f }) ∪ {e} is a spanning tree of
lower cost!

Error: T ′ may not be a spanning tree!!

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Key Observation: Cut Property

Lemma

If e is a safe edge then every minimum spanning tree contains e.

Proof.

Suppose (for contradiction) e is not in MST T .

Since e is safe there is an S ⊂ V such that e is the unique
min cost edge crossing S .

Since T is connected, there must be some edge f with one
end in S and the other in V \ S

Since cf > ce , T ′ = (T \ {f }) ∪ {e} is a spanning tree of
lower cost!

Error: T ′ may not be a spanning tree!!

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Key Observation: Cut Property

Lemma

If e is a safe edge then every minimum spanning tree contains e.

Proof.

Suppose (for contradiction) e is not in MST T .

Since e is safe there is an S ⊂ V such that e is the unique
min cost edge crossing S .

Since T is connected, there must be some edge f with one
end in S and the other in V \ S

Since cf > ce , T ′ = (T \ {f }) ∪ {e} is a spanning tree of
lower cost!

Error: T ′ may not be a spanning tree!!

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Key Observation: Cut Property

Lemma

If e is a safe edge then every minimum spanning tree contains e.

Proof.

Suppose (for contradiction) e is not in MST T .

Since e is safe there is an S ⊂ V such that e is the unique
min cost edge crossing S .

Since T is connected, there must be some edge f with one
end in S and the other in V \ S

Since cf > ce , T ′ = (T \ {f }) ∪ {e} is a spanning tree of
lower cost!

Error: T ′ may not be a spanning tree!!

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Key Observation: Cut Property

Lemma

If e is a safe edge then every minimum spanning tree contains e.

Proof.

Suppose (for contradiction) e is not in MST T .

Since e is safe there is an S ⊂ V such that e is the unique
min cost edge crossing S .

Since T is connected, there must be some edge f with one
end in S and the other in V \ S

Since cf > ce , T ′ = (T \ {f }) ∪ {e} is a spanning tree of
lower cost!

Error: T ′ may not be a spanning tree!!

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Key Observation: Cut Property

Lemma

If e is a safe edge then every minimum spanning tree contains e.

Proof.

Suppose (for contradiction) e is not in MST T .

Since e is safe there is an S ⊂ V such that e is the unique
min cost edge crossing S .

Since T is connected, there must be some edge f with one
end in S and the other in V \ S

Since cf > ce , T ′ = (T \ {f }) ∪ {e} is a spanning tree of
lower cost! Error: T ′ may not be a spanning tree!!

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Error in Proof: Example

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Problematic example. S = {1, 2, 7}, e = (7, 3), f = (1, 6)

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Error in Proof: Example

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Figure: Problematic example. S = {1, 2, 7}, e = (7, 3), f = (1, 6)

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Proof of Cut Property

Proof.

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Suppose minimum (S ,V \ S)-cut
edge e = (v ,w) is not in MST
T .

Since T is connected, there is
some path (say P) from v to w
in T

Let w ′ be the first vertex in P
belonging to V \ S ; let v ′ be the
vertex just before it on P, and let
e ′ = (v ′,w ′)

T ′ = (T \ {e ′}) ∪ {e} is
spanning tree of lower cost

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Proof of Cut Property

Proof.

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Suppose minimum (S ,V \ S)-cut
edge e = (v ,w) is not in MST
T .

Since T is connected, there is
some path (say P) from v to w
in T

Let w ′ be the first vertex in P
belonging to V \ S ; let v ′ be the
vertex just before it on P, and let
e ′ = (v ′,w ′)

T ′ = (T \ {e ′}) ∪ {e} is
spanning tree of lower cost

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Proof of Cut Property

Proof.

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Suppose minimum (S ,V \ S)-cut
edge e = (v ,w) is not in MST
T .

Since T is connected, there is
some path (say P) from v to w
in T

Let w ′ be the first vertex in P
belonging to V \ S ; let v ′ be the
vertex just before it on P, and let
e ′ = (v ′,w ′)

T ′ = (T \ {e ′}) ∪ {e} is
spanning tree of lower cost

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Proof of Cut Property

Proof.

1 2

3

45

6 7

20

15

3

17

28

23
1

4

9

16
25

36

Suppose minimum (S ,V \ S)-cut
edge e = (v ,w) is not in MST
T .

Since T is connected, there is
some path (say P) from v to w
in T

Let w ′ be the first vertex in P
belonging to V \ S ; let v ′ be the
vertex just before it on P, and let
e ′ = (v ′,w ′)

T ′ = (T \ {e ′}) ∪ {e} is
spanning tree of lower cost

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Proof of Cut Property (contd)

Observation

T ′ = (T \ {e ′}) ∪ {e} is a spanning tree.

Proof.

T ′ is connected.

If path uses e ′ = (v ′,w ′), then go from v ′ to v , use edge
(v ,w) and then go from w to w ′ in T ′

T ′ is acyclic

Only one cycle in T ′ ∪ {e ′}, namely, one involving e and e ′,
which is not present in T ′

Alternatively: T ′ is connected and has n − 1 edges (since T
had n − 1 edges) and hence T is a tree

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Proof of Cut Property (contd)

Observation

T ′ = (T \ {e ′}) ∪ {e} is a spanning tree.

Proof.

T ′ is connected.

If path uses e ′ = (v ′,w ′), then go from v ′ to v , use edge
(v ,w) and then go from w to w ′ in T ′

T ′ is acyclic

Only one cycle in T ′ ∪ {e ′}, namely, one involving e and e ′,
which is not present in T ′

Alternatively: T ′ is connected and has n − 1 edges (since T
had n − 1 edges) and hence T is a tree

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Proof of Cut Property (contd)

Observation

T ′ = (T \ {e ′}) ∪ {e} is a spanning tree.

Proof.

T ′ is connected.

If path uses e ′ = (v ′,w ′), then go from v ′ to v , use edge
(v ,w) and then go from w to w ′ in T ′

T ′ is acyclic

Only one cycle in T ′ ∪ {e ′}, namely, one involving e and e ′,
which is not present in T ′

Alternatively: T ′ is connected and has n − 1 edges (since T
had n − 1 edges) and hence T is a tree

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Proof of Cut Property (contd)

Observation

T ′ = (T \ {e ′}) ∪ {e} is a spanning tree.

Proof.

T ′ is connected.

If path uses e ′ = (v ′,w ′), then go from v ′ to v , use edge
(v ,w) and then go from w to w ′ in T ′

T ′ is acyclic

Only one cycle in T ′ ∪ {e ′}, namely, one involving e and e ′,
which is not present in T ′

Alternatively: T ′ is connected and has n − 1 edges (since T
had n − 1 edges) and hence T is a tree

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Safe Edges form a Tree

Lemma

Let G be a connected graph with distinct edge costs, then the set
of safe edges form a connected graph.

Proof.

Suppose not. Let S be a connected component in the safe
edges.

Consider the edges crossing S , there must be a safe edge
among them since edge costs are distinct.

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Safe Edges form an MST

Corollary

Let G be a connected graph with distinct edge costs, then set of
safe edges form the unique MST of G.

Consquence: Every correct MST algorithm when G has unique
edge costs includes exactly the safe edges.

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Safe Edges form an MST

Corollary

Let G be a connected graph with distinct edge costs, then set of
safe edges form the unique MST of G.

Consquence: Every correct MST algorithm when G has unique
edge costs includes exactly the safe edges.

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Cycle Property

Lemma

If e is an unsafe edge then no MST of G contains e.

Proof.

Exercise. See text book.

Note: Cut and Cycle properties hold even when edge costs are not
distinct. Safe and unsafe definitions do not rely on distinct cost
assumption.

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Correctness of Prim’s Algorithm

Prim’s Algorithm

Pick edge with minimum attachment cost to current tree, and add
to current tree.

Proof of correctness.

If e is added to tree, then e is safe and belongs to every MST.

Let S be the vertices connected by edges in T when e is added.
e is edge of lowest cost with one end in S and the other in
V \ S and hence e is safe.

Set of edges output is a spanning tree

Set of edges output forms a connected graph: by induction, S
is connected in each iteration and eventually S = V .
Only safe edges added and they do not have a cycle

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Correctness of Prim’s Algorithm

Prim’s Algorithm

Pick edge with minimum attachment cost to current tree, and add
to current tree.

Proof of correctness.

If e is added to tree, then e is safe and belongs to every MST.

Let S be the vertices connected by edges in T when e is added.

e is edge of lowest cost with one end in S and the other in
V \ S and hence e is safe.

Set of edges output is a spanning tree

Set of edges output forms a connected graph: by induction, S
is connected in each iteration and eventually S = V .
Only safe edges added and they do not have a cycle

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Correctness of Prim’s Algorithm

Prim’s Algorithm

Pick edge with minimum attachment cost to current tree, and add
to current tree.

Proof of correctness.

If e is added to tree, then e is safe and belongs to every MST.

Let S be the vertices connected by edges in T when e is added.
e is edge of lowest cost with one end in S and the other in
V \ S and hence e is safe.

Set of edges output is a spanning tree

Set of edges output forms a connected graph: by induction, S
is connected in each iteration and eventually S = V .
Only safe edges added and they do not have a cycle

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Correctness of Prim’s Algorithm

Prim’s Algorithm

Pick edge with minimum attachment cost to current tree, and add
to current tree.

Proof of correctness.

If e is added to tree, then e is safe and belongs to every MST.

Let S be the vertices connected by edges in T when e is added.
e is edge of lowest cost with one end in S and the other in
V \ S and hence e is safe.

Set of edges output is a spanning tree

Set of edges output forms a connected graph: by induction, S
is connected in each iteration and eventually S = V .

Only safe edges added and they do not have a cycle

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Correctness of Prim’s Algorithm

Prim’s Algorithm

Pick edge with minimum attachment cost to current tree, and add
to current tree.

Proof of correctness.

If e is added to tree, then e is safe and belongs to every MST.

Let S be the vertices connected by edges in T when e is added.
e is edge of lowest cost with one end in S and the other in
V \ S and hence e is safe.

Set of edges output is a spanning tree

Set of edges output forms a connected graph: by induction, S
is connected in each iteration and eventually S = V .
Only safe edges added and they do not have a cycle

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Correctness of Kruskal’s Algorithm

Kruskal’s Algorithm

Pick edge of lowest cost and add if it does not form a cycle with
existing edges.

Proof of correctness.

If e = (u, v) is added to tree, then e is safe

When algorithm adds e let S and S ’ be the connected
components containing u and v respectively
e is the lowest cost edge crossing S (and also S ’).
If there is an edge e′ crossing S and has lower cost than e,
then e′ would come before e in the sorted order and would be
added by the algorithm to T

Set of edges output is a spanning tree : exercise

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Correctness of Kruskal’s Algorithm

Kruskal’s Algorithm

Pick edge of lowest cost and add if it does not form a cycle with
existing edges.

Proof of correctness.

If e = (u, v) is added to tree, then e is safe

When algorithm adds e let S and S ’ be the connected
components containing u and v respectively

e is the lowest cost edge crossing S (and also S ’).
If there is an edge e′ crossing S and has lower cost than e,
then e′ would come before e in the sorted order and would be
added by the algorithm to T

Set of edges output is a spanning tree : exercise

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Correctness of Kruskal’s Algorithm

Kruskal’s Algorithm

Pick edge of lowest cost and add if it does not form a cycle with
existing edges.

Proof of correctness.

If e = (u, v) is added to tree, then e is safe

When algorithm adds e let S and S ’ be the connected
components containing u and v respectively
e is the lowest cost edge crossing S (and also S ’).

If there is an edge e′ crossing S and has lower cost than e,
then e′ would come before e in the sorted order and would be
added by the algorithm to T

Set of edges output is a spanning tree : exercise

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Correctness of Kruskal’s Algorithm

Kruskal’s Algorithm

Pick edge of lowest cost and add if it does not form a cycle with
existing edges.

Proof of correctness.

If e = (u, v) is added to tree, then e is safe

When algorithm adds e let S and S ’ be the connected
components containing u and v respectively
e is the lowest cost edge crossing S (and also S ’).
If there is an edge e′ crossing S and has lower cost than e,
then e′ would come before e in the sorted order and would be
added by the algorithm to T

Set of edges output is a spanning tree : exercise

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Correctness of Reverse Delete Algorithm

Reverse Delete Algorithm

Consider edges in decreasing cost and remove an edge if it does
not disconnect the graph

Proof of correctness.

Argue that only unsafe edges are removed (see text book).

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small
tiny and different cost to each edge

Formal argument: Order edges lexicographically to break ties

ei ≺ ej if either c(ei) < c(ej) or (c(ei) = c(ej) and i < j)

Lexicographic ordering extends to sets of edges. If A,B ⊆ E ,
A 6= B then A ≺ B if either c(A) < c(B) or (c(A) = c(B)
and A \ B has a lower indexed edge than B \ A)

Can order all spanning trees according to lexicographic order
of their edge sets. Hence there is a unique MST.

Prim’s, Kruskal, and Reverse Delete Algorithms are optimal with
respect to lexicographic ordering.

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small
tiny and different cost to each edge

Formal argument: Order edges lexicographically to break ties

ei ≺ ej if either c(ei) < c(ej) or (c(ei) = c(ej) and i < j)

Lexicographic ordering extends to sets of edges. If A,B ⊆ E ,
A 6= B then A ≺ B if either c(A) < c(B) or (c(A) = c(B)
and A \ B has a lower indexed edge than B \ A)

Can order all spanning trees according to lexicographic order
of their edge sets. Hence there is a unique MST.

Prim’s, Kruskal, and Reverse Delete Algorithms are optimal with
respect to lexicographic ordering.

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small
tiny and different cost to each edge

Formal argument: Order edges lexicographically to break ties

ei ≺ ej if either c(ei) < c(ej) or (c(ei) = c(ej) and i < j)

Lexicographic ordering extends to sets of edges. If A,B ⊆ E ,
A 6= B then A ≺ B if either c(A) < c(B) or (c(A) = c(B)
and A \ B has a lower indexed edge than B \ A)

Can order all spanning trees according to lexicographic order
of their edge sets. Hence there is a unique MST.

Prim’s, Kruskal, and Reverse Delete Algorithms are optimal with
respect to lexicographic ordering.

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small
tiny and different cost to each edge

Formal argument: Order edges lexicographically to break ties

ei ≺ ej if either c(ei) < c(ej) or (c(ei) = c(ej) and i < j)

Lexicographic ordering extends to sets of edges. If A,B ⊆ E ,
A 6= B then A ≺ B if either c(A) < c(B) or (c(A) = c(B)
and A \ B has a lower indexed edge than B \ A)

Can order all spanning trees according to lexicographic order
of their edge sets. Hence there is a unique MST.

Prim’s, Kruskal, and Reverse Delete Algorithms are optimal with
respect to lexicographic ordering.

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Edge Costs: Postive and Negative

Algorithms and proofs don’t assume that edge costs are
non-negative! MST algorithms work for arbitrary edge costs.

Another way to see this: make edge costs non-negative by
adding to each edge a large enough positive number. Why
does this work for MSTs but not for shortest paths?

Can compute maximum weight spanning tree by negating
edge costs and then computing an MST.

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Edge Costs: Postive and Negative

Algorithms and proofs don’t assume that edge costs are
non-negative! MST algorithms work for arbitrary edge costs.

Another way to see this: make edge costs non-negative by
adding to each edge a large enough positive number. Why
does this work for MSTs but not for shortest paths?

Can compute maximum weight spanning tree by negating
edge costs and then computing an MST.

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Edge Costs: Postive and Negative

Algorithms and proofs don’t assume that edge costs are
non-negative! MST algorithms work for arbitrary edge costs.

Another way to see this: make edge costs non-negative by
adding to each edge a large enough positive number. Why
does this work for MSTs but not for shortest paths?

Can compute maximum weight spanning tree by negating
edge costs and then computing an MST.

Chekuri CS473ug

Minimum Spanning Tree
The Problem
The Algorithms
Correctness

Edge Costs: Postive and Negative

Algorithms and proofs don’t assume that edge costs are
non-negative! MST algorithms work for arbitrary edge costs.

Another way to see this: make edge costs non-negative by
adding to each edge a large enough positive number. Why
does this work for MSTs but not for shortest paths?

Can compute maximum weight spanning tree by negating
edge costs and then computing an MST.

Chekuri CS473ug

Data Structures

Part II

Data Structures for MST: Priority Queues and
Union-Find

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Implementing Prim’s Algorithm

E is the set of all edges in G

S = {1}
T is empty (* T will store edges of a MST *)

while S =/= V

pick e = (v,w) in E such that

v ∈ S and w ∈ V - S

e has minimum cost

T = T U e

S = S U w

return the set T

Analysis

Number of iterations = O(n), where n is number of vertices

Picking e is O(m) where m is the number of edges

Total time O(nm)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Implementing Prim’s Algorithm

E is the set of all edges in G

S = {1}
T is empty (* T will store edges of a MST *)

while S =/= V

pick e = (v,w) in E such that

v ∈ S and w ∈ V - S

e has minimum cost

T = T U e

S = S U w

return the set T

Analysis

Number of iterations = O(n), where n is number of vertices

Picking e is O(m) where m is the number of edges

Total time O(nm)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Implementing Prim’s Algorithm

E is the set of all edges in G

S = {1}
T is empty (* T will store edges of a MST *)

while S =/= V

pick e = (v,w) in E such that

v ∈ S and w ∈ V - S

e has minimum cost

T = T U e

S = S U w

return the set T

Analysis

Number of iterations = O(n), where n is number of vertices

Picking e is O(m) where m is the number of edges

Total time O(nm)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Implementing Prim’s Algorithm

E is the set of all edges in G

S = {1}
T is empty (* T will store edges of a MST *)

while S =/= V

pick e = (v,w) in E such that

v ∈ S and w ∈ V - S

e has minimum cost

T = T U e

S = S U w

return the set T

Analysis

Number of iterations = O(n), where n is number of vertices

Picking e is O(m) where m is the number of edges

Total time O(nm)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

More Efficient Implementation

E is the set of all edges in G

S = {1}
T is empty (* T will store edges of a MST *)

for v 6∈ S, a(v) = minw∈S c(w,v)

for v 6∈ S, e(v) = w such that w ∈ S and c(w,v) is minimum

while S =/= V

pick v with minimum a(v)

T = T U (e(v),v)

S = S U v

update arrays a and e

return the set T

Maintain vertices in V \ S in a priority queue with key a(v)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

More Efficient Implementation

E is the set of all edges in G

S = {1}
T is empty (* T will store edges of a MST *)

for v 6∈ S, a(v) = minw∈S c(w,v)

for v 6∈ S, e(v) = w such that w ∈ S and c(w,v) is minimum

while S =/= V

pick v with minimum a(v)

T = T U (e(v),v)

S = S U v

update arrays a and e

return the set T

Maintain vertices in V \ S in a priority queue with key a(v)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

More Efficient Implementation

E is the set of all edges in G

S = {1}
T is empty (* T will store edges of a MST *)

for v 6∈ S, a(v) = minw∈S c(w,v)

for v 6∈ S, e(v) = w such that w ∈ S and c(w,v) is minimum

while S =/= V

pick v with minimum a(v)

T = T U (e(v),v)

S = S U v

update arrays a and e

return the set T

Maintain vertices in V \ S in a priority queue with key a(v)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Priority Queues

Data structure to store a set S of n elements where each element
v ∈ S has an associated real/integer key k(v) such that the
following operations

makeQ: create an empty queue

findMin: find the minimum key in S

extractMin: Remove v ∈ S with smallest key and return it

add(v, k(v)): Add new element v with key k(v) to S

delete(v): Remove element v from S

decreaseKey(v, k’(v)): decrease key of v from k(v)
(current key) to k ′(v) (new key). Assumption: k ′(v) ≤ k(v)

meld: merge two separate priority queues into one

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Prim’s using priority queues

E is the set of all edges in G

S = {1}
T is empty (* T will store edges of a MST *)

for v 6∈ S, a(v) = minw∈S c(w,v)

for v 6∈ S, e(v) = w such that w ∈ S and c(w,v) is minimum

while S =/= V

pick v with minimum a(v)

T = T U (e(v),v)

S = S U v

update arrays a and e

return the set T

Maintain vertices in V \ S in a priority queue with key a(v)

Requires O(n) extractMin operations

Requires O(m) decreaseKey operations

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Prim’s using priority queues

E is the set of all edges in G

S = {1}
T is empty (* T will store edges of a MST *)

for v 6∈ S, a(v) = minw∈S c(w,v)

for v 6∈ S, e(v) = w such that w ∈ S and c(w,v) is minimum

while S =/= V

pick v with minimum a(v)

T = T U (e(v),v)

S = S U v

update arrays a and e

return the set T

Maintain vertices in V \ S in a priority queue with key a(v)

Requires O(n) extractMin operations

Requires O(m) decreaseKey operations

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Prim’s using priority queues

E is the set of all edges in G

S = {1}
T is empty (* T will store edges of a MST *)

for v 6∈ S, a(v) = minw∈S c(w,v)

for v 6∈ S, e(v) = w such that w ∈ S and c(w,v) is minimum

while S =/= V

pick v with minimum a(v)

T = T U (e(v),v)

S = S U v

update arrays a and e

return the set T

Maintain vertices in V \ S in a priority queue with key a(v)

Requires O(n) extractMin operations

Requires O(m) decreaseKey operations

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Running time of Prim’s Algorithm

O(n) extractMin operations and O(m) decreaseKey operations

Using standard Heaps, extractMin and decreaseKey take
O(log n) time. Total: O((m + n) log n)

Using Fibonacci Heaps, O(log n) for extractMin and O(1)
(amortized) for decreaseKey. Total: O(n log n + m).

Prim’s algorithm and Dijkstra’s algorithms are similar. Where is
the difference?

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Running time of Prim’s Algorithm

O(n) extractMin operations and O(m) decreaseKey operations

Using standard Heaps, extractMin and decreaseKey take
O(log n) time. Total: O((m + n) log n)

Using Fibonacci Heaps, O(log n) for extractMin and O(1)
(amortized) for decreaseKey. Total: O(n log n + m).

Prim’s algorithm and Dijkstra’s algorithms are similar. Where is
the difference?

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Kruskal’s Algorithm

Initially E is the set of all edges in G

T is empty (* T will store edges of a MST *)

while E is not empty

choose e ∈ E of minimum cost

if (T U {e} does not have cycles)

add e to T

return the set T

Pre-sort edges based on cost. Choosing minimum can be done
in O(1) time

Do BFS/DFS on T ∪ {e}. Takes O(n + m) time

Total time O(m log m) + O(m · (n + m))

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Kruskal’s Algorithm

Initially E is the set of all edges in G

T is empty (* T will store edges of a MST *)

while E is not empty

choose e ∈ E of minimum cost

if (T U {e} does not have cycles)

add e to T

return the set T

Pre-sort edges based on cost. Choosing minimum can be done
in O(1) time

Do BFS/DFS on T ∪ {e}. Takes O(n + m) time

Total time O(m log m) + O(m · (n + m))

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Kruskal’s Algorithm

Initially E is the set of all edges in G

T is empty (* T will store edges of a MST *)

while E is not empty

choose e ∈ E of minimum cost

if (T U {e} does not have cycles)

add e to T

return the set T

Pre-sort edges based on cost. Choosing minimum can be done
in O(1) time

Do BFS/DFS on T ∪ {e}. Takes O(n + m) time

Total time O(m log m) + O(m · (n + m))

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Kruskal’s Algorithm

Initially E is the set of all edges in G

T is empty (* T will store edges of a MST *)

while E is not empty

choose e ∈ E of minimum cost

if (T U {e} does not have cycles)

add e to T

return the set T

Pre-sort edges based on cost. Choosing minimum can be done
in O(1) time

Do BFS/DFS on T ∪ {e}. Takes O(n + m) time

Total time O(m log m) + O(m · (n + m))

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Kruskal’s Algorithm

Initially E is the set of all edges in G

T is empty (* T will store edges of a MST *)

while E is not empty

choose e ∈ E of minimum cost

if (T U {e} does not have cycles)

add e to T

return the set T

Pre-sort edges based on cost. Choosing minimum can be done
in O(1) time

Do BFS/DFS on T ∪ {e}. Takes O(n + m) time

Total time O(m log m) + O(m · (n + m))

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Kruskal’s Algorithm

Initially E is the set of all edges in G

T is empty (* T will store edges of a MST *)

while E is not empty

choose e ∈ E of minimum cost

if (T U {e} does not have cycles)

add e to T

return the set T

Pre-sort edges based on cost. Choosing minimum can be done
in O(1) time

Do BFS/DFS on T ∪ {e}. Takes O(n + m) time

Total time O(m log m) + O(m · (n + m))

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Implementing Kruskal’s Algorithm Efficiently

Sort edges in E based on cost

T is empty (* T will store edges of a MST *)

each vertex u is placed in a set by itself

while E is not empty

pick e = (u,v) ∈ E of minimum cost

if u and v belong to different sets

add e to T

merge the sets containing u and v

return the set T

Need a data structure to check if two elements belong to same set
and to merge two sets.

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Implementing Kruskal’s Algorithm Efficiently

Sort edges in E based on cost

T is empty (* T will store edges of a MST *)

each vertex u is placed in a set by itself

while E is not empty

pick e = (u,v) ∈ E of minimum cost

if u and v belong to different sets

add e to T

merge the sets containing u and v

return the set T

Need a data structure to check if two elements belong to same set
and to merge two sets.

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Implementing Kruskal’s Algorithm Efficiently

Sort edges in E based on cost

T is empty (* T will store edges of a MST *)

each vertex u is placed in a set by itself

while E is not empty

pick e = (u,v) ∈ E of minimum cost

if u and v belong to different sets

add e to T

merge the sets containing u and v

return the set T

Need a data structure to check if two elements belong to same set
and to merge two sets.

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Union-Find Data Structure

Data Structure

Store disjoint sets of elements that supports the following
operations

makeUnionFind(S) returns a data structure where each
element of S is in a separate set

find(u) returns the name of set containing element u. Thus,
u and v belong to the same set iff find(u) = find(v)

union(A,B) merges two sets A and B.
Typically: union(find(u), find(v))

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Union-Find Data Structure

Data Structure

Store disjoint sets of elements that supports the following
operations

makeUnionFind(S) returns a data structure where each
element of S is in a separate set

find(u) returns the name of set containing element u. Thus,
u and v belong to the same set iff find(u) = find(v)

union(A,B) merges two sets A and B.
Typically: union(find(u), find(v))

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Union-Find Data Structure

Data Structure

Store disjoint sets of elements that supports the following
operations

makeUnionFind(S) returns a data structure where each
element of S is in a separate set

find(u) returns the name of set containing element u. Thus,
u and v belong to the same set iff find(u) = find(v)

union(A,B) merges two sets A and B.
Typically: union(find(u), find(v))

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Implementing Union-Find using Arrays and Lists

Using lists

Each set stored as list with a name associated with the list.

For each element u ∈ S a pointer to the its set. Array for
pointers: component[u] is pointer for u.

makeUnionFind(S) takes O(n) time and space.

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Example

s

t

u

v

w

x

y

z

s t

u w y

v x

z

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Implementing Union-Find using Arrays and Lists

find(u) reads the entry component[u]: O(1) time

union(A,B) involves updating the entries component[u] for
all elements u in A and B: O(|A|+ |B|) which is O(n)

s

t

u

v

w

x

y

z

s t

u w y

v x

z

s

t

u

v

w

x

y

z

s t

v x

z

u w y

Union(find(u), find(v))

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Implementing Union-Find using Arrays and Lists

find(u) reads the entry component[u]: O(1) time

union(A,B)

involves updating the entries component[u] for
all elements u in A and B: O(|A|+ |B|) which is O(n)

s

t

u

v

w

x

y

z

s t

u w y

v x

z

s

t

u

v

w

x

y

z

s t

v x

z

u w y

Union(find(u), find(v))

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Implementing Union-Find using Arrays and Lists

find(u) reads the entry component[u]: O(1) time

union(A,B) involves updating the entries component[u] for
all elements u in A and B: O(|A|+ |B|) which is O(n)

s

t

u

v

w

x

y

z

s t

u w y

v x

z

s

t

u

v

w

x

y

z

s t

v x

z

u w y

Union(find(u), find(v))

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Improving the List Implementation for Union

New Implementation

As before use component[u] to store set of u.
Change to union(A,B):

with each set, keep track of its size

assume |A| ≤ |B| for now

Merge the list of A into that of B: O(1) time (linked lists)

Update component[u] only for elements in the smaller set A

Total O(|A|) time.

Worst case is stil O(n).

find still takes O(1) time

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Improving the List Implementation for Union

New Implementation

As before use component[u] to store set of u.
Change to union(A,B):

with each set, keep track of its size

assume |A| ≤ |B| for now

Merge the list of A into that of B: O(1) time (linked lists)

Update component[u] only for elements in the smaller set A

Total O(|A|) time. Worst case is stil O(n).

find still takes O(1) time

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Improving the List Implementation for Union

New Implementation

As before use component[u] to store set of u.
Change to union(A,B):

with each set, keep track of its size

assume |A| ≤ |B| for now

Merge the list of A into that of B: O(1) time (linked lists)

Update component[u] only for elements in the smaller set A

Total O(|A|) time. Worst case is stil O(n).

find still takes O(1) time

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Example

s

t

u

v

w

x

y

z

s t

u w y

v x

z

Union(find(u), find(v))

s

t

u

v

w

x

y

z

s t

z

v xu w y

The smaller set (list) is appended to the largest set (list)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Improving the List Implementation for Union

Question

Is the improved implementation provably better or is it simply a
nice heuristic?

Theorem

Any sequence of k union operations, starting from
makeUnionFind(S) on set S of size n, takes at most O(k log k).

Corollary

Kruskal’s algorithm can be implemented in O(m log m) time.

Sorting takes O(m log m) time, O(m) finds take O(m) time and
O(n) unions take O(n log n) time.

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Improving the List Implementation for Union

Question

Is the improved implementation provably better or is it simply a
nice heuristic?

Theorem

Any sequence of k union operations, starting from
makeUnionFind(S) on set S of size n, takes at most O(k log k).

Corollary

Kruskal’s algorithm can be implemented in O(m log m) time.

Sorting takes O(m log m) time, O(m) finds take O(m) time and
O(n) unions take O(n log n) time.

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Improving the List Implementation for Union

Question

Is the improved implementation provably better or is it simply a
nice heuristic?

Theorem

Any sequence of k union operations, starting from
makeUnionFind(S) on set S of size n, takes at most O(k log k).

Corollary

Kruskal’s algorithm can be implemented in O(m log m) time.

Sorting takes O(m log m) time, O(m) finds take O(m) time and
O(n) unions take O(n log n) time.

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Average Case or Amortized Analysis

Why does theorem work?

Key Observation

union(A,B) takes O(|A|) time where |A| ≤ |B|. Size of new set is
≥ 2|A|. Cannot double too many times.

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Proof of Theorem

Proof.

Any union operation involves at most 2 of the original
one-element sets; thus at least n − 2k elements have never
been involved in a union

Also, maximum size of any set (after k unions) is 2k

union(A,B) takes O(|A|) time where |A| ≤ |B|.
Charge each element in A constant time to pay for O(|A|)
time.

How much does any element get charged?

If component[v] is updated, set containing v doubles in size

component[v] is updated at most log 2k times

Total number of updates is 2k log 2k = O(k log k)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Proof of Theorem

Proof.

Any union operation involves at most 2 of the original
one-element sets; thus at least n − 2k elements have never
been involved in a union

Also, maximum size of any set (after k unions) is 2k

union(A,B) takes O(|A|) time where |A| ≤ |B|.
Charge each element in A constant time to pay for O(|A|)
time.

How much does any element get charged?

If component[v] is updated, set containing v doubles in size

component[v] is updated at most log 2k times

Total number of updates is 2k log 2k = O(k log k)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Proof of Theorem

Proof.

Any union operation involves at most 2 of the original
one-element sets; thus at least n − 2k elements have never
been involved in a union

Also, maximum size of any set (after k unions) is 2k

union(A,B) takes O(|A|) time where |A| ≤ |B|.
Charge each element in A constant time to pay for O(|A|)
time.

How much does any element get charged?

If component[v] is updated, set containing v doubles in size

component[v] is updated at most log 2k times

Total number of updates is 2k log 2k = O(k log k)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Proof of Theorem

Proof.

Any union operation involves at most 2 of the original
one-element sets; thus at least n − 2k elements have never
been involved in a union

Also, maximum size of any set (after k unions) is 2k

union(A,B) takes O(|A|) time where |A| ≤ |B|.

Charge each element in A constant time to pay for O(|A|)
time.

How much does any element get charged?

If component[v] is updated, set containing v doubles in size

component[v] is updated at most log 2k times

Total number of updates is 2k log 2k = O(k log k)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Proof of Theorem

Proof.

Any union operation involves at most 2 of the original
one-element sets; thus at least n − 2k elements have never
been involved in a union

Also, maximum size of any set (after k unions) is 2k

union(A,B) takes O(|A|) time where |A| ≤ |B|.
Charge each element in A constant time to pay for O(|A|)
time.

How much does any element get charged?

If component[v] is updated, set containing v doubles in size

component[v] is updated at most log 2k times

Total number of updates is 2k log 2k = O(k log k)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Proof of Theorem

Proof.

Any union operation involves at most 2 of the original
one-element sets; thus at least n − 2k elements have never
been involved in a union

Also, maximum size of any set (after k unions) is 2k

union(A,B) takes O(|A|) time where |A| ≤ |B|.
Charge each element in A constant time to pay for O(|A|)
time.

How much does any element get charged?

If component[v] is updated, set containing v doubles in size

component[v] is updated at most log 2k times

Total number of updates is 2k log 2k = O(k log k)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Proof of Theorem

Proof.

Any union operation involves at most 2 of the original
one-element sets; thus at least n − 2k elements have never
been involved in a union

Also, maximum size of any set (after k unions) is 2k

union(A,B) takes O(|A|) time where |A| ≤ |B|.
Charge each element in A constant time to pay for O(|A|)
time.

How much does any element get charged?

If component[v] is updated, set containing v doubles in size

component[v] is updated at most log 2k times

Total number of updates is 2k log 2k = O(k log k)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Proof of Theorem

Proof.

Any union operation involves at most 2 of the original
one-element sets; thus at least n − 2k elements have never
been involved in a union

Also, maximum size of any set (after k unions) is 2k

union(A,B) takes O(|A|) time where |A| ≤ |B|.
Charge each element in A constant time to pay for O(|A|)
time.

How much does any element get charged?

If component[v] is updated, set containing v doubles in size

component[v] is updated at most log 2k times

Total number of updates is 2k log 2k = O(k log k)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Proof of Theorem

Proof.

Any union operation involves at most 2 of the original
one-element sets; thus at least n − 2k elements have never
been involved in a union

Also, maximum size of any set (after k unions) is 2k

union(A,B) takes O(|A|) time where |A| ≤ |B|.
Charge each element in A constant time to pay for O(|A|)
time.

How much does any element get charged?

If component[v] is updated, set containing v doubles in size

component[v] is updated at most log 2k times

Total number of updates is 2k log 2k = O(k log k)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Improving Worst Case Time

u

v ws

Better Data Structure

Maintain elements in a forest of in-trees; all elements in one tree
belong to a set with root’s name.

find(u): Traverse from u to the root

union(A,B): Make root of A (smaller set) point to root of B.
Takes O(1) time.

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Improving Worst Case Time

u

v ws

Better Data Structure

Maintain elements in a forest of in-trees; all elements in one tree
belong to a set with root’s name.

find(u): Traverse from u to the root

union(A,B): Make root of A (smaller set) point to root of B.
Takes O(1) time.

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Improving Worst Case Time

u

v w

Union(find(v), find(u))
u

v ws s

Better Data Structure

Maintain elements in a forest of in-trees; all elements in one tree
belong to a set with root’s name.

find(u): Traverse from u to the root

union(A,B): Make root of A (smaller set) point to root of B.
Takes O(1) time.

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Details of Implementation

Each element u ∈ S has a pointer parent(u) to its ancestor.

makeUnionFind(S)

for each u in S

parent(u) = u

find(u)

while (parent(u) 6= u)

u = parent(u)

return u

union(component(u), component(v)) (* parent(u) = u & parent(v) = v *)

if (|component(u)| ≤ |component(v)|)

parent(u) = v

else

parent(v) = u

update new component size to be |component(u)| + |component(v)|

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Details of Implementation

Each element u ∈ S has a pointer parent(u) to its ancestor.

makeUnionFind(S)

for each u in S

parent(u) = u

find(u)

while (parent(u) 6= u)

u = parent(u)

return u

union(component(u), component(v)) (* parent(u) = u & parent(v) = v *)

if (|component(u)| ≤ |component(v)|)

parent(u) = v

else

parent(v) = u

update new component size to be |component(u)| + |component(v)|

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Details of Implementation

Each element u ∈ S has a pointer parent(u) to its ancestor.

makeUnionFind(S)

for each u in S

parent(u) = u

find(u)

while (parent(u) 6= u)

u = parent(u)

return u

union(component(u), component(v)) (* parent(u) = u & parent(v) = v *)

if (|component(u)| ≤ |component(v)|)

parent(u) = v

else

parent(v) = u

update new component size to be |component(u)| + |component(v)|

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Details of Implementation

Each element u ∈ S has a pointer parent(u) to its ancestor.

makeUnionFind(S)

for each u in S

parent(u) = u

find(u)

while (parent(u) 6= u)

u = parent(u)

return u

union(component(u), component(v)) (* parent(u) = u & parent(v) = v *)

if (|component(u)| ≤ |component(v)|)

parent(u) = v

else

parent(v) = u

update new component size to be |component(u)| + |component(v)|

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Analysis

Theorem

The forest based implementation for a set of size n, has the
following complexity for the various operations: makeUnionFind
takes O(n), union takes O(1), and find takes O(log n).

Proof.

find(u) depends on the height of tree containing u

Height of u increases by at most 1 only when the set
containing u changes its name

If height of u increases then size of the set containing u (at
least) doubles

Maximum set size is n; so height of any tree is at most
O(log n)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Analysis

Theorem

The forest based implementation for a set of size n, has the
following complexity for the various operations: makeUnionFind
takes O(n), union takes O(1), and find takes O(log n).

Proof.

find(u) depends on the height of tree containing u

Height of u increases by at most 1 only when the set
containing u changes its name

If height of u increases then size of the set containing u (at
least) doubles

Maximum set size is n; so height of any tree is at most
O(log n)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Analysis

Theorem

The forest based implementation for a set of size n, has the
following complexity for the various operations: makeUnionFind
takes O(n), union takes O(1), and find takes O(log n).

Proof.

find(u) depends on the height of tree containing u

Height of u increases by at most 1 only when the set
containing u changes its name

If height of u increases then size of the set containing u (at
least) doubles

Maximum set size is n; so height of any tree is at most
O(log n)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Analysis

Theorem

The forest based implementation for a set of size n, has the
following complexity for the various operations: makeUnionFind
takes O(n), union takes O(1), and find takes O(log n).

Proof.

find(u) depends on the height of tree containing u

Height of u increases by at most 1 only when the set
containing u changes its name

If height of u increases then size of the set containing u (at
least) doubles

Maximum set size is n; so height of any tree is at most
O(log n)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Analysis

Theorem

The forest based implementation for a set of size n, has the
following complexity for the various operations: makeUnionFind
takes O(n), union takes O(1), and find takes O(log n).

Proof.

find(u) depends on the height of tree containing u

Height of u increases by at most 1 only when the set
containing u changes its name

If height of u increases then size of the set containing u (at
least) doubles

Maximum set size is n; so height of any tree is at most
O(log n)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Analysis

Theorem

The forest based implementation for a set of size n, has the
following complexity for the various operations: makeUnionFind
takes O(n), union takes O(1), and find takes O(log n).

Proof.

find(u) depends on the height of tree containing u

Height of u increases by at most 1 only when the set
containing u changes its name

If height of u increases then size of the set containing u (at
least) doubles

Maximum set size is n; so height of any tree is at most
O(log n)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Further Improvements: Path Compression

Observation

Consecutive calls of find(u) take O(log n) time each, but they
traverse the same sequence of pointers.

Idea: Path Compression

Make all nodes encountered in the find(u) point to root.

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Further Improvements: Path Compression

Observation

Consecutive calls of find(u) take O(log n) time each, but they
traverse the same sequence of pointers.

Idea: Path Compression

Make all nodes encountered in the find(u) point to root.

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Path Compression: Example

r

v

w

u

r

v

w

u
after find(u)

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Path Compression

find(u):

if (parent(u) 6= u)

parent(u) = find(parent(u))

return parent(u)

Question

Does Path Compression help?

Yes!

Theorem

With Path Compression, k operations (find and/or union) take
O(kα(k ,min{k , n})) time where α is the inverse Ackermann
function.

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Path Compression

find(u):

if (parent(u) 6= u)

parent(u) = find(parent(u))

return parent(u)

Question

Does Path Compression help?

Yes!

Theorem

With Path Compression, k operations (find and/or union) take
O(kα(k ,min{k , n})) time where α is the inverse Ackermann
function.

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Path Compression

find(u):

if (parent(u) 6= u)

parent(u) = find(parent(u))

return parent(u)

Question

Does Path Compression help?

Yes!

Theorem

With Path Compression, k operations (find and/or union) take
O(kα(k ,min{k , n})) time where α is the inverse Ackermann
function.

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Ackerman and Inverse Ackerman Functions

Ackerman function A(m, n) defined for m, n ≥ 0 recursively

A(m, n) =


n + 1 if m = 0
A(m − 1, 1) if m > 0 and n = 0
A(m − 1,A(m, n − 1)) if m > 0 and n > 0

A(3, n) = 2n+3 − 3
A(4, 3) = 265536 − 3

α(m, n) is inverse Ackerman function defined as

α(m, n) = min{i | A(i , bm/nc) ≥ log2 n}

For all practical purposes α(m, n) ≤ 5

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Ackerman and Inverse Ackerman Functions

Ackerman function A(m, n) defined for m, n ≥ 0 recursively

A(m, n) =


n + 1 if m = 0
A(m − 1, 1) if m > 0 and n = 0
A(m − 1,A(m, n − 1)) if m > 0 and n > 0

A(3, n) = 2n+3 − 3
A(4, 3) = 265536 − 3

α(m, n) is inverse Ackerman function defined as

α(m, n) = min{i | A(i , bm/nc) ≥ log2 n}

For all practical purposes α(m, n) ≤ 5

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Ackerman and Inverse Ackerman Functions

Ackerman function A(m, n) defined for m, n ≥ 0 recursively

A(m, n) =


n + 1 if m = 0
A(m − 1, 1) if m > 0 and n = 0
A(m − 1,A(m, n − 1)) if m > 0 and n > 0

A(3, n) = 2n+3 − 3
A(4, 3) = 265536 − 3

α(m, n) is inverse Ackerman function defined as

α(m, n) = min{i | A(i , bm/nc) ≥ log2 n}

For all practical purposes α(m, n) ≤ 5

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Lower Bound for Union-Find Data Structure

Amazing result:

Theorem (Tarjan)

For UnionFind, any data structure in the pointer model requires
O(mα(m, n)) time for m operations.

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Running time of Kruskal’s Algorithm

Using Union-Find data structure:

O(m) find operations (two for each edge)

O(n) union operations (one for each edge added to T)

Total time: O(m log m) for sorting plus O(mα(n)) for
union-find operations. Thus O(m log m) time despite the
improved Union-Find data structure.

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Best Known Asymptotic Running Times for MST

Prim’s algorithm using Fibonacci heaps: O(n log n + m).
If m is O(n) then running time is Ω(n log n).

Question

Is there a linear time (O(m + n) time) algorithm for MST?

O(m log∗m) time [Fredman and Tarjan ’1986]

O(m) time using bit operations in RAM model [Fredman and
Willard 1993]

O(m) expected time (randomized algorithm) [Karger, Klein
and Tarjan ’1985]

O(mα(m, n)) time [Chazelle ’97]

Still open: is there an O(m) time deterministic algorithm in
the comparison model?

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Best Known Asymptotic Running Times for MST

Prim’s algorithm using Fibonacci heaps: O(n log n + m).
If m is O(n) then running time is Ω(n log n).

Question

Is there a linear time (O(m + n) time) algorithm for MST?

O(m log∗m) time [Fredman and Tarjan ’1986]

O(m) time using bit operations in RAM model [Fredman and
Willard 1993]

O(m) expected time (randomized algorithm) [Karger, Klein
and Tarjan ’1985]

O(mα(m, n)) time [Chazelle ’97]

Still open: is there an O(m) time deterministic algorithm in
the comparison model?

Chekuri CS473ug

Data Structures

Implementing Prim’s Algorithm
Priority Queues
Implementing Kruskal’s Algorithm
Union-Find Data Structure

Best Known Asymptotic Running Times for MST

Prim’s algorithm using Fibonacci heaps: O(n log n + m).
If m is O(n) then running time is Ω(n log n).

Question

Is there a linear time (O(m + n) time) algorithm for MST?

O(m log∗m) time [Fredman and Tarjan ’1986]

O(m) time using bit operations in RAM model [Fredman and
Willard 1993]

O(m) expected time (randomized algorithm) [Karger, Klein
and Tarjan ’1985]

O(mα(m, n)) time [Chazelle ’97]

Still open: is there an O(m) time deterministic algorithm in
the comparison model?

Chekuri CS473ug

	Greedy Algorithms: Minimum Spanning Tree
	Minimum Spanning Tree
	The Problem
	The Algorithms
	Correctness

	Data Structures for MST: Priority Queues and Union-Find
	Data Structures
	Implementing Prim's Algorithm
	Priority Queues
	Implementing Kruskal's Algorithm
	Union-Find Data Structure

