Symbolic Boolean Manipulation with
Ordered Binary Decision Diagrams

Randal E. Bryant*
Fujitsu Laboratories, Ltd.
1015 Kamikodanaka, Nakahara-ku
Kawasaki 211, Japan

June, 1992

Ordered Binary Decision Diagrams (OBDDs) represent Boolean functions as directed acyclic
graphs. They form a canonical representation, making testing of functional properties such as
satisfiability and equivalence straightforward. A number of operations on Boolean functions
can be implemented as graph algorithms on OBDD data structures. Using OBDDs, a wide
variety of problems can be solved through symbolic analysis. First, the possible variations
in system parameters and operating conditions are encoded with Boolean variables. Then
the system is evaluated for all variations by a sequence of OBDD operations. Researchers
have thus solved a number of problemsin digital system design, finite state system analysis,
artificial intelligence, and mathematical logic. This paper describes the OBDD data structure,
and surveysanumber of applicationsthat have been solved by OBDD-based symbolic analysis.

Categories and Subject Descriptors: 1.1 [Algebraic Manipulation]: Expressions and Their
Representations, Algorithms; B.6 [Logic Design]: Reliability and Testing, Design Aids; F.1.1
[Modelsof Computation]: Automata; 1.2.3 [Deduction and Theorem Proving]: Algorithms

General Terms. Algorithms, Verification

Additional Key Words and Phrases. Binary decision diagrams, branching programs, symbolic
manipulation, symbolic analysis, Boolean functions, Boolean algebra

*Current address: School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

1

CONTENTS

CONTENTS

INTRODUCTION

1. OBDD REPRESENTATION
1.1. Binary DecisonDiagrams
12. OrderingandReducing
1.3. Effectof VariableOrdering
14. Complexity Characteristics.
15. Refinementsand Variations

N

0 ©o~N»

OPERATIONS
CONSTRUCTION AND MANIPULATION

3.1 TheappLy Operation
3.2. TheresTRICT Operation
3.3. DerivedOperations
3.4. Performance Characteristics
3.5. Implementation Techniques

REPRESENTING MATHEMATICAL SYSTEMS

4.1. Encoding of FiniteDomains
42, SES . ..o
43. Reations.

DIGITAL SYSTEM DESIGN APPLICATIONS

51. Verification.
5.2. DesignError Correction,
5.3, Senditivity Analysis
54. ProbabilisticAnalysis

FINITE STATE SYSTEM ANALYSIS
OTHER APPLICATION AREAS
AREASFOR IMPROVEMENT
SUMMARY

EFERENCES

INTRODUCTION

Many tasksin digital system design, combinatorial optimization, mathematical logic, and artificial
intelligence can be formulated in terms of operations over small, finite domains. By introducing
a binary encoding of the elements in these domains, these problems can be further reduced to
operations over Boolean values. Using a symbolic representation of Boolean functions, we can
express aproblem in avery general form. Solving this generalized problem via symbolic Boolean
function manipulation then provides the solutions for alarge number of specific problem instances.
Thus, an efficient method for representing and manipulating Boolean functions symbolically can
lead to the solution of alarge class of complex problems.

Ordered Binary Decision Diagrams (OBDDs) [Bryant 1986] provide one such representation. This
representation is defined by imposing restrictions on the the Binary Decision Diagram (BDD)
representation introduced by Lee! [Lee 1959] and Akers [Akers 1978], such that the resulting
formiscanonical. Theserestrictions and the resulting canonicity were first recognized by Fortune,
Hopcroft, and Schmidt [Fortune et al 1978]. Functions are represented as directed acyclic graphs,
with internal vertices corresponding to the variables over which the function is defined and terminal
vertices labeled by the function values 0 and 1. Although the OBDD representation of a function
may have size exponential in the number of variables, many useful functions have more compact
representations.

Operations on Boolean functions can be implemented as graph algorithms operating on OBDDs.
Tasks in many problem domains can be expressed entirely in terms of operations on OBDDs, such
that a full enumeration of the problem space (e.g., a truth table, state transition graph, or search
tree) need never be constructed. Researchers have solved problems using OBDDs that would not
be possible by more traditional techniques such as case analysis or combinatorial search.

To date, most applications of OBDDs have been in the areas of digital system design, verification,
and testing. More recently, interest has spread into other areas such as concurrent system design,
mathematical logic, and artificial intelligence.

This paper provides a combined tutorial and survey on symbolic Boolean manipulation with OB-
DDs. Thenext threesectionsdescribethe OBDD representation and theal gorithmsused to construct
and manipulate them. The following section describes several basic techniques for representing
and operating on a number of mathematical structures, including functions, sets, and relations, by
symbolic Boolean manipulation. We illustrate these techniques by describing some of the appli-
cations for which OBDDs have been used to date and conclude by describing further areas for
research. Although most of the application examplesinvolve problemsin digital system design, we
believe that similar methods can be applied to a variety of application domains. For background,
we assume only that the reader has a basic knowledge of Boolean functions, digital logic design,
and finite automata.

1L eerepresented Bool ean functions as Binary Decision Programs, aform of straight-line program. Such aprogram
can be viewed as alinear ordering of the vertices in a directed acyclic graph, and hence the distinction between these
two formsis minor.

X
MY
J—

X2 X3

;//// ://
// V4 !
0 0

Figure 1. Truth Table and Decision Tree Representations of a Boolean Function. A dashed
(solid) tree branch denotes the case where the decision variable is 0 (1).

/

1 0 1

PRPRRPPRPOOOO
PRPOOREFLOO
PORPORORO
RPORPOPRFRLPOOO

0

1. OBDD REPRESENTATION

Binary decision diagrams have been recognized as abstract representations of Boolean functions
for many years. Under the name “branching programs’ they have been studied extensively by
complexity theorists [Wegener 1988; Meinel 1990]. The key idea of OBDDs s that by restricting
the representation, Boolean manipulation becomes much simpler computationally. Consequently,
they provide a suitable data structure for a symbolic Boolean manipulator.

1.1. Binary Decision Diagrams

A binary decision diagram represents a Boolean function as arooted, directed acyclic graph. Asan
example, Figure 1 illustrates arepresentation of the function f (x4, x5, z3) defined by the truth table
given on the left, for the special case where the graph is actually atree. Each nonterminal vertex v
islabeled by avariable var(v) and has arcs directed toward two children: lo(v) (shown as adashed
line) corresponding to the case where the variable is assigned 0, and hi(v) (shown as a solid line)
corresponding to the case where the variable is assigned 1. Each terminal vertex islabeled O or 1.
For a given assignment to the variables, the value yielded by the function is determined by tracing
apath from the root to aterminal vertex, following the branches indicated by the values assigned
to the variables. The function value is then given by the terminal vertex label. Due to the way the
branches are ordered in thisfigure, the values of the terminal vertices, read from left to right, match
those in the truth table, read from top to bottom.

1.2. Ordering and Reducing

For an Ordered BDD (OBDD), we impose atotal ordering < over the set of variables and require
that for any vertex u, and either nonterminal child v, their respective variables must be ordered
var(u) < var(v). Inthe decision tree of Figure 1, for example, the variables are ordered z; <
xp < x3. Inprinciple, the variable ordering can be selected arbitrarily—the algorithms will operate
correctly for any ordering. In practice, selecting a satisfactory ordering is critical for the efficient
symbolic manipulation. Thisissueis discussed in the next section.

4

/

a
I
0

A). Duplicate Terminals B). Duplicate Nonterminals C). Redundant Tests

Figure 2: Reduction of Decision Treeto OBDD. Applying the three reduction rules to the tree of
Figure 1 yields the canonical representation of the function as an OBDD.

We define three transformation rules over these graphs that do not alter the function represented:

Remove Duplicate Terminals: Eliminateall but oneterminal vertex with agivenlabel and redirect
all arcsinto the eliminated vertices to the remaining one.

Remove Duplicate Nonterminals: If nonterminal vertices v and v have var (u) =var(v), lo(u) =
lo(v), and hi(u) =hi(v), then eliminate one of the two vertices and redirect all incoming arcs
to the other vertex.

Remove Redundant Tests: If nonterminal vertex v haslo(v)=hi(v), then eliminatev and redirect
al incoming arcsto lo(v).

Starting with any BDD satisfying the ordering property, we can reduce its size by repeatedly
applying the transformation rules. We use the term “OBDD” to refer to a maximally reduced
graph that obeys some ordering. For example, Figure 2 illustrates the reduction of the decision
tree shown in Figure 1 to an OBDD. Applying the first transformation rule (A) reduces the eight
terminal verticesto two. Applying the second transformation rule (B) eliminatestwo of the vertices
having variable 3 and arcs to terminal vertices with labels O (o) and 1 (hi). Applying the third
transformation rule (C) eliminates two vertices. one with variable x3 and one with variable z,. In
genera, the transformation rules must be applied repeatedly, since each transformation can expose
new possibilities for further ones.

The OBDD representation of a function is canonical—for a given ordering, two OBDDs for a
functionareisomorphic. Thisproperty hasseveral important consequences. Functional equivalence
can easily be tested. A function is satisfiable if and only if its OBDD representation does not
correspond to the singleterminal vertex labeled 0. Any tautol ogical function must havetheterminal
vertex labeled 1 asits OBDD representation. If a function is independent of variable z, then its
OBDD representation cannot contain any vertices labeled by =. Thus, once OBDD representations
of functions have been generated, many functional properties become easily testable.

AsFigures1and 2illustrate, we can construct the OBDD representation of afunction givenitstruth
table by constructing and reducing a decision tree. This approach is practical, however, only for

5

Figure 3: OBDD Representations of a Single Function for Two Different Variable Orderings.

functions of a small number of variables, since both the truth table and the decision tree have size
exponentia inthe number of variables. Instead, OBDDsaregenerally constructed by “ symbolically
evaluating” alogic expression or logic gate network using the AppLY operation described in Section
3.

1.3. Effect of Variable Ordering

The form and size of the OBDD representing a function depends on the variable ordering. For
example, Figure 3 shows two OBDD representations of the function denoted by the Boolean
expression a;-by + ayb, + az-bs, Where-denotesthe AND operation and + denotesthe OR operation.
For the case on the left, the variables are ordered a1 < b1 < a» < by < asz < bz, while for the case
ontheright they are ordered a; < a; < az < by < by < ba.

We can generalize thisfunction to one over variablesay, . . ., a, and by, . . . , b, given by the expres-
sion:
ar-by + az-by+ -+ a,-by

Generalizing the first variable orderingto a; < b, < -+ < a, < b, yields an OBDD with
2n nonterminal vertices—one for each variable. Generalizing the second variable ordering to
a; < -+ < a, <b <--- < b, ontheother hand, yields an OBDD with 2(2" — 1) nonterminal
vertices. For large values of n, the difference between the linear growth of the first ordering versus
the exponential growth of the second has a dramatic effect on the storage requirements and the
efficiency of the manipulation algorithms.

Examining the structure of the two graphs of Figure 3, we can seethat in thefirst case the variables
are paired according to their occurrences in the Boolean expression a; by + a»- by + asz-bs. Thus,

6

Function Class Complexity

Best Worst
Symmetric linear quadratic
Integer Addition (any bit) linear exponential

Integer Multiplication (middle bits) | exponential exponential

Table 1: OBDD complexity for common function classes.

from every second level inthe graph, only two branch destinations arerequired: oneto theterminal
vertex labeled 1 for the case where the corresponding product yields 1, and one to the next level for
the case where every product up to this point yields 0. On the other hand, the first 3 levelsin the
second case form a complete binary tree encoding al possible assignments to the a variables. In
general, for each assignment to the o variables, the function value depends in a unique way on the
assignment to the b variables. Aswe generalize thisfunction and ordering to one over 2n variables,
thefirst n levelsin the OBDD form a complete binary tree.

Most applicationsusing OBDDs choose some ordering of thevariablesat the outset and construct all
graphsaccording to thisordering. Thisordering ischosen either manually, or by aheuristicanalysis
of the particul ar system to berepresented. For example, several heuristic methods have been devised
that, given a logic gate network, generally derive a good ordering for variables representing the
primary inputs. [Fujitaet al 1988; Malik et a 1988]. Others have been developed for sequential
system analysis [Jeong et al 1991]. Note that these heuristics do not need to find the best possible
ordering—the ordering chosen has no effect on the correctness of theresults. Aslong asan ordering
can be found that avoids exponential growth, operations on OBDDs remain reasonably efficient.

1.4. Complexity Characteristics

OBDDs provide apractical approach to symbolic Boolean manipulation only when the graph sizes
remain well below the worst case of being exponential in the number of variables. Asthe previous
examples show, some functions are sensitive to the variable ordering but remain quite compact as
long asagood ordering ischosen. Furthermore, there has been ample empirical evidenceindicating
that many functions encountered in real applications can be represented efficiently asOBDDs. One
way to more fully understand the strengths and limitations of OBDDs isto derive lower and upper
bounds for important classes of Boolean functions.

Table 1 summarizes the asymptotic growth rate for several classes of Boolean functions, and their
sensitivity to the variable ordering. Symmetric functions, where the function value depends only
the number of arguments equal to 1, are insensitive to the variable ordering. Except for the trivial
case of constant functions, these functions have graphs ranging between linear (e.g., parity) and
guadratic (e.g., at least half the inputs equal 1).

We can consider each output of an n-bit adder asaBoolean function over variablesag, ay, . . . , a,_1,
representing one operand, and bg, b4, . . ., b,_1, representing the other operand. The function for
any bit has OBDD representations of linear complexity for theorderingag < bp < a3 < by < --- <
a,—1 < b,_1, and exponential complexity for the ordering ag < --- < a,,_1 < bg < - -+ < b,_1. In

v

O ee e —:) > eo e
2 > 213 a pl2/3 a1 %D—O“t
bo b J|> Bn.1
|

Figure4: Linear Arrangement of Circuit Computing Most Significant Bit of I nteger Addition

fact, these functions have representations similar to those for the function shown in Figure 3.

The Boolean functions representing integer multiplication, on the other hand, form a particularly
difficult case for OBDDs. Regardless of the ordering, the Boolean function representing either of
the middle two outputs of an n-bit multiplier have exponential OBDD representations. [Bryant
1991].

Upper boundsfor other classesof Bool ean functionscan be derived based onthestructural properties
of their logic network realizations. Berman [Berman 1989] and morerecently McMillan[McMillan
1992] have derived useful bounds for several classes of “bounded width” networks. Consider a
network with n primary inputs and one primary output consisting of m “logic blocks.” Each block
may have multiple inputs and outputs. Primary inputs are represented by “source” blocks with
no input and one output. As an example, Figure 4 shows a network having as output the most
significant sum bit of an n-bit adder. This network consists of a carry chain computing the carry
input ¢,,_; into thefinal stage. Blocks labeled “2/3” compute the MAJORITY function having 1 as
output when at least two inputs are 1. The output is computed as the EXCLUSIVE-OR of the most
significant bits of the inputsand ¢,,_.

Define alinear arrangement of the network as a numbering of the blocksfrom 1 to m such that the
block producing the primary output is numbered last. Define the forward cross section at block i as
the total number of wires from an output of ablock j such that j < 7 to aninput of ablock £ such
that 7 < k. Define the forward cross section w; of the circuit (with respect to an arrangement) as
the maximum forward cross section for all of the blocks. Asthe dashed linein Figure 4 shows, our
adder circuit has aforward cross section of 3. Similarly, define the reverse cross section at block ¢
asthetotal number of wiresfrom an output of ablock j suchthat j > 7 to aninput of ablock & such
that: > k. Inarrangementswherethe blocks are ordered topol ogically (the only case considered by
Berman), such asthe one shown in Figure 4, the reverse cross section is 0. Define the reverse cross
section w, of the circuit (with respect to an arrangement) as the maximum reverse cross section for
all of the blocks. Given these measures, it can be shown that there is an OBDD representing the
circuit function with at most n2%s2*" vertices. Furthermore, finding an arrangement with low cross
section leads to a good ordering of the function variables—namely the reverse of the ordering of
the corresponding source blocks in the arrangement.

Thisbound based on network realizations|eadsto useful boundsfor avariety of Boolean functions.
For example, functions having realizations with constant forward cross section and zero reverse
cross section, such asthe adder circuit of Figure4, havelinear OBDD representations. A symmetric
function of n variablescan berealized by acircuit having forward cross section 2+logn and reverse
cross section 0. This circuit consists of a series of stages to compute the total number of inputs

8

0—>
Ln—l
Bo

Xo >

Figure 5: Linear Arrangement of Within-K Ring Circuit. As shown by the dashed line, the
circuit has forward cross section 2 + [log, K| and reverse cross section [log, K |.

having value 1, encoding the total as a [log, n|-bit binary number. This realization implies the
guadratic upper bound in OBDD size stated in Table 1.

Figure 5 shows an application of this result for a circuit with non-zero reverse cross section. This
circuit shows a general realization of the Within- K function, where K is some constant such that
0 < K < n. Forinputs zq, x1, ..., ,_1, thisfunction yields 1 if there are two inputs x; and x;
equal to 1 such that " equals i + j mod n for some value j suchthat 0 < j < K. AsFigure5
illustrates, this function can be computed by a series of blocks arranged in aring, where each block
B; has as outputs a 1-bit value s; and a k-bit integer value L;, where k = [log, K'|:

S; =

1, Izzlansz_]_?éo
s;_1, otherwise

K — 1, T; = 1
L, = L;_1— 1, ;=0 and Li_1>0
0, otherwise.

In this redlization, each L; signal encodes the number of remaining positions with which the most
recent input value of 1 can be paired, while each s; signal indicates whether apair of 1 input values
within distance K has occurred so far. To realize the modular proximity measure, output L,,_; of
thefinal stageisrouted back to theinitial stage. Notethat although thiscircuit hasacyclic structure,
its output is uniquely defined by the input values. As the dashed line indicates, this ring structure
can be “flattened” into alinear arrangement having forward cross section £ + 2 and reverse cross
section k. This construction yields an upper bound of (8K 4%)n on the OBDD size. For constant
values of K, the OBDD isof linear size, although the constant factor grows rapidly with K.

McMillan has generalized this technique to tree arrangements in which the network is organized
asatree of logic blocks with branching factor b and with the primary output produced by the block
at the root. In such an arrangement, forward (respectively, reverse) cross section refers to wires
directed toward (respectively, away from) the root. Such an arrangement yields an upper bound on

the OBDD size of n 2bnb—1L”f2W. The upper bound for the linear arrangement is given by this
formulafor b = 1. Observe that for constant values of b, w, and w,, the OBDD size is polynomial
inn.

These upper bound results give some insight into why many of the functions encountered in digital
design applications have efficient OBDD representations. They also suggest strategies for finding
good variable orderings by finding network realizations with low cross section. Results of thisform
for other representations of Boolean functions could prove useful in characterizing the potential of
OBDDs for other application domains.

1.5. Refinementsand Variations

In recent years, many refinements to the basic OBDD structure have been reported. These include
using a single, multi-rooted graph to represent all of the functions required [Brace et a 1990;
Karplus 1989; Minato et al 1990; Reeves and Irwin 1987], adding labels to the arcs to denote
Boolean negation [Brace et al 1990; Karplus 1989; Minato et al 1990; Madre and Billon 1988] and
generalizing the concept to other finite domains [Srinivasan et a 1990]. These refinements yield
significant savingsin the memory requirement—generally the most critical resource in determining
the complexity of the problems that can be solved. Applications that require generating over 1
million OBDD vertices are now routinely performed on workstation computers.

2. OPERATIONS

Let us introduce some notation for describing operations on Boolean functions. We will use the
standard operationsof Boolean algebra: + for OR,-for AND, & for EXCLUSIVE-ORr and anoverline
for NoT. Inaddition, wewill usethe symbol & to indicate the complement of the ExcLUSIVE-OR
operation (sometimes referred to as ExcLusivE-NoRr). We will also use summation (3°) and
product (IT) notation in reference to Boolean sums (OR) and products (AND). Observe that these
operations are defined over functions as well as over the Boolean values 0 and 1. For example, if f
and g are functions over some set of variables, then f + g isitself afunction £ over these variables.
For some assignment a of values to the variables, h(@) yields 1 if and only if either f(@) or g(a)
yields 1. The constant functions, yielding either 1 or O for all variable assignments, are denoted 1
and O, respectively.

The function resulting when some argument = to afunction f isassigned aconstant value & (either
Oor 1)iscalled arestriction of f (other references call thisa*cofactor” of f [Brayton et al 1984])
denoted f|,. ;.. Given the two restrictions of a function with respect to a variable, the function
can be reconstructed as

o= Ef|x<—0 + xf|x<—l
This identity is commonly referred as the Shannon expansion of f with respect to x, although it
was originally recognized by Boole [Brown 1990].

A variety of other useful operations can be defined in terms of the algebraic operations plus the
restriction operation. The composition operation, where a function ¢ is substituted for variable x
of function f is given by the identity

f|gj%g = g'f‘xHO"i_g'f’au—l'

The variable quantification operation, where some variable = to function f is existentially or

10

Figure6: Example Argumentsto AppLY operation. Verticesarelabeled for identification during
the execution trace.

universally quantified is given by the identities

dr f = f’x<—0+f’x&l
Vo f = f|x<—0f|gj<—l

Some researchers prefer to call these operations smoothing (existential) and consensus (universal)
to emphasize that they are operations on Boolean functions, rather than on truth values[Lin et al
1990]

3. CONSTRUCTION AND MANIPULATION

A number of symbolic operations on Boolean functions can be implemented as graph algorithms
applied to the OBDDs. These algorithms obey an important closure property—given that the argu-
ments are OBDDs obeying some ordering, the result will be an OBDD obeying the same ordering.
Thus we can implement a complex manipulation with a sequence of simpler manipulations, always
operating on OBDDs under a common ordering. Users can view a library of BDD manipulation
routines as an implementation of a Boolean function abstract data type. Except for the selection
of avariable ordering, all of the operations are implemented in a purely mechanical way. The user
need not be concerned with the details of the representation or the implementation.

3.1. TheaprpLy Operation

The APPLY operation generates Boolean functions by applying algebraic operations to other func-
tions. Given argument functions f and g, plus binary Boolean operator (op), (e.g., AND or OR)
APPLY returnsthe function f (op) g. Thisoperation iscentral to asymbolic Boolean manipulator.
With it we can complement afunction f by computing f @ 1. Given functions f and g, and “don’t
care” conditions expressed by the function d (i.e., d(Z) yields 1 for those variable assignments &

11

A1,B1

7/
/

Ve
A2,B2
7\
/ AeB2 AgBs
//,/ \ / \
I \

A4,B3 As,By

Figure 7: Execution Tracefor AppLY operation with operation +. Each evaluation step has as
operands a vertex from each argument graph.

for which the function values are unimportant,) we can test whether f and g are equivalent for all
“care” conditions by computing (f @ g) + d and testing whether the result is the function 1. We
can also construct the OBDD representations of the output functions of a combinational logic gate
network by “symbolically interpreting” the network. That is, we start by representing the function
at each primary input as an OBDD consisting of atest of a single variable. Then, proceeding in
order through the network, we use the ApPLY operation to construct an OBDD representation of
each gate output according to the gate operation and the OBDDs computed for its inputs.

The appLY algorithm operates by traversing the argument graphs depth-first, while maintaining
two hash tables. one to improve the efficiency of the computation, and oneto assist in producing a
maximally reduced graph. Notethat whereasearlier presentationstreated the reduction to canonical
form as a separate step [Bryant 1986], the following algorithm produces a reduced form directly.
To illustrate this operation, we will use the example of applying the + operation to the functions
f(a,b,c) = (a+b)-c+dandg(a,b,c) = (a-¢) + d, having the OBDD representations shown in
Figure 6.

Theimplementation of the ApPLY operation relies on the fact that algebraic operations “ commute”
with the Shannon expansion for any variable x:
flmg = T(flpeo (00 glyo) + = (flye1 (OP) glp1) (1)

Observe that for a function f represented by an OBDD with root vertex 7, the restriction with
respect to avariable x such that » < var(r) can be computed simply as:

T x < var(ry)
Flpep 4 lo(r), = =var(r;)andb=0
hi("’f)a $:Vaf<7“f) andb=1

That is, the restriction is represented by the same graph, or one of the two subgraphs of the root.

Equation 1 forms the basis of a recursive procedure for computing the OBDD representation of
f (op) g. For our example, the recursive evaluation structure isillustrated in Figure 7. Note that

12

Figure 8: Result Generation for AppLy operation. The recursive calling structure naturally
leads to an unreduced graph (left). By applying reduction rules at the end of each recursive call,
the reduced graph is generated directly (right).

each evaluation step isidentified by a vertex from each of the argument graphs. Suppose functions
f and g are represented by OBDDs with root vertices ry and r,, respectively. For the case where
both r and r,, are terminal vertices, the recursion terminates by returning an appropriately labeled
terminal vertex. In our example, this occurs for the evaluations Ay4, B3, and As, B4. Otherwise,
let variable = be the splitting variable, defined as the minimum of variables var (r) and var(r,).
OBDDs for the functions f|,.. o (op) gl,..ogand f|,..1 (op) g|,. 1 ae computed by
recursively evaluating the restrictions of f and ¢ for value O (indicated in Figure 7 by the dashed
lines) and for value 1 (indicated by solid lines). For our example, theinitial evaluation with vertices
A1, B1 causes recursive evaluations with vertices A,, B, and Ag, Bs.

To implement the AppPLY oOperation efficiently, we add two more refinements to the procedure
described above. First, if we ever reach a condition where one of the argumentsisaterminal vertex
representing the “dominant” value for operation (op) (e.g., 1 for Or and 0 for AND), then we can
stop the recursion and return an appropriately labeled terminal vertex. Thisoccursin our example
for theevaluations As, B, and A3, B4. Second, we avoid ever making multiplerecursive callson the
same pair of arguments by maintaining a hash table where each entry has as key a pair of vertices
from the two arguments and as datum a vertex in the generated graph. At the start of an evaluation
for arguments « and v, we check for an entry with key (u, v) in this table. If such an entry is
found, we return the datum for this entry, thereby avoiding any further recursion. If no entry is
found, then we follow the steps described above, creating a new entry in the table before returning
the result. In our example, this refinement avoids multiple evaluations of the arguments Az, B,
and As, B,. Observe that with this refinement, the evaluation structure is represented by a directed
acyclic graph, rather than the more familiar tree structure for recursive routines.

Each evaluation step returns as result a vertex in the generated graph. The recursive evaluation
structure naturally defines an unreduced graph, where each evaluation step yields a vertex labeled
by the splitting variable and having as children the results of the recursive calls. For our example,
this graph is illustrated on the left hand side of Figure 8. To generate a reduced graph directly,

13

Figure 9: Example of RESTRICT operation. Restricting variable b of the argument (left) to value
1 involves bypassing vertices labeled by b (center), and reducing the graph (right).

each evaluation step attempts to avoid creating a new vertex by applying tests corresponding to
the transformation rules described in Section 1.2. Suppose an evaluation step has splitting variable
x, and the recursive evaluations return vertices v and v1. First we test whether vy = v4, and if
so return this vertex as the procedure result. Second, we test whether the generated graph already
contains some vertex v having var(v) = x, lo(v) = wvo, and hi(v) = v;. Thistest is assisted by
maintaining a second hash table containing an entry for each nonterminal vertex v in the generated
graph with key (var(v), hi(v), lo(v)). If the desired vertex isfound, it is returned as the procedure
result. Otherwise, avertex isadded to the graph, its entry is added to the hash table, and the vertex
isreturned as the procedure result. Similarly, terminal vertices are entered in the hash table having
their labels as keys. A new terminal vertex is generated only if one with the desired label is not
already present. For our example, this process avoids creating the shaded vertices shown on the
left hand side of Figure 8. Instead, the graph on the right hand side is generated directly. Observe
that this graph representsthe functiona + b-¢ + d, which isindeed the result of applying the Or
operation to the two argument functions.

The use of atable to avoid multiple evaluations of a given pair of vertices bounds the complexity
of the ApPLY operation and also yields abound on the size of theresult. That is, suppose functions
f and g are represented by OBDDs having m, and m, vertices, respectively. Then, there can be
at most m s m, unique evaluation arguments, and each evaluation adds at most one vertex to the
generated result. Given a good implementation of the hash tables, each evaluation step can be
performed, on average, in constant time. Thus, both the complexity of the algorithm and the size
of the generated result must be O (m;my).

3.2. TheRrgesTRrICT Operation

Computing arestriction to afunction represented by any kind of BDD isstraightforward. Torestrict
variable x to value k, we can simply redirect any arc into a vertex v having var(v) = « to point
either to lo(v) for k = 0, or to hi(v) for £ = 1. Figure 9 illustrates the restriction of variable b in
thefunction b-¢c + a-b-¢ to the value 1. With the original function given by the OBDD on the léft,
redirecting the arcs has the effect of bypassing any vertex labeled by b, asillustrated in the center.

14

As this example shows, a direct implementation of this technique may yield an unreduced graph.
Instead, the operation is implemented by traversing the original graph depth-first. Each recursive
call has as argument a vertex in the origina graph and returns as result a vertex in the generated
graph. To ensure that the generated graph is reduced, the procedure maintains a hash table with an
entry for each vertex in the generated graph, applying the same reduction rules as those described
for the AppLY operation. For our example, the result would be an OBDD representation of the
function ¢ as shown on the right hand side of the Figure 9.

Computing the restriction of afunction f having an OBDD representation of 1, vertices involves
at most m recursive calls, each generating at most one vertex in the result graph. Using a good
hash table implementation, each recursive step requires constant time on average. Thus, both the
complexity of the algorithm and the size of the generated result must be O(my).

3.3. Derived Operations

As was described in Section 2, a variety of operations on Boolean functions can be expressed in
terms of algebraic and restriction operations. The AppLY and the RESTRICT algorithms therefore
provide a way to implement these other operations. Furthermore, for each of these operations,
both the complexity and the size of the generated graph are bounded by some polynomial function
of the argument functions. For function f, let m; denote the size of its OBDD representation.
Given two functions f and ¢, and “don’t care” conditions expressed by a function d, we can
compute the equivalence of f and g for the “care” conditions in time O(m;my,m,). We can
compute the composition of functions f and g with two restrictions and three callsto aAppLy. This
approach would have time complexity O(m#% m?). By implementing the entire computation with
onetraversal, this complexity can bereduced to O(m m?) [Bryant 1986]. Finally, we can compute
the quantification of avariablein afunction f intime O(m%).

3.4. Performance Characteristics

A problemissolved using OBDDs by expressing thetask as aseries of operations on Boolean func-
tions such as those discussed above. Aswe have seen, all of these operations can be implemented
by algorithms having complexity polynomia in the sizes of the OBDDs representing the argu-
ments. As aresult, OBDD-based symbolic Boolean manipulation has two advantages over other
common approaches. First, aslong as the graphs remain of reasonable size, the total computation
remains tractable. Second, although the graph sizes can grow with each successive operation, any
single operation has reasonable worst case performance. In contrast, most other representations of
Boolean functions lack this “graceful degradation” property. For example, even if afunction has
areasonably compact sum of products representation, its complement may be of exponential size
[Brayton et al 1984].

3.5. Implementation Techniques

From the standpoint of implementation, OBDD-based symbolic manipulation has very different
characteristicsfrom many other computational tasks. During the course of acomputation, thousands
of graphs, each containing thousands of vertices, are constructed and discarded. Information is

15

Class Typical Operations Typical Tests
Logic A, V, -, Y, 3 satisfiability, implication
Finite domains domain dependent equivalence
Functions application, composition equivalence
Sets U, N, — subset
Relations composition, closure symmetry, transitivity

Table 2. Example Systemsthat can be Represented with Boolean Functions.

represented in an OBDD more by its overall structure rather than in the associated data values,
and hence very little computational effort is expended on any given vertex. Thus, the computation
has a highly dynamic character, with no predictable patterns of memory access. To date, the most
successful implementations have been on workstation computers with large physical memories,
where careful attention has been given to programming the memory management routines [Brace
et a 1990].

To extract maximum performance, it would be desirable to exploit the potential of pipelined and
paralel computers. In symbolic analysis tasks, parallelism could exist at the macro level where
many operations are performed simultaneously, and at the micro level where many vertices within
agiven OBDD are operated on simultaneously. Compared to other tasks that have been success-
fully mapped onto vector and parallel computers, OBDD manipulation requires considerably more
communication and synchronization among the computing elements, and considerably less local
computation. Thus, this task provides a challenging problem for the design of parallel computer
architectures, programming models, and languages. Nonetheless, some of the early attempts have
proved promising. Researchers have successfully exploited vector processing [Ochi et al 1991] and
have shown good results executing on shared memory multiprocessors [Kimuraand Clarke 1990].
Both of theseimplementations exploit micro parallelism by implementing the AppLY operation by a
breadth-first traversal of the argument graphs, in contrast to the depth-first traversal of conventional
implementations.

4. REPRESENTING MATHEMATICAL SYSTEMS

Some applications, most notably in digital logic design, call for the direct representation and ma-
nipulation of Boolean functions. In general, however, the power of symbolic Boolean manipulation
comes more from the ability of binary values and Boolean operations to represent and implement
a wide range of different mathematical domains. This basic principle is so well ingrained that
we seldom even think about it. For example, few people would define the ADD operation of a
computer as a set of 32 Boolean functions over a set of 64 arguments. Table 2 lists examples of
several areas of mathematics where objects can be represented, operated on, and analyzed using
symbolic Boolean manipulation, as long as the underlying domains are finite.

By providing a unified framework for a number of mathematical systems, symbolic Boolean ma-
nipulation can solve not just problemsin theindividual areas, but also onesinvolving multiple areas
simultaneously. For example, recent programs to analyze the sequential behavior of digital circuits
(see Section 6), involve operating in all of the areas listed in Table 2. The desired properties of

16

Table 3: Ternary Extensionsof AND, OR, and NoT. Thethird value X indicatesan unknown or
potentially nondigital voltage.

the system are expressed as formulas in alogic. The system behavior is given by the next-state
functions of the circuit. The analyzer computes sets of states having some particular properties.
Thetransition structure of the finite state system is represented as arelation. During execution, the
analyzer can readily shift between these representations, using only OBDDs as the underlying data
structures. Furthermore, the canonical property of OBDDs makes it easy to detect conditions such
as convergence, or whether any solutions exist to a problem.

Thekey to exploiting the power of symbolic Boolean manipulation isto expressaprobleminaform
where all of the objects are represented as Boolean functions. In the remainder of this section we
describe some standard techniques that have been developed along thisline. With experience and
practice, asurprisingly wide range of problems can be expressed in this manner. The mathematical
concepts underlying these techniques have long been understood. None of the techniques rely
specifically on the OBDD representation—they could be implemented using any of a number of
representations. OBDDs have simply extended the range of problemsthat can be solved practically.
In doing so, however, the motivation to express problemsin terms of symbolic Boolean operations
has increased.

4.1. Encoding of Finite Domains

Consider afinite set of elements A where |A| = N. We can encode an element of A as a vector
of n binary values, wheren = [log, N'|. This encoding is denoted by afunction o: A — {0, 1}"
mapping each element of A to adistinct n-bit binary vector. Let o;(a) denote the ith element in
this encoding. A function mapping elementsin A to elementsin A, f: A — A lisrepresented asa
vector of n Boolean functions f, where each f;: {0,1}" — {0, 1} is defined as:

filo(a)) = oi(f(a))

In many applications, the domains have a “natural” encoding, e.g., the binary encoding of finite
integers, while in othersit is constructed artificially.

As an example, the COSM OS symbolic simulator [Cho and Bryant 1989] uses OBDDsto compute
the behavior of a transistor circuit symbolically. Such a simulator can be used to automatically
generatetestsfor faultsinacircuit and to formally verify that the circuit has some desired behavior.
The circuit model represents node voltages with a three-valued signal set, where values 0 and
1 represent low and high voltages, and the third value X indicates an unknown or potentially

17

nondigital voltage. During symbolic simulation, the node states must be computed as three-valued
functions over a set of Boolean variables introduced by the user to represent values of the primary
inputs or initial state. COSMOS represents the state of a node by a pair of OBDDs. That is, it
encodes each of the N = 3 elements of the signal set as a vector of n = 2 binary values according
to theencoding o(0) = [0,1],0(1) = [1,0],and o(X) = [1,1].

The* next-state functions’ computed by the simulator are defined entirely according to this Boolean
encoding, allowing Boolean functions to accurately describe the three-valued circuit behavior. For
example, Table 3 shows the three-valued extensions of the logic operations AND, ORr, and NOT.
Observe that the operations yield X in every case where an unknown argument would cause an
uncertainty in the function value. Letting [a, ag] denote the encoding of a three-valued signal «,
the three-valued operation can be expressed entirely in terms of Boolean operations:

la1,a0] -+ [b1,b0] = [a1-b1, ao+ bo)
la1,a0] +¢ [b1,b0) = [a1+ b1, ao-bo)
la1,a0] = [ao, ay]

During operation, the simulator operates much like a conventional event-driven logic simulator. 1t
begins with each internal nodeinitialized to state [1, 1] indicating the node value is unknown under
all conditions. During simulation, node states are updated by eval uating the Bool ean representation
of the next-state function with the AppLY operation. Each time the state of a node is recomputed,
the old state is compared with the new state, and if not equivalent, an event is created for each
fanout of the node. This process continues until the event list becomes empty, indicating that the
network isin a stable state. This method of processing events relies heavily on having an efficient
test for equivalence.

4.2. Sets

Given an encoding of a set A, we can represent and manipulate its subsets using “characteristic
functions” [Cerny and Marin 1977]. A set S C A is denoted by the Boolean function xg :

{0,1}" — {0, 1}, where
xs(@) = Y I =®ai(a)

a€S 1<i<n

where & represents the complement of the ExcLUsIVE-OR operation. Operations on sets can then
be implemented by Boolean operations on their characteristic functions, e.g.,

xo = 0
Xsur = Xs+Xr
XsnTt = XS'XT
Xs-T = XS°XT

18

Set Sisasubset of T'if andonly if xsx7 = 0. In many applicationsof OBDDs, setsare constructed
and manipulated in this manner without ever explicitly enumerating their elements.

Alternatively, a(nonempty) set can be represented as the set of possible outputs of afunction vector
[Coudert et al 1990]. That is, we consider f to denote the set

— =

{a]a(a) = f(b), for someb € {0,1}"

Thisrepresentation can be convenient in applicationswherethe system being analyzed i srepresented
as a function vector. By modifying these functions, we can also represent subsets of the system
states.

4.3. Reations

A k-ary relation can be defined as a set of ordered k-tuples. Thus, we can also represent and
manipulate relations using characteristic functions. For example, consider a binary relation R C
A x A. Thisrelation is denoted by the Boolean function x defined as:

Xr(Z,9) = D> [11 mi@ai(a)] [I vi®aib)

acAbeA | 1<i<n 1<i<n
aRb

With this representation, we can perform operations such as intersection, union, and difference on
relations by applying Boolean operations to their characteristic functions.

Using a combination of functional composition and variable quantification, we can also compose
relations. That is:

Xros = 37 [Xr(Z, 2) xs(2,7)]
where R o S denotes the composition of relations R and .S. Quantification over a variable vector
involves quantifying over each of the vector elementsin any order.

Taking thisfurther, we can compute the transitive closure of arelation using fixed-point techniques
[Burch et a 1990a]. The function x z- is computed as the limit of a sequence of functions x z,,
each defining arelation:

Ry = 1
Ri+1 = IURo R'L
where I denotes the identity relation. The computation converges when it reaches an iteration i
such that x», = xr,_,, again making use of efficient equivalence testing. If we think of R as
representing a graph, with a vertex for each element in A, and an edge for each element in R, then
therelation R; denotes those pairs reachable by a path with at most i edges. Thus, the computation
must converge in a most N — 1 iterations, where N = |A|. A technique known as “iterative
squaring” [Burch et a 1990a] reduces the maximum number of iterationsto n = [log, N'|. Each
iteration computes arelation R ;) denoting those pairs reachable by a path with at most 2 edges:
R(o) = JIUR
Rayy = Lo R
Many applications of OBDDs involve manipulating relations over very large sets, and hence the
reduction from NV iterations (e.g., 10°) down to » (e.g., 30) can be dramatic.

19

a8 —>| —
& >

g | MUX j

3 >

Figure 10: Universal function block. By assigning different valuesto the variables d@, an arbitrary
2-input operation can be realized.

5. DIGITAL SYSTEM DESIGN APPLICATIONS

Theuse of OBDDsin digital system design, verification, and testing has gained widespread accep-
tance. In this section, we describe afew of the areas and methods of application.

5.1. Verification

OBDDs can be applied directly to the task of testing the equivalence of two combinational logic
circuits. This problem arises when comparing a circuit to a network derived from the system
specification [Bryant 1986], or when verifying that a logic optimizer has not altered the circuit
functionality. Using the AppLY operation, functional representationsfor both networks are derived
and tested for equivalence. By this method, two sequential systems can also be compared, as long
as they use the same state encoding [Madre and Billon 1988]. That is, the two systems must have
identical output and next-state functions.

5.2. Design Error Correction

Not content to simply detect the existence of errorsin alogic design, researchers have developed
techniques to automatically correct a defective design. This involves considering some relatively
small class of potential design errors, such as a single incorrect logic gate, and determining if
any variant of the given network could meet the required functionality [Madre et al 1989]. This
anaysis demonstrates the power of the quantification operations for computing projections, in this
case projecting out the primary input values by universal quantification.

Such an analysis can be performed symbolically by encoding the possible gate functions with
Boolean variables, asillustrated in Figure 10. Asthisexample shows, an arbitrary k-input gate can
be emulated by a 2*-input multiplexor, where the gate operation is determined by the multiplexor
datainputs @ [Mead and Conway 1990]. Consider asingle output circuit NV, where one of the gates
isreplaced by such ablock, giving aresulting network functionality of N (Z, @), where &’ represents
the set of primary inputs. Suppose that the desired functionality is S(&). Our task is to determine
whether (and if so, how) the two functions can be made identical for all primary input values by
“programming” the gate appropriately. This involves computing the function C' (@), defined as

C(@) = VI[N d)eS(T))

20

Figure 11: Signal line modifier. A nonzero value of P, altersthe value carried by the line.

Decoder

? ﬁ
+ —
Permuters
X = T(X, T)
N =

Figure 12: Computing sensitivitiesto singlelinemodifications. Each assignment to the variables
in 7 causes the value on just one line to be modified.

Any assignment to a for which C'yields 1 is then a satisfactory solution.

Although major design errors cannot be corrected in this manner, it eliminates the tedious task of
debugging circuits with common errors such as misplaced inverters, or the use of an incorrect gate
type. Thistask isalso useful in logic synthesis, where designers want to alter a circuit to meet a
revised specification [Fujitaet al 1991].

5.3. Sensitivity Analysis

A second class of applications involves characterizing the effects of atering the signal values on
different lineswithin acombinational circuit. That is, for each signal line s, wewant to computethe
Boolean differencefor every primary output with respect to s [Sellerset al 1968]. Thisanalysiscan
be performed symbolically by introducing “signal line modifiers’ into the network. asillustrated
inFigure11. That is, for each linethat would normally carry asignal line s, we selectively alter the
valueto be s’ under the control of a Boolean value P, by computing s’ = s & P,. We can determine
the conditions under which some output of the circuit is sensitive to the value on a signal line by
comparing the outputs of the original and altered circuits, asillustrated in Figure 12. Asthisfigure
illustrates, we can even compute the effect of every single-line modification in a circuit in one
symbolic evaluation [Cho and Bryant 1989]. That is, number every signal linefrom 0 to m—1, and

21

|) Out
0:0

Figure 13: Circuit with uncertain delays. Gates labeled by min/max delays. Inverters have
distribution of delays.

—

introduce a set of [logm | “permutation variables’ . Each permutation signal P is then defined
to be the function that yields 1 when the permutation variables are the binary representation of the
number assigned signal s. Inlogic design terms, thisis equivalent to generating the permutation
signals with a decoder having * as input. The resulting function 7'(%, 7) yields 1 if the original
network and the network permuted by 7 produce the same output values for input Z.

One application of this sensitivity analysisisto automatic test generation. The sensitivity function
describes the set of all tests for each single fault. Suppose a signal line numbered in binary as b
has function s(Z) in the normal circuit. Then an input pattern @ will detect a stuck-at-1 fault on

the line if and only if 7(@,b)-s(@) = 1. Similarly, @ will detect a stuck-at-0 fault if and only

if T'(a,b)-s(d) = 1. This method can also be generalized to sequential circuits and to circuits
represented at the switch-level [Cho and Bryant 1989].

A second application isin the area of combinational logic optimization. For asignal line numbered
in binary as b, the function 7'(Z, 5) represents the “don’t care set” for each line of the circuit, i.e.,
those cases where the circuit outputs are independent of the signal value on this line. Using this
information as guidance, the circuit optimizer can apply transformations such as eliminating a
signal line, or moving aline to a different gate output. One drawback of this approach, however, is
that the sensitivity function must be recomputed every time the optimizer modifies the circuit. An
aternative approach yields a more restricted, but “compatible” set of don’'t care functions, where
the don’t care sets remain valid even as the circuit structure is altered [Sato et a 1990].

5.4. Probabilistic Analysis

Recently, researchers have devised amethod for statistically analyzing the effects of varying circuit
delaysinadigital circuit [Deguchi et a 1991]. Thisapplication of OBDDsisparticularly intriguing,
since conventional wisdom would hold that such an analysis requires evaluation of real-valued
parametric variations, and hence could not be encoded with Boolean variables.

Consider alogic gate network in which each gate hasadelay given by some probability distribution.
This circuit may exhibit a range of behaviors, some of which are classified as undesirable. The
“yield” isthen defined as the probability that these behaviors do not occur. As an example, Figure
13 shows a simple circuit where two of the logic gates have a variable distribution of delays, and
we wish to evaluate the probability of a glitch occurring on node Out as the input signal A makes
atransition for O to 1. Figure 14 shows an analysis when signal A changesto 1 at time 0. Signals

22

Transition Probability
0.30
0.20
0.10
0.00

Time
[B [Out (Independent)
| ® [] Out (Actual)

Figure 14. Effect of uncertain delays. Signal A switchesfrom 0to 1 at time 0. Ignoring signal
correlations causes overestimate of transition probability.

23

3/8 3/8
vV ¥V ¥
U8 18
[1
012 3 4
in—»> MUX > out

N (%) [e%] N
1 1 I Il
Allw N

Figure 15: Modeling uncertain delays. Boolean variables control delay selection. Signals are
replicated according to delay distribution.

C and D will make transitions, where the transition times have probability distributions shown.
One simple analysis would be to treat the waveform probabilities for all signals as if they were
independently distributed. Then we can easily compute the behavior of each gate output according
to the gate function and input waveforms. For example, if wetreat signals C and D asindependent,
then we could compute the probability of arising transition on node Out at time ¢ as the product of
the probability that C makes a transition at ¢ and the probability that no transition on D occurs at
time < ¢. Thiswould lead to the transition probability distribution |abeled as “ Out (Independent).”
The net probability of a transition occurring (i.e., a glitch) would then be computed as 30%. In
reality, of course, thetransition timesof signalsC and D are highly correlated— both are affected by
the delay through the initial buffer gate. Hence, a more careful analysis would yield the transition
time probability distribution labeled as “Out (Actual),” having a net probability of occurrence of
12.5%. Thus, the simplified analysis underestimates the circuit yield. In other cases, a simplified
analysiswill overestimate the yield [Deguchi et al 1991].

To solvethis problem through symbolic Boolean analysis, we must make two restrictions. First, all
circuit delays must be integer-valued (for an appropriately chosen time unit), and hence transitions
occur only at discrete time points. Second, the delay probabilities for a gate must be multiples of
avaue 1/k, where k is a power of 2. For example both variable gates in Figure 13 have delays
ranging from 1to 4. One hasuniformly distributed delays[1/4, 1/4, 1/4, 1/4], whilethe other has
delays that more nearly approximate a normal distribution [1/8, 3/8, 3/8, 1/8|. The delay value
for a gate can then be encoded by a set of log & Boolean variables, as shown in Figure 15. That is,
we model the circuit element with a k-input multiplexor, where adelay value having probability ¢/ k
isfed to ¢ of the inputs. The circuit isthen evaluated using a symbolic extension of a conventional
logic gate smulation algorithm. The signal value on anode N at each time ¢ is then a Boolean
function N(t) of the delay variables.

For the example of Figure 15 suppose that variables [e;, eg] encode the delay between A and B,
whilevariables [dy, d;, do| encode the delay between B and C, asshownin Table 4. For timest < O,
the node functions are given as: A(t) = B(t) = D(t) = Out(t) = Oand C(t) = 1. For times
t > 0, node A hasfunction A(t) = 1, while the others would be computed as:

B(t) = ereqA(t—1) +er-eoA(l—2) + er-eo- A(t—=3) + e1-eo- A(t—4)
C(t) = dp-dy-doBlt—1) + dp-(dy + do)-Bt—2) +

24

A—B B—C

Delay Condition Delay Condition
1 1€ 1 da-d-do
2 €10 2 dy(dy+do)
3 €1-€o 3 da+(d1 + do)
4 €1-€0 4 dz'dl'do

Table 4: Delay Conditions for Example Cir cuit.
do-(dy + do)- B(t—3) + dp-dy-do- B(t—4)

D(t) = B(t—3)

Out(t) = C(t)-D(t)

From these equations, the output signal would be computed as Out(t) = Ofort < 3andt > 8,
and for other times as:

(4) = dp-di-dp-er-eg
(5) = dp-di-do-er-eo
Out(6) = dp-di-do-er-eg
(7) = da-di-do-es-eo

We can compute a Boolean function indicating the delay conditions under which some undesirable
behavior arises. For example, we could compute the probability of a glitch occurring on node Out
asG =Y Out(t). Inthiscase, we would compute G' = d;-d;-do, i.€., aglitch occursif and only if
the delay between B and C equals 4.

Given a Boolean function representing the conditions under which some event occurs, we can
compute the event probability by computing the density of the function, i.e., the fraction of variable
assignments for which the function yields 1. With the aid of the Shannon expansion, the density
p(f) of afunction f can be shown to satisfy the recursive formulation:

p(l) =
p(0) =
p(f) =

NI O B

[(Fly)+ p(fly)]

Thus, given an OBDD representation of f, we can compute the density in linear time by traversing
the graph depth-first, labeling each vertex by the density of the function denoted by its subgraph.
This computation is shown in Figure 16 for the OBDD representing the conditions under which
node C in Figure 15 has arising transition at time 6, indicating that this event has probability 7/32.

25

Figure 16: Computation of Function Density. Each vertex islabeled by the fraction of variable
assignmentsyielding 1.

Asthisapplication shows, OBDD-based symbolic analysis can be applied to systemswith complex
parametric variations. Although this requires smplifying the problem to consider only discrete
variations, useful results can still be obtained. The key advantage this approach has over other
simplified methods of probabilistic analysis (e.g., controllability/observability measures [Brglez
et a 1984]) isthat it accurately considers the effects of correlations among stochastic values.

6. FINITE STATE SYSTEM ANALYSIS

Many problemsin digital system verification, protocol validation, and sequential system optimiza-
tion require a detailed characterization of afinite state system over a sequence of state transitions.
Classic algorithms for this task construct an explicit representation of the state graph and then
analyze its path and cycle structure [Clarke et al 1986]. These techniques become impractical,
however, as the number of states grows large. Unfortunately, even relatively small digital systems
can have very large state spaces. For example, asingle 32-bit register can have over 4 x 10° states.

More recently, researchers have developed “symbolic” state graph methods, in which the state
transition structure is represented as a Boolean function [Burch et al 1990a; Coudert et al 1990].2
This involves first selecting binary encodings of the system states and input alphabet. The next-
state behavior is described as a relation given by a characteristic function §(Z, 7, 7) yielding 1
when input &’ can cause a transition from state o' to state 7. As an example, Figure 18 illustrates
an OBDD representation of the nondeterministic automaton having the state graph illustrated in
Figure 17. Thisexamplerepresentsthethreepossible statesusing two binary valuesby the encoding

2Apparently, McMillan [McMillan 1992] implemented the first symbolic model checker in 1987, but he did not
publish this work.

26

Figure 17: Explicit representation of non-deter ministic finite state machine. The size of the
representation grows linearly with the number of states.

Figure 18: Symbolic representation of non-deter ministic finite state machine. The number of
variables grows logarithmically with the number of states.

27

o(A) =10,0], 0(B) = [1,0], and o(C) = [0, 1]. Observe that the unused code value [1, 1] can be
treated asa“don’t care” value for the arguments o'and 77 in the function ¢. In the OBDD of Figure
18, thiscombinationistreated as an alternate code for state C to simplify the OBDD representation.

For such asmall automaton, the OBDD representation does not improve on the explicit representa-
tion. For more complex systems, on the other hand, the OBDD representation can be considerably
smaller. Based on the upper bounds derived for bounded width networks discussed in Subsec-
tion 1.4, McMillan [McMillan 1992] has characterized some conditions under which the OBDD
representing thetransition relation for asystem growsonly linearly with the number of system com-
ponents, whereas the number of states grows exponentialy. In particular, this property holds when
both (1) the system components are connected in alinear or tree structure, and (2) each component
maintains only a bounded amount of information about the state of the other components. Asthe
example of Figure 5 illustrated, this bound holds for ring-connected systems, as well, since aring
can be “flattened” into a linear chain of bidirectional links. McMillan has identified a variety of
systems satisfying these conditions, including a hierarchical distributed cache in a shared memory
multiprocessor, and a ring-based distributed mutual exclusion circuit.

Given the OBDD representation, properties of afinite state system can then be expressed by fixed
point equations over the transition function, and these equations can be solved using iterative
methods, similar to those described to compute the transitive closure of arelation. For example,
consider thetask of determining the set of statesreachablefrom aninitial state having binary coding
¢ by some sequence of transitions. Define the relation S to indicate the conditions under which
for someinput 7, there can be atransition from state o'to state 7. This relation has a characteristic
function
XS(aa ﬁ) = 7 [5(1_37 0, ﬁ)]
Then set of states reachable from state ¢ has characteristic function:

xr(5) = xs+(q.5)

Systems with over 10%° states have been analyzed by this method [Burch et al 1990b], far larger
than could ever be analyzed using explicit state graph methods. A number of refinements have
been proposed to speed convergence [Burch et al 1990a; Filkorn 1991] and to reduce the size of
the intermediate OBDDs [Coudert et al 1990].

Unfortunately, the system characteristics that guarantee an efficient OBDD representation of the
transition relation do not provide useful upper bounds on the results generated by symbolic state
machine analysis. For example, one can devise a system having alinear interconnection structure
for which the characteristic function of the set of reachable states requires an exponentially-sized
OBDD [McMillan 1992]. On the other hand, researchers have shown that a number of real-life
systems can be analyzed by these methods.

One application of finite state system analysisisin verifying the correctness of a sequential digital
circuit. For example, one can prove that a state machine derived from the system specification is
equivalent to one derived from the circuit even though they use different state encodings. For this
application, more specialized techniques have al so been devel oped that exploit characteristicsof the
systemto beverified, e.g., that thecircuit issynchronousand deterministic, and that the specification
reguiresanalyzing only abounded number of clock cycles[Bose and Fisher 1989; Beatty et al 1991].
For example, we have verified pipelined data paths containing over 1000 bits of register state. Such
asystem, having over 103% states, exceeds the capacity of current symbolic state graph methods.

28

7. OTHER APPLICATION AREAS

Historically, OBDDs have been applied mostly to tasks in digital system design, verification, and
testing. More recently, however, their use has spread into other application domains. For example,
the fixed point techniques used in symbolic state machine analysis can be used to solve a number
of problems in mathematical logic and formal languages, as long as the domains are finite [Burch
et al 1990a; Touati et al 1991]. Researchers have aso shown that problems from many application
areas can be formulated as a sets of equations over Boolean algebras which are then solved by a
form of unification [Buttner and Simonis 1987].

Intheareaof artificial intelligence, researchers have devel oped atruth maintenance system based on
OBDDs[Madreand Coudert 1991]. They usean OBDD to represent the* database,” i.e., the known
relations among the elements. They have found that by encoding the database in this form, the
system can make inferences more readily than with the traditional approach of simply maintaining
an unorganized list of “known facts” For example, determining whether a new fact is consistent
with or follows from the set of existing facts involves a simple test for implication.

8. AREASFOR IMPROVEMENT

Although a variety of problems have been solved successfully using OBDD-based symbolic ma-
nipulation, there are still many cases where improved methods are required. Of course, most of
the problems to be solved are NP-hard, and in some cases even PSPACE-hard [Garey and Johnson
1979]. Hence, it is unlikely that any method with polynomial worst case behavior can be found.
At best, we can develop methods that yield acceptable performance for most tasks of interest.

One possibility is to improve on the representation itself. For working with digital systems con-
taining multipliers and other functions involving a complex relation between the control and data
signals, OBDDs quickly become impractically large. Several methods have been proposed that
follow the same general principles of OBDD-based symbolic manipulation, but with fewer restric-
tions on the data structure. For example, Karplus has proposed a variant termed “If-Then-Else
DAGs,” where the test condition for each vertex can be a more complex function than a simple
variabletest [Karplus 1989]. Researchersat CMU have experimented with “Free BDDs,” in which
the variable ordering restriction of OBDDs is relaxed to the extent that the variables can appear
in any order, but no path from the root to a terminal vertex can test a variable more than once
[Brace 1988]. Such graphs, known as “ 1-time branching programs’ in the theoretical community
[Wegener 1988], have many of the desirable properties of OBDDs, including an efficient (although
probabilistic) method for testing equivalence[Blum and Chandra1980]. Recently, techniquesbased
on this representation have been developed that maintain several of the desirable characteristics of
OBDDs, including a canonical form and a polynomial time AppLY operation [Gergov and Meinel
1992]. Other researchers have removed all restrictions on variable occurrence, allowing pathswith
multiple tests of a single variable [Ashar et al 1991; Burch 1991]. In each of these extensions,
we see atrade-off between the compactness of the representation and the difficulty of constructing
them or testing their properties.

In many combinatorial optimization problems, symbolic methodsusing OBDDshave not performed
aswell as more traditional methods. I1n these problems, we are typically interested in finding only

29

one solution that satisfies some optimality criterion. Most approaches using OBDDs on the other
hand, derive all possible solutions and then select the best from among these. Unfortunately, many
problems have too many solutions to encode symbolically. More traditional search methods such
as branch-and-bound techniques often prove more efficient and able to solve larger problems. For
example, our test generation program determines all possible tests for each fault [Cho and Bryant
1989], whereas more traditional methods stop their search as soon as a single test is found. One
possibility would beapply theideaof “lazy” or “delayed” evaluation [Abelson et al 1985] to OBDD-
based manipulation. That is, rather than eagerly creating a full representation of every function
during a sequence of operations, the program would attempt to construct only as much of the
OBDDsasisrequired to derive thefinal information desired. Recent test generation programs have
some of this character, using a hybrid of combinatorial search and functional evaluation [Giraldi
and Bushnell 1990].

9. SUMMARY

As researchers explore new application areas and formulate problems symbolically, they find they
can exploit several key features of Boolean functions and OBDDs:

e By encoding the elements of afinite domain in binary, operations over these domains can be
represented by vectors of Boolean functions.

e Symbolic Boolean manipulation provides a unified framework for representing a number of
different mathematical systems.

e For many problems, a variable ordering can be found such that the OBDD sizes remain
reasonable.

e The ability to quickly test equivalence and satisfiability makes techniques such as iterative
methods and sensitivity analysis feasible.

e The AppPLY and RESTRICT operations provide a powerful basis for many more complex
operations.

Discovering new application areas, and improving the performance of symbolic methods (OBDD
or otherwise) for existing areas will provide afruitful area of research for many years to come.

REFERENCES
[Abelson et a 1985] Abelson, H., Sussman, G. J., and Sussman, J. 1985. Sructure and Interpre-
tation of Computer Programs, MIT Press, Cambridge, MA, pp. 261-264.

[Akers 1978] Akers, S.B.1978. Binary decisiondiagrams. | EEE Transactionson ComputersC-27,
6 (Aug.), pp. 509-516.

[Ashar et a 1991] Ashar, P, Devadas, S., and Ghosh, A. 1991. Boolean satisfiability and equiva-
lence checking using general binary decisiondiagrams. Inter national Conference on Computer
Design, (Cambridge, Oct.). IEEE, New York, pp. 259-264.

30

[Beatty et al 1991] Beatty, D. L., Bryant, R. E., and Seger, C.-J. H. 1991. Formal hardware verifica-
tion by symbolic tragjectory evaluation. Proceedings of the 28th ACM/IEEE Design Automation
Conference (San Francisco, June), ACM, New York, pp. 397—-402.

[Berman 1989] Berman, C. L. 1989. Ordered binary decision diagrams and circuit structure. Inter-
national Conference on Computer Design (Cambridge, October), IEEE, New York, pp. 392—
395.

[Blum and Chandra 1980] Blum, M. W., and Chandra, A. K. 1980. Equivalence of free Boolean
graphs can be decided probabilisticaly in polynomial time. Information Processing Letters
10 (March 18), pp. 80-82.

[Bose and Fisher 1989] Bose, S., and Fisher, A. L. 1989. Verifying pipelined hardware using sym-
bolic logic simulation. International Conference on Computer Design (Boston, Oct.). |IEEE,
New York.

[Brace 1988] Brace, K. S. 1988. private communication, Carnegie Mellon University, (Pittsburgh,
PA).

[Braceet d 1990] Brace K. S, Bryant, R. E., and Rudell, R. L. 1990. Efficient implementation of a
BDD package. Proceedings of the 27th ACM/IEEE Design Automation Conference (Orlando,
June), ACM, New York, pp. 40-45.

[Brayton et a 1984] Brayton, R.K., Hachtel, G.D., McMullen, C. T., and Sangiovanni-Vincentelli,
A.L..1984. Logic Minimization Algorithmsfor VLS Synthesis. Kluwer Academic Publishers,
Boston.

[Brglez et al 1984] Brglez, F., Pownall, P, and Hum, P. 1984. Applications of testability analysis:
From ATPG to critical path tracing. International Test Conference (Philadelphia, Oct.), |IEEE,
New York, pp. 705-712.

[Brown 1990] Brown, F. M. 1990. Boolean Reasoning. Kluwer Academic Publishers, Boston.

[Bryant 1986] Bryant, R. E. 1986. Graph-based algorithms for Boolean function manipulation.
|EEE Transactions on Computers C-35, 6 (Aug.), pp. 677-691.

[Bryant 1991] Bryant, R. E. 1991. On the complexity of VLS| implementations and graph repre-
sentations of Boolean functions with application to integer multiplication. |EEE Transactions
on Computers 40 2 (Feb.), pp. 205-213.

[Burch et a 1990a] Burch, J. R., Clarke, E. M., and McMillan, K. 1990. Symbolic model check-
ing: 10%° states and beyond. Fifth Annual |EEE Symposium on Logic in Computer Science
(Philadelphia, June), IEEE, New York, pp. 428-439.

[Burch et a 1990b] Burch, J. R., Clarke E. M., Dill, D. L., and McMillan, K. 1990. Sequential
circuit verification using symbolic model checking. Proceedingsof the27th ACM/IEEE Design
Automation Conference (Orlando, June) ACM, New York, pp. 46-51.

31

[Burch 1991] Burch, J. R. 1991. Using BDDs to verify multipliers. Proceedings of the 28th
ACM/IEEE Design Automation Conference, (San Francisco, June) ACM, New York, pp. 408-
412.

[BUttner and Simonis 1987] Buttner, W. and Simonis, H. 1987. “ Embedding Boolean expressions
into logic programming. Journal of Symbolic Computation 4 pp. 191-205.

[Cerny and Marin 1977] Cerny, E. and Marin, M. A. 1977. An approach to unified methodol ogy of
combinational switching circuits. |EEE Transactions on Computers C-26, 8 (Aug.), pp. 745—
756.

[Cho and Bryant 1989] Cho, K., and Bryant, R. E., 1989. Test pattern generation for sequential
MOQOS circuits by symbolic fault ssmulation. Proceedings of the 26th ACM/IEEE Design Au-
tomation Conference (Las Vegas, June), ACM, New York, pp. 418-423.

[Clarke et al 1986] Clarke, E. M., Emerson, E. A., and Sistla, A. P. 1986. Automatic verification
of finite-state concurrent systems using temporal logic specifications. ACM Transactions on
Programming Languages 8 2 (April), pp. 244—263.

[Coudert et a 1990] Coudert, O. Madre, J.-C., and Berthet, C. 1990. Verifying temporal properties
of sequential machines without building their state diagrams. Computer-Aided Verification
‘90, E. M. Clarke, and R. P. Kurshan, eds. (Rutgers, June), American Mathematical Society,
pp. 75-84.

[Deguchi et al 1991] Deguchi, Y., Ishiura, N., and Yajima, S. 1991. Probabilistic CTSS: Analysis
of timing error probability in asynchronouslogic circuits. Proceedings of the 28th ACM/IEEE
Design Automation Conference, (San Francisco, June) ACM, New York, pp. 650-655.

[Filkorn 1991] Filkorn, T. 1991. A method for symbolic verification of synchronous circuits. Com-
puter Hardware Description Languages (Marseilles, April), IFIP, pp. 229-239.

[Fortune et al 1978] Fortune, S., Hopcroft, J., and Schmidt, E. M. 1978. The complexity of equiv-
alence and containment for free single variable program schemes. Automata, Languages and
Programming, Lecture Notes in Computer Science, Vol. 62, G. Goos, J. Hartmanis, Ausiello,
and Boehm, eds. Springer-Verlag, Berlin, pp. 227-240.

[Fujitaet al 1988] Fujita, M., Fujisawa, H. and Kawato, N. 1988. Eval uations and i mprovements of
aBoolean comparison program based on binary decision diagrams. International Conference
on Computer-Aided Design (Santa Clara, Nov.), IEEE, New York, pp. 2-5.

[Fujitaet al 1991] Fujita, M., Kakuda, T., and Matsunaga, Y. 1991. Redesign and automatic error
correction of combinational circuits. Logic and Architecture Synthesis: Proceedings of the
IFIP TC10/WG10.5 Workshop on Logic and Architecture Synthesis, P. Michel, and G. Saucier,
eds. Elsevier, Amsterdam, pp. 253—-262.

[Garey and Johnson 1979] Garey, M. R., and Johnson, D. S. 1979. Computers and Intractability,
W. H. Freeman and Company, New York.

32

[Gergov and Meinel 1992] Gergov, J., and Meinel, C. 1992. Efficient analysis and manipulation
of OBDDs can be extended to read-once-only branching programs. Technical Report 92-10,
Universitat Trier, Fachbereich IV—Mathematik/Informatik, Trier, Germany.

[Giraldi and Bushnell 1990] Giradi, J., and Bushnell, M. L. 1990. EST: The new frontier in auto-
matic test-pattern generation. Proceedings of the 27th ACM/IEEE Design Automation Con-
ference (Orlando, June), ACM, New York, pp. 667—672.

[Jeong et a 1991] Jeong, S.-W., Plessier, B., Hachtel, G. D., and Somenzi, F. 1991. Variable or-
dering and Selection for FSM traversal. Inter national Conference on Computer-Aided Design
(Santa Clara, Nov.), IEEE, New York, pp. 476-479.

[Karplus 1989] Karplus, K. 1989. Using if-then-else DAGs for multi-level logic minimization. In
Advanced Research in VLS, C. Seitz, ed., MIT Press, Cambridge, pp. 101-118.

[Kimuraand Clarke 1990] Kimura, S., and Clarke, E. M. 1990. A parallel algorithm for construct-
ing binary decision diagrams. International Conference on Computer Design (Boston, Oct.),
IEEE, New York, pp. 220-223.

[Lee 1959] Lee, C. Y. 1959. Representation of switching circuits by binary-decision programs.
Bell System Technical Journal 38, pp. 985-999.

[Lineta 1990] Lin, B., Touati, H. J., and Newton, A. R. 1990. Don’t care minimization of multi-
level sequential logic networks. International Conference on Computer-Aided Design (Santa
Clara, Nov.), IEEE, New York, pp. 414-417.

[Madre and Billon 1988] Madre, J. C., and Billon, J. P. 1988. Proving circuit correctness us-
ing formal comparison between expected and extracted behaviour. Proceedings of the 25th
ACM/IEEE Design Automation Conference, (Anaheim, June), ACM, New York, pp. 205-210.

[Madre et a 1989] Madre, J.-C., Coudert, O., and Billon, J. P. 1989. Automating the diagnosis
and rectification of design errorswith PRIAM. International Conference on Computer-Aided
Design (Santa Clara, Nov.), IEEE, New York, pp. 30-33.

[Madre and Coudert 1991] Madre, J.-C., and Coudert, O. 1991. A logically complete reasoning
mai ntenance system based on alogical constraint solver. 12th International Joint Conference
on Artificial Intelligence (Sydney, Aug.), pp. 294—299.

[Malik et al 1988] Malik, S., Wang, A., Brayton, R. K., and Sangiovanni-Vincentelli, A. 1988.
Logic verification using binary decision diagramsin alogic synthesis environment. Interna-
tional Conference on Computer-Aided Design (Santa Clara, Nov.), IEEE, New York, pp. 6-9.

[McMillan 1992] McMillan, K. L. 1992. Symbolic model checking: an approach to the state
explosion problem. PhD thesis, School of Computer Science, Carnegie Mellon University.

[Mead and Conway 1990] Mead, C. A., and Conway, L. 1980. Introduction to VLS Systems,
Addison-Wesley, Reading, MA.

33

[Meingl 1990] Meinel, C. 1990 Modified branching programs and their computational power,
Lecture Notesin Computer ScienceVol. 370, G. Goos, and J. Hartmanis, eds. Springer-Verlag,
Berlin.

[Minato et al 1990] Minato, S., Ishiura, N., and Ygjima, S. 1990. Shared binary decision diagram
with attributed edges for efficient Boolean function manipulation. Proceedings of the 27th
ACM/IEEE Design Automation Conference (Orlando, June), ACM, New York, pp. 52-57.

[Ochi et al 1991] Ochi, H., Ishiura, N., and Ygiima, S. 1991. Breadth-first manipulation of SBDD
of function for vector processing. Proceedings of the 28th ACM/IEEE Design Automation
Conference, (San Francisco, June) ACM, New York, pp. 413-416.

[Reeves and Irwin 1987] Reeves, D. S, and Irwin, M. J. 1987. Fast methods for switch-level
verification of MOS circuits. |EEE Transactions on CAD/IC CAD-6 5 (Sept.), pp. 766—779.

[Sato et a 1990] Sato, H., Yasue, Y., Matsunaga, Y., and Fujita, M. 1990. Boolean resubstitution
with permissible functions and binary decision diagrams. Proceedings of the 27th ACM/IEEE
Design Automation Conference (Orlando, June), ACM, New York, pp. 284-289.

[Sellerset a 1968] Sellers, F. F.,, Hsiao, M. Y., and Bearnson, C. L. 1968. Analyzing errors with
the Boolean difference. |EEE Transactions on Computers C-17, pp. 676-683.

[Srinivasan et al 1990] Srinivasan, A., Kam, T., Malik, S., and Brayton, R. K. 1990. Algorithmsfor
discrete function manipulation. International Conference on Computer-Aided Design (Santa
Clara, Nov.), IEEE, New York, pp. 92—-95.

[Touati et al 1991] Touati, H. J., Brayton, R. K., and Kurshan, R. P. 1991. Testing language con-
tainment for w-automata using BDD’s. Formal Methodsin VLS Design (Miami, Jan.), ACM,
New York.

[Watanabe and Brayton 1991] Watanabe, Y., and Brayton, R. K. 1991. Heuristic minimization of
multiple-valued relations. International Conference on Computer-Aided Design (SantaClara,
Nov.), IEEE, New York, pp. 126-129.

[Wegener 1988] Wegener, 1. 1988. On the complexity of branching programs and decision trees
for clique functions. J. ACM 35 2 (April), pp. 461-471.

34

