
SAT-based verification

(BMC, temporal induction)

Mary Sheeran, Chalmers

SAT-based verification now hot

• Used here in Sweden since 1989 mostly in safety
critical applications (railway control program
verification)

• Bounded Model Checking a sensation in 1998

• SAT-based safety property verification in Lava since
1997

• Basic complete temporal induction method
described here invented by Stålmarck during a talk
on inductive proofs of circuits by Koen Claessen

• SAT-based Induction (engine H) and BMC used in
Jasper Gold. Also in IBM SixthSense, at Intel etc.

Bounded Model Checking

(BMC)
• Look for bugs up to a certain length

• Proposed for use with SAT

• Used successfully in large companies, most often
for safety properties (Intel, IBM)

• Can be extended to give proofs and not just bug-
finding in the particular case of safety properties.
(Stålmarck et al discovered this independently of
the BMC people.)

• See also work by McMillan on SAT-based
unbounded model checking

and

and

or

dreq

q0

dack

0

0

View circuit as transition system

(dreq, q0, dack)  (dreq’, q0’, dack’)

q0’ <-> dreq

dack’ <-> dreq  (q0  (q0 & dack))

000 100 110 111

001 101

010

011

Initial states

000 100 110 111

001 101

010

011

Representing transition relation as

formula

I(dreq,q0,dack) = q0   dack

s = (dreq,q0,dack)

T(dreq,q0,dack,dreq’,q0’,dack’)

= (q0’ <-> dreq) 

(dack’ <-> dreq & (q0  (q0  dack)))

Composing transitions into paths

Tk(s0, . . , si)

= T(s0, s1)  T(s1, s2)  ...  T(si-1,si)

Representing the bad states

Similar to use of formula for initial states

B(dreq,q0,dack) = dreq  q0  dack

or may be using an observer

Bounded Model Checking first

Choose a bound n

If the formula

I(s0)  Tn(s0, . . , sn)  (B(s0)  B(s1)  . . .  B(sn))

is satisfiable, then there is a bug somewhere in the

first n steps through the transition system

BMC

Above description covers simple safety properties

Original BMC papers cover more complex

properties

Note complete lack of quantifiers! Key point.

Symbolic Trajectory Evaluation

(STE)

a

b
c

d

[a is v, _ , c is not v, _] [_ , _ , _ , d is true]

consequentantecedent

STE

We already saw Symbolic Simulation.

Don’t just have concrete values (and X) flowing in
the circuit. Have BDDs or formulas flowing

A single run of a symbolic simulator checks an STE
property requiring many concrete simulations

STE is symbolic simulation plus proof that the
consequent holds

Use of BMC and STE in

verifying the Alpha

merge buffer

Fake load queue

Backend tag module

Fake CBOX

Fake store queue

Aim: to automatically find violations of properties like

Same address cannot be in two entries at once

that is, bug finding during development

Reducing the problem

• Initial circuit: 400 inputs, 14 400 latches,

15 pipeline stages

• Reduced model has 10 inputs, 600 latches

Symmetry

reduction

Transactor

writing
Simplification

circuit reduced

model

Results

• Real bugs found, from 25 -144 cycles

• SAT-based BMC on 32 bit PC 20 -10k secs.

• Custom SMV on 64 bit Alpha took much longer
(but went to larger sizes)

• STE quick to run, but writing specs takes time and
expertise

• Promising results in real development

NOTE: Done by Per Bjesse, who used to assist on
this course . Ref. Later.

I B

i

I(s0)  Ti(s0, . . , si)  B(si)

If this formula is satisfiable for some concrete i (say 7) then

we have a bug. Visualise as follows:

A slightly different view

I B

I B

I B

I B

If system is bad

• Finds a shortest countermodel

• Error trace for debugging

But when can we stop?

when

UNSAT ?

I(s0)  Ti(s0, . . , si)

Not quite, but

when there is no such path that is loop-free

Extra formulas for loop-free

”the unique states condition”

Uk(s0, . . , sk) =  (si ≠ sj)
0 ≤ i < j ≤ k

Size??

States are vectors of bits, so

if s=(a,b,c,d) then

s0 ≠ s1 is  (a0 <-> a1) 

 (b0 <-> b1) 

 (c0 <-> c1) 

 (d0 <-> d1)

We can stop if

I(s0)  Ti(s0, . . , si)  Ui(s0, . . , si)

is UNSAT

We can stop if

I(s0)  Ti(s0, . . , si)  Ui(s0, . . , si)

is UNSAT

No loop-free paths of length i

starting from inital states

We can stop if

and symmetrically if (think of swapping I and B and

flipping T)

Ti(s0, . . , si)  Ui(s0, . . , si)  B(si)

is UNSAT

We can stop if

and symmetrically if (think of swapping I and B and

flipping T)

Ti(s0, . . , si)  Ui(s0, . . , si)  B(si)

is UNSAT

No loop-free paths ending

in a bad state

We can stop if

and symmetrically if (think of swapping I and B and

flipping T)

Ti(s0, . . , si)  Ui(s0, . . , si)  B(si)

is UNSAT

But things get much better if

we tighten these.

I(s0)  Tk(s0, . . , sk)  B(sk)

Define

Base =k

Step1k = Tk+1(s0, . . , sk+1)  Uk+1(s0, . . , sk+1) 


0 ≤ j ≤ k

B(sj)  B(sk+1)

I(s0)  Tk(s0, . . , sk)  B(sk)

Define

Base =k

Step1k = Tk+1(s0, . . , sk+1)  Uk+1(s0, . . , sk+1) 


0 ≤ j ≤ k

B(sj)  B(sk+1)

Step2k = Tk+1(s0, . . , sk+1)  Uk+1(s0, . . , sk+1) 


1≤ j ≤ k+1

I(sj)I(s0) 

I(s0)  Tk(s0, . . , sk)  B(sk)

Define

Base =k

Step1k = Tk+1(s0, . . , sk+1)  Uk+1(s0, . . , sk+1) 


0 ≤ j ≤ k

B(sj)  B(sk+1)

Step2k = Tk+1(s0, . . , sk+1)  Uk+1(s0, . . , sk+1) 


1≤ j ≤ k+1

I(sj)I(s0) 

Won’t be needed if

there is only one

initial state

Temporal induction (Stålmarck)

i=0

while True do {

if Sat(Basei) return False (and counter example)

if Unsat(Step1i) or Unsat(Step2i) return True

i=i+1

}

Temporal induction

Most presentations consider only the Step1 case but I

like to keep things symmetrical

Much overlap between formulas in different iterations.

Was part of the inspiration behind the development (here at

Chalmers) of the incremental SAT-solver miniSAT (open

source, see minisat.se)

(see paper by Een and Sörensson in the list later)

In reality need to think hard about what formulas to give the

SAT-solver.

Temporal induction

The method is sound and complete (see papers, later slides)

Gives the right answer, Gives proof, not just bug-finding

Algorithm given above leads to a shortest counter-example

May also want to take bigger steps and sacrifice this property

(though this may make less sense when using an incremental

SAT-solver)

The method can be strengthened further. (Still ongoing research)

Definitely met with scepticism initially

Is it really induction?

I(s0)  Tk(s0,.., sk) Basek =

To make this easier to see, rewrite

B(sk)

Let P =  B (want to prove that P holds in all reachable states)

Rewrite as

 ((I(s0)  Tk(s0, . . , sk)) => P(sk))

Is it really induction?

I(s0)  Tk(s0,.., sk) Basek =

To make this easier to see, rewrite

B(sk)

Let P =  B (want to prove that P holds in all reachable states)

Rewrite as

 ((I(s0)  Tk(s0, . . , sk)) -> P(sk))
Now add facts from previous

iterations

×


0 ≤ j ≤ k

P(sj)

Is it really induction?

I(s0)  Tk(s0,.., sk) Basek =

To make this easier to see, rewrite

B(sk)

Let P =  B (want to prove that P holds in all reachable states)

Rewrite as

 ((I(s0)  Tk(s0, . . , sk)) => 
0 ≤ j ≤ k

P(sj))

Is it really induction?

(I(s0)  Tk(s0, . . , sk)) => 
0 ≤ j ≤ k

P(sj)

P holds in cycles 0 to k

Step1k = Tk+1(s0, . . , sk+1)  Uk+1(s0, . . , sk+1) 


0 ≤ j ≤ k

P(sj))

  P(sk+1)

=

 ((Tk+1(s0, . . , sk+1)  Uk+1(s0, . . , sk+1) 


0 ≤ j ≤ k

P(sj)

We had already strengthend Step1 to

=> P(sk+1)


0 ≤ j ≤ k

P(sj))(Tk+1(s0, . . , sk+1)  Uk+1(s0, . . , sk+1) 

=> P(sk+1)

If P holds in cycles 0 to k

then it also holds in the next cycle

Strenthened induction, depth k

(I(s0)  Tk(s0, .., sk)) => 
0 ≤ j ≤ k

P(sj)

(Tk+1(s0, .., sk+1)  Uk+1(s0,.., sk+1)  
0 ≤ j ≤ k

P(sj))

=> P(sk+1)

P holds in all reachable states

Strenthened induction, depth k

(I(s0)  Tk(s0, .., sk)) => 
0 ≤ j ≤ k

P(sj)

(Tk+1(s0, .., sk+1)  Uk+1(s0,.., sk+1)  
0 ≤ j ≤ k

P(sj))

=> P(sk+1)

P holds in all reachable states

NO QUANTIFIERS

Can all be done with a SAT-solver

induction, depth k

(I(s0)  Tk(s0, .., sk)) => 
0 ≤ j ≤ k

P(sj)

(Tk+1(s0, .., sk+1)  
0 ≤ j ≤ k

P(sj))

=> P(sk+1)

P holds in all reachable states

induction, depth k

(I(s0)  Tk(s0, .., sk)) => 
0 ≤ j ≤ k

P(sj)

(Tk+1(s0, .., sk+1)  
0 ≤ j ≤ k

P(sj))

=> P(sk+1)

P holds in all reachable states

is SOUND

conclusion is correct

if base and step proven

induction, depth k

(I(s0)  Tk(s0, .., sk)) => 
0 ≤ j ≤ k

P(sj)

(Tk+1(s0, .., sk+1)  
0 ≤ j ≤ k

P(sj))

=> P(sk+1)

P holds in all reachable states

but NOT COMPLETE

P P P

Some properties are not k-inductive no matter

how big you make k

reachable
unreachable

But there is a path from an initial to a bad state if and only if

there is such a path without repeated states (loop-free, simple)

So Stålmarck’s eureka step was vital and brilliant!

Conclusion

BMC: the work-horse of formal hardware verification

SAT-based temporal induction is also much used

See our tutorial paper for info. on the history and the

necessary development of SAT-solvers

Much research now concentrates on raising the level of

abstraction at which formal reasoning is done

Satisfiability Module Theories (SMT) is the hot topic

References (bounded model checking)

Biere, A. Cimatti, E.M. Clarke, M. Fujita and Y. Zhu.

Symbolic model checking using SAT procedures instead of

BDDs. In Proc. 36th Design Automation Conference, 1999.

P. Bjesse, T. Leonard and A. Mokkedem.

Finding bugs in an Alpha microprocessor using satisfiability

solvers. In Proc. 13th Int. Conf. On Computer Aided

Verification, 2001.

A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu.

Symbolic Model Checking without BDDs. in 5th International

Conference on Tools and Algorithms for Construction and

Analysis of Systems (TACAS), LNCS, vol. 1579. Springer, 1999.

Refs (safety property checking with SAT-solvers)

Our tutorial paper on SAT-solving in practice (on course page)

M. Sheeran, S. Singh and G. Stålmarck. Checking safety

properties using induction and a SAT-solver. In Proc. 3rd Int.

Conf. On Formal Methods in Computer Aided Design, Springer

LNCS 1954, 2000. (on course page)

Niklas Een and Niklas Sörensson. Temporal Induction by

Incremental SAT-solving. BMC’03

(available on MiniSat page (minisat.se). Take a look. This is great

work and used all over the world.)

