
Spei�ation and Veri�ation ofHardware

VHDL 1Original by Magnus Bj ¨orkComputing SieneChalmers University of Tehnology

VHDL 1 � p.1/51

The ourse

Course team:Mary Sheeran (kursansvarig)Dennis WalterEmil AxelssonGuest leturers:Jiri Gaisler (Gaisler Researh)Emily Shriver (Intel)

VHDL 1 � p.2/51

About the ourse

Chek in often at:http://www.s.halmers.se/Cs/Grundutb/Kurser/svh/Two halves: VHDL part and Lava part.Eah half inludes one lab and one take home exam.Written exam in then endSign up for one lab aount eah.

You may solve the labs in pairs, but are not allowed toooperate between the pairs. No ooperation at all on thetake home exams (do them individually).

VHDL 1 � p.3/51

Course Book: Two Options

Peter Ashenden: The Designer's Guide to VHDLApproahes VHDL as any programming languageFouses on simulation.The VHDL book used in industry (Ashenden is partof the ommittee behind the VHDL standard, thisbook is sometimes seen as a more readable versionof the standard.)

Stefan Sjöholm, Lennart Lindh: VHDL för konstruktionApproahes VHDL as a tool for onstrutinghardwareFouses on synthesisCheaper and more onise VHDL 1 � p.4/51

Overview of the leture

A 15 minutes rash ourse in hardware designVHDL
Please interrupt me if you have questions

VHDL 1 � p.5/51

Fundamental hardware onepts
VHDL 1 � p.6/51

Gate level

Can be ompared to assembler for softwareWe may use:Gates: Not, And, Or, Implies, Multiplexers
And

Memory ells: d-�ip�op
0

Initial valueComponents: boxes ontaining gate-leveldesriptions

VHDL 1 � p.7/51

Combinational gate level examples

Half adder Full adder
s

And

Xor

a

coutinc
out

a b

cin c

s

HA

HA
Or

4 bit ripple-arry adder
2 2

2

3

3

3 4 4

4

a b

s

a b

s

a b

s

1a b1

s1

FAFA FA FA

VHDL 1 � p.8/51

Sequential gate level examples

Osillator Sequential adder
0

Not

a b

s
reset

FA

0

And

VHDL 1 � p.9/51

Be areful with

Feedbak only through �ip�ops

Not

You may split wires, but never join them:

Not OKOKIn this ourse, any wire may only have one driver.
VHDL 1 � p.10/51

Abstration domains (1)

Strutural domain:Ciruit desribed as a omposition of sub-iruits
2 2

2

3

3

3 4 4

4

a b

s

a b

s

a b

s

1a b1

s1

FAFA FA FA

Behavioral domain:Desribes what the iruit does, not how it does it

s := a + b;

VHDL 1 � p.11/51

Abstration domains (2)

Behavioral is the �desired� domain (why make moreompliated ode?)But, behavioral odeMay not be synthesizableif /= 'delayed(T) then . . .x <= y / z;Time-shift and division an be simulated, but notsynthesizedMay lead to inef�ient iruita := b + ;d := e - f;Maybe only one adder is needed? VHDL 1 � p.12/51

Abstration domains (3)

Strutural deomposition is usually neessary forgetting ef�ient and synthesizable odeNo design is ompletely struturalComponents! Gates! Transistors! Silionrystals! . . .Sooner or later we reah the leaves of strut.deomposition. The strutural leaves are alwaysdesribed behaviorally.What is a suitable level for the leaves?Common answer: Register Transfer Level (RTL)
VHDL 1 � p.13/51

Register Transfer Level (1)RTL = Gate level, plus:Wires arrying more omplex data types(bit-vetors, integers, arrays of integers, ...)Components operating on those types(adders, multipliers, sorters, ...)Registers and memories (generalization of d-�ip�op,storing any type)Subomponents for hierarhial strutureFinite state mahines (FSMs)These omponents are desribed behaviorally!An adder does not have to be deomposed into fulladdersA ounter (an FSM) does not have to bedeomposed into a register and an adder VHDL 1 � p.14/51

Register Transfer Level (2)

Corret timing behavior internally: it should be possibleto see from the RTL desription what happens in eahlok yle.Designer ontrols overall struture, synthesis toolontrols low-level details (RTL synthesis)
VHDL 1 � p.15/51

Behavioral Level (1)

Desribes what the iruit does, not how it does itDoesn't say anything about the struture of the iruitUses standard programming language onepts suhas algorithms, loops, omplex data types andproesses.Shows orret timing behavior externally, but notinternallyImportant aspetsMust be easy to understandMust be unambiguousIs used as a runnable spei�ation; behavior isompared with RTL implementation during testphase VHDL 1 � p.16/51

Behavioral Level (2)

Used to speify what your iruit doesCan be disussed with ustomer as initial step of designCan also be used to simulate other parts of the iruitrywhih are developed by somebody elseIs probably not synthesizable

VHDL 1 � p.17/51

Funtional Level

Even higher level than behavioralOnly desribes the funtion of the iruitNot even orret timing behaviorMay use any programming language onstruts
VHDL 1 � p.18/51

Abstration Levels (1)

Say we want to desribe a pipelined sorter for integers:Funtional level: Your favorite sorting algorithmBehavioral level: The same algorithm, with resultdelayed a number of lok yles to get orret timingRegister transfer level: A strutural desription usingomparators, registers, and wires arrying integers.Uses the same sorting method as the �nal iruit(probably not the same as in previous steps).Two versions:All registers at the end of the datapathRegisters distributed in the orret plaes.
VHDL 1 � p.19/51

Abstration Levels (2)

Gate level: An inomprehensible strutural desriptionusing registers, gates and wires arrying booleansTransistor level: A strutural desription using onlytransistors and wires arrying different voltages
VHDL 1 � p.20/51

Design proess (simpli�ed)

1. Write a spei�ation2. Write an implementation3. Verify that your implementation meets the spei�ation4. If not, are the errors in the spei�ation or theimplementation?Corret the erroneous one.5. Repeat step 3-4 until no more errors are found.
VHDL 1 � p.21/51

Iterative design proess

1. Write a (runnable) spei�ation.2. Do some veri�ation of the spei�ation, to onvineyourself that it is orret.3. Write an implementation on a slightly less abstrat levelor with more optimizations4. Verify that the new implementation works like aprevious one (perhaps the last implementation, or thespei�ation)5. Repeat step 3-4 until you have an optimized low leveldesription of your iruit.

VHDL 1 � p.22/51

If Spe. and Implementation Differs?

If your �nal design doesn't behave as the behavioraldesription, you have three options:1. Change your �nal design to math the behavioral model2. Change your behavioral model to math the �nal design3. Find out exatly how different they are (this isn't as easyas you think). Determine if they are similar enough, andthoroughly doument the differenesFirst option is preferable, sine you don't need to update theontrat with your ustomer. If you disover that the agreedupon behavior was hard to implement, seond option isprobably best. Third option is usually harder than seond.
VHDL 1 � p.23/51

(Funtional) Veri�ation tehniques

Testing: write testbenhes, simulate iruit (ModelSim)Exhaustive testing: Generally not feasibleAutomated testing: Safelogi Monitor, FoCs,QuikChekProperty heking (model heking): Jasper Gold,RuleBase, Solidify, FormalityEquivalene heking: eChek, onformal (if 1-1-mathof dffs)Other methods: Symboli simulation, Theorem proving,...
Last three known as formal veri�ation VHDL 1 � p.24/51

	The course
	 About the course
	Course Book: Two Options
	Overview of the lecture
	Fundamental hardware concepts
	 Gate level
	 Combinational gate level examples
	 Sequential gate level examples
	 Be careful with
	 Abstraction domains (1)
	 Abstraction domains (2)
	 Abstraction domains (3)
	 Register Transfer Level (1)

	 Register Transfer Level (2)

	 Behavioral Level (1)

	Behavioral Level (2)
	Functional Level
	Abstraction Levels (1)

	Abstraction Levels (2)
	 Design process (simplified)

	 Iterative design process
	If Spec. and Implementation Differs?
	 (Functional)
Verification techniques
	 Hardware Description Languages (HDL)

