190

Chapter 4 Greedy Algorithms

s //

Prove that, for a given set of boxes with specified weights, the greedy
algorithm currently in use actually minimizes the number of trucks that
are needed. Your proof should follow the type of analysis we used for
the Interval Scheduling Problem: it should establish the optimality of this
greedy packing algorithm by identifying a measure under which it “stays
ahead” of all other solutions.

Some of your friends have gotten into the burgeoning field of time-series
data mining, in which one looks for patterns in sequences of events that
occur over time. Purchases at stock exchanges—what’s being bought—
are one source of data with a natural ordering in time. Given a long
sequence S of such events, your friends want an efficient way to detect
certain “patterns” in them—for example, they may want to know if the
four events

buy Yahoo, buy eBay, buy Yahoo, buy Oracle

occur in this sequence S, in order but not necessarily consecutively.

They begin with a collection of possible events (e.g., the possible
transactions) and a sequence S of n of these events. A given event may
occur multiple times in S (e.g., Yahoo stock may be bought many times
in a single sequence S). We will say that a sequence S’ is a subsequence
of S if there is a way to delete certain of the events from S so that the
remaining events, in order, are equal to the sequence S'. So, for example,
the sequence of four events above is a subsequence of the sequence

buy Amazon, buy Yahoo, buy eBay, buy Yahoo, buy Yahoo,
buy Oracle

Their goal is to be able to dream up short sequences and quickly
detect whether they are subsequences of S. So this is the problem they
pose to you: Give an algorithm that takes two sequences of events—S’ of
length m and S of length n, each possibly containing an event more than
once—and decides in time O(m + n) whether S’ is a subsequence of S.

Let’s consider a long, quiet country road with houses scattered very
sparsely along it. (We can picture the road as a long line segment, with
an eastern endpoint and a western endpoint.) Further, let’s suppose that
despite the bucolic setting, the residents of all these houses are avid cell
phone users. You want to place cell phone base stations at certain points
along the road, so that every house is within four miles of one of the base
stations.

Give an efficient algorithm that achieves this goal, using as few base
stations as possible.

194

Chapter 4 Greedy Algorithms

13.

The Problem. Given a set of n streams, each specified by its number of
bits b; and its time duration ¢;, as well as the link parameter r, determine
whether there exists a valid schedule.

Example. Suppose we have n = 3 streams, with
(b;, ty) = (2000, 1), (b,, t;) = (6000, 2), (b3, t3) = (2000, 1),

and suppose the link’s parameter is r = 5000. Then the schedule that runs
the streams in the order 1, 2, 3, is valid, since the constraint (x) is satisfied:

t = 1: the whole first stream has been sent, and 2000 < 5000 - 1
t = 2: half of the second stream has also been sent,

and 2000 + 3000 < 5000 - 2
Similar calculations hold for t =3 and t = 4.

(@) Consider the following claim:

Claim: There exists a valid schedule if and only if each stream i satisfies
bi = Tti.

Decide whether you think the claim is true or false, and give a proof
of either the claim or its negation.

(b) Give an algorithm that takes a set of n streams, each specified by its
number of bits b; and its time duration t;, as well as the link parameter
r, and determines whether there exists a valid schedule. The running
time of your algorithm should be polynomial in .

A small business—say, a photocopying service with a single large
machine—faces the following scheduling problem. Each morning they
get a set of jobs from customers. They want to do the jobs on their single
machine in an order that keeps their customers happiest. Customer i’s
job will take t; time to complete. Given a schedule (i.e., an ordering of the
jobs), let C; denote the finishing time of job i. For example, if job j is the
first to be done, we would have C; =t;; and if job j is done right after job
i, we would have C; = C; +t;. Each customer i also has a given weight w;
that represents his or her importance to the business. The happiness of
customer i is expected to be dependent on the finishing time of i’s job.
So the company decides that they want to order the jobs to minimize the
weighted sum of the completion times, 1" , w;,C;.

Design an efficient algorithm to solve this problem. That is, you are
given a set of n jobs with a processing time t; and a weight w; for each
job. You want to order the jobs so as to minimize the weighted sum of
the completion times, "' | w,C;.

Example. Suppose there are two jobs: the first takes time t; =1 and has
weight w, = 10, while the second job takes time ¢, =3 and has weight

14.

Exercises

w, = 2. Then doing job 1 first would yield a weighted completion time
of 10- 1+ 2-4 =18, while doing the second job first would yield the larger
weighted completion time of 10-4 + 2 - 3 = 46.

You're working with a group of security consultants who are helping to
monitor a large computer system. There’s particular interest in keeping
track of processes that are labeled “sensitive.” Each such process has a
designated start time and finish time, and it runs continuously between
these times; the consultants have a list of the planned start and finish
times of all sensitive processes that will be run that day.

As a simple first step, they've written a program called status_check
that, when invoked, runs for a few seconds and records various pieces
of logging information about all the sensitive processes running on the
system at that moment. (We'll model each invocation of status_check
as lasting for only this single point in time.) What they’d like to do is to
run status_check as few times as possible during the day, but enough
that for each sensitive process P, status_check is invoked at least once
during the execution of process P.

(@) Give an efficient algorithm that, given the start and finish times of
all the sensitive processes, finds as small a set of times as possi-
ble at which to invoke status_check, subject to the requirement
that status_check is invoked at least once during each sensitive
process P.

(b) While you were designing your algorithm, the security consultants
were engaging in a little back-of-the-envelope reasoning. “Suppose
we can find a set of k sensitive processes with the property that no
two are ever running at the same tiine. Then clearly your algorithm
will need to invoke status_check at least k times: no one invocation
of status_check can handle more than one of these processes.”

This is true, of course, and after some further discussion, you all
begin wondering whether something stronger is true as well, a kind
of converse to the above argument. Suppose that k* is the largest
value of k such that one can find a set of k sensitive processes with
no two ever running at the same time. Is it the case that there must
be a set of k* times at which you can run status_check so that some
invocation occurs during the execution of each sensitive process? (In
other words, the kind of argument in the previous paragraph is really
the only thing forcing you to need a lot of invocations of status_
check.) Decide whether you think this claim is true or false, and give
a proof or a counterexample.

195

198

Chapter 4 Greedy Algorithms

19.

edge e = (v, w) connecting two sites v and w, and given a proposed starting
time ¢ from location v, the site will return a value f.(t), the predicted
arrival time at w. The Web site guarantees that f,(t) >t for all edges e
and all times ¢ (you can’t travel backward in time), and that f.(t) is a
monotone increasing function of ¢ (that is, you do not arrive earlier by
starting later). Other than that, the functions f,(t) may be arbitrary. For
example, in areas where the travel time does not vary with the season,
we would have f,(t) =t + £,, where ¢, is the time needed to travel from the
beginning to the end of edge e.

Your friends want to use the Web site to determine the fastest way
to travel through the directed graph from their starting point to their
intended destination. (You should assume that they start at time 0, and
that all predictions made by the Web site are completely correct.) Give a
polynomial-time algorithm to do this, where we treat a single query to
the Web site (based on a specific edge e and a time ¢) as taking a single
computational step.

A group of network designers at the communications company CluNet
find themselves facing the following problem. They have a connected
graph G = (V, E), in which the nodes represent sites that want to com-
municate. Each edge e is a communication link, with a given available
bandwidth b..

For each pair of nodes u, v € V, they want to select a single u-v path P
on which this pair will communicate. The bottleneck rate b(P) of this pathP
is the minimum bandwidth of any edge it contains; that s, b(P) = minep b,.
The best achievable bottleneck rate for the pair u,v in G is simply the
maximum, over all u-v paths P in G, of the value b(P).

It’s getting to be very complicated to keep track of a path for each pair
of nodes, and so one of the network designers makes a bold suggestion:
Maybe one can find a spanning tree T of G so that for every pair of nodes
u, v, the unique u-v path in the tree actually attains the best achievable
bottleneck rate for u,v in G. (In other words, even if you could choose
any u-v path in the whole graph, you couldn’t do better than the u-v path
inT.)

This idea is roundly heckled in the offices of CluNet for a few days,
and there’s a natural reason for the skepticism: each pair of nodes
might want a very different-looking path to maximize its bottleneck rate;
why should there be a single tree that simultaneously makes everybody
happy? But after some failed attempts to rule out the idea, people begin
to suspect it could be possible.

20.

Exercises

Show that such a tree exists, and give an efficient algorithm to find
one. That is, give an algorithm constructing a spanning tree T in which,
for each u, v e V, the bottleneck rate of the u-v path in T is equal to the
best achievable bottleneck rate for the pair uz, v in G.

Every September, somewhere in a far-away mountainous part of the
world, the county highway crews get together and decide which roads to
keep clear through the coming winter. There are n towns in this county,
and the road system can be viewed as a (connected) graph G = (V,E) on
this set of towns, each edge representing a road joining two of them.
In the winter, people are high enough up in the mountains that they
stop worrying about the length of roads and start worrying about their
altitude—this is really what determines how difficult the trip will be.

So each road—each edge e in the graph—is annotated with a number
a, that gives the altitude of the highest point on the road. We’ll assume
that no two edges have exactly the same altitude value a,. The height of
a path P in the graph is then the maximum of a, over all edges e on P.
Finally, a path between towns i and j is declared to be winter-optimal if it
achieves the minimum possible height over all paths from i to j.

The highway crews are going to select a set E’ C E of the roads to keep
clear through the winter; the rest will be left unmaintained and kept off
limits to travelers. They all agree that whichever subset of roads E’ they
decide to keep clear, it should have the property that (V, E') is a connected
subgraph; and more strongly, for every pair of towns i and j, the height
of the winter-optimal path in (V, E’) should be no greater than it is in the
full graph G = (V, E). We'll say that (V, E') is a minimume-altitude connected
subgraph if it has this property.

Given that they're going to maintain this key property, however, they
otherwise want to keep as few roads clear as possible. One year, they hit
upon the following conjecture:

The minimum spanning tree of G, with respect to the edge weights a,, is a
minimume-altitude connected subgraph.

(In an earlier problem, we claimed that there is a unique minimum span-
ning tree when the edge weights are distinct. Thus, thanks to the assump-
tion that all a, are distinct, it is okay for us to speak of the minimum
spanning tree.)

Initially, this conjecture is somewhat counterintuitive, since the min-
imum spanning tree is trying to minimize the sum of the values a,, while
the goal of minimizing altitude seems to be asking for a fairly different
thing. But lacking an argument to the contrary, they begin considering an
even bolder second conjecture:

199

