Exercises 25

strong instability? Either give an example of a set of men and women
with preference lists for which every perfect matching has a strong
instability; or give an algorithm that is guaranteed to find a perfect
matching with no strong instability.

(b) A weak instability in a perfect matching S consists of a man m and
a woman w, such that their partners in S are w’ and m’, respectively,
and one of the following holds:

- m prefers w to w', and w either prefers m to m’ or is indifferent
between these two choices; or
- w prefers m to m’, and m either prefers w to w’ or is indifferent
between these two choices.
In other words, the pairing between m and w is either preferred
by both, or preferred by one while the other is indifferent. Does
there always exist a perfect matching with no weak instability? Either
give an example of a set of men and women with preference lists
for which every perfect matching has a weak instability; or give an
algorithm that is guaranteed to find a perfect matching with no weak
instability.

6. Peripatetic Shipping Lines, Inc., is a shipping company that owns n ships
and provides service to n ports. Each of its ships has a schedule that says,
for each day of the month, which of the ports it’s currently visiting, or
whether it's out at sea. (You can assume the “month” here has m days,
for some m > n.) Each ship visits each port for exactly one day during the
month. For safety reasons, PSL Inc. has the following strict requirement:

(1) No two ships can be in the same port on the same day.

The company wants to perform maintenance on all the ships this
month, via the following scheme. They want to truncate each ship’s
schedule: for each ship S;, there will be some day when it arrives in its
scheduled port and simply remains there for the rest of the month (for
maintenance). This means that S; will not visit the remaining ports on
its schedule (if any) that month, but this is okay. So the truncation of
S;’s schedule will simply consist of its original schedule up to a certain
specified day on which it is in a port P; the remainder of the truncated
schedule simply has it remain in port P.

Now the company’s question to you is the following: Given the sched-
ule for each ship, find a truncation of each so that condition (f) continues
to hold: no two ships are ever in the same port on the same day.

Show that such a set of truncations can always be found, and give an
algorithm to find them.




68 Chapter 2 Basics of Algorithm Analysis

&) =2v18"
&M =2"
g4(n) = n4/3

g(n) =n(log n)®

gs(n) — nlog n
gs(n) =22"
g =27

5. Assume you have functions f and g such that f(n) is O(g(n)). For each of
the following statements, decide whether you think it is true or false and
give a proof or counterexample.

(@) log, f(n)is O(log, g(n)).
(b) 2/™is 028™).
(© fm?is 0m?.

6. Consider the following basic pi‘oblem. You're given an array A consisting
of n integers A[1], A[2], ..., A[n]. You'd like to output a two-dimensional
n-by-n array B in which B[i, j] (for i < j) contains the sum of array entries
Ali] through A[j]—that is, the sum A[i] + A[i + 1]+ - - - + A[j]. (The value of
array entry B[i, ] is left unspecified whenever i > j, so it doesn’t matter
what is output for these values.)

Here’s a simple algorithm to solve this problem.

For i=1; 25::u:0
For j=i+1, i+2,...,n
Add up array entries A[i] through A[j]
Store the result in BJi,j]
Endfor o
Endfor

/

(a) For some function f that you should choose, give a bound of the
form O(f(n)) on the running time of this algorithm on an input of
size n (i.e., a bound on the number of operations performed by the
algorithm).

(b) For this same function f, show that the running time of the algorithm t
on an input of size n is also Q(f(n)). (This shows an asymptotically
tight bound of ®(f(n)) on the running time.)

v

(c) Although the algorithm you analyzed in parts (a) and (b) is the most
natural way to solve the problem—after all, it just iterates through




Exercises 69

the relevant entries of the array B, filling in a value for each—it
contains some highly unnecessary sources of inefficiency. Give a
different algorithm to solve this problem, with an asymptotically
better running time. In other words, you should design an algorithm
with running time O(g(n)), where lim,,_, ., g(n)/f(n) =0.

7. There’s a class of folk songs and holiday songs in which each verse
consists of the previous verse, with one extra line added on. “The Twelve
Days of Christmas” has this property; for example, when you get to the
fifth verse, you sing about the five golden rings and then, reprising the
lines from the fourth verse, also cover the four calling birds, the three
French hens, the two turtle doves, and of course the partridge in the pear
tree. The Aramaic song “Had gadya” from the Passover Haggadah works
like this as well, as do many other songs.

These songs tend to last a long time, despite having relatively short
scripts. In particular, you can convey the words plus instructions for one
of these songs by specifying just the new line that is added in each verse,
without having to write out all the previous lines each time. (So the phrase
“five golden rings” only has to be written once, even though it will appear
in verses five and onward.)

There’s something asymptotic that can be analyzed here. Suppose,
for concreteness, that each line has a length that is bounded by a constant
¢, and suppose that the song, when sung out loud, runs for n words total.
Show how to encode such a song using a script that has length f(n), for
a function f(n) that grows as slowly as possible.

8. You're doing some stress-testing on various models of glass jars to
determine the height from which they can be dropped and still not break.
The setup for this experiment, on a particular type of jar, is as follows.
You have a ladder with n rungs, and you want to find the highest rung
from which you can drop a copy of the jar and not have it break. We call
this the highest safe rung.

It might be natural to try binary search: drop a jar from the middle
rung, see if it breaks, and then recursively try from rung n/4 or 3n/4
depending on the outcome. But this has the drawback that you could
break a lot of jars in finding the answer.

If your primary goal were to conserve jars, on the other hand, you
could try the following strategy. Start by dropping a jar from the first
rung, then the second rung, and so forth, climbing one higher each time
until the jar breaks. In this way, you only need a single jar—at the moment




