Temporal Induction by Incremental SAT Solving

Niklas Eén, Niklas Sorensson

Chalmers University of Technology, Sweden
{een,nik}@cs.chalmers.se

Abstract. We show how a very modest modification to a typical modern
SAT-solver enables it to solve a series of related SAT-instances efficiently.
We apply this idea to checking safety properties by means of temporal
induction, a technique strongly related to bounded model checking. We
further give a more efficient way of constraining the extended induction
hypothesis to so called loop-free paths. We have also performed the first
comprehensive experimental evaluation of induction methods for safety-
checking.

1 Introduction

In recent years, SAT-based methods for hardware verification have become an
important complement to traditional BDD-based model checking. Several meth-
ods have proven their usefulness on a number of industrial applications, in partic-
ular bounded model checking (BMC) [BCCZ99,BCRZ99,CFF+01]. In this paper
we will focus our attention on how SAT-based verification procedures can be
implemented more efficiently by a tighter integration with the underlying SAT-
solver.

There are three main contributions of the paper. Firstly, we show how a num-
ber of similar SAT-instances can be solved incrementally by a very modest mod-
ification of a modern Chaff-like SAT-solver [MZ01]. The technique we propose
is simpler than previous attempts [WKS01], while still obtaining a performance
increase of the same magnitude. Secondly, we demonstrate the incremental tech-
nique on temporal induction [SSS00], a method of checking safety properties on
finite state machines (FSM). We show the impact of the incremental approach
experimentally, both for proving correctness and for finding counter-examples.
Thirdly, we refine the method of ensuring completeness for temporal induction.
The standard method works by requiring all states in the induction hypothesis to
be unique. By a simple analysis of the FSM, we are able to exclude some state-
variables from the uniqueness constraints, resulting in stronger requirements.
This may exponentially reduce the induction depth needed. We prove that this
strengthening is sound. Additionally, we demonstrate a speed-up by adding the
unique states requirement dynamically for only those pairs of states where it is
needed.

The experiments we have performed with our prototype tool TIP show that
many properties can be proven at speeds comparable to mature BDD-based tools
such as CADENCE SMV and CMU SMV.

2 Preliminaries

In this paper, we consider safety properties on finite state machines (FSM).
The states of the FSM are vectors of booleans, defining the values of the state
variables. We assume the FSM to have a set of legal initial states, and the safety
property to be specified as a propositional formula over the state variables. By
reachable state space we mean all states of the FSM reachable from the initial
states. Our task is to prove that the property holds for each state in the reachable
state space.

In a standard manner, we will assume the transitions of the FSM to be
represented by a propositional formula T(s,s’), the set of initial states by a
formula I(s), and further denote the safety property by P(s). We will use s,, to
denote the state variables of time step n and introduce the shorthand notation
I,, P,, and T, for I(s,), P(sn), and T(Sn, Sn+1)-

2.1 The SAT problem

Let Bool denote the boolean domain {0,1}, and Vars := {z9,zs,22,...} be a
finite set of boolean variables. A literal is a boolean variable z; or a negated
boolean variable Z;. A clause is a set of literals, implicitly disjoined. A SAT
instance is a set of clauses, implicitly conjoined. A valuation is a function Vars —
Bool. A literal z; is said to be satisfied by a valuation if its variable is mapped
to 1; a literal T; if its variable is mapped to 0. A clause is said to be satisfied
if at least one of its literals is satisfied. A model (satisfying assignment) for a
SAT instance is a valuation where all clauses are satisfied. The SAT problem is
to find a model for a given set of clauses.

Converting formulas to SAT. There are several ways of translating a proposi-
tional formula into clauses, in such a way that satisfiability is preserved. This is
typically done by introducing auxiliary variables giving names to some or all sub-
formulas, then generating clauses that establish a definitional relation between
the introduced variables and the truth-values of their respective subformulas.
Any model for the translated problem (which contains more variables) has the
property that its restriction to the original set of variables yields a model for the
original formula. We assume the existence of such a translation technique and
introduce the following notation:

Definition. By [p]? we denote a set of clauses defining ¢ such that p is
the literal representing the truth-value of the whole formula. We call p the
definition literal of ¢. Further, we write [] as a short hand for [¢]” U {p}.

For example [z Ay]P may be translated into the clauses { {p, z}, {p,y}, {p. T, 7} }.

2.2 Temporal Induction

This section briefly summarizes the verification technique temporal induction
presented in [SSS00]." The word “temporal” suggests that the induction is car-

! The authors use only the word “induction” in this presentation, but have later
adopted the term “temporal induction” and used it in other contexts.

Base—case
T T T T

I,LP P P P =P
Induction-step
T T T T T T

Mol ofhe

P P P P P -P

Fig. 1. If the n-th base-case is unsatisfiable, it should be read as “There exists no n-
step path to a state violating the property, assuming the property holds the first n — 1
steps.” If the n-th induction-step is unsatisfiable, it should be read as “Following an
n-step trace where the property holds, there exists no next state where it fails”.

ried out over the time steps of the FSM. Like a standard induction proof, a
temporal induction proof consists of two parts: the base-case and the induction-
step. In its simplest form, the base-case states that the property should hold in
the initial states; and the induction-step states that the property should be pre-
served by the transitions of the FSM. Expressing the two parts of the induction
proof as SAT-problems is straight-forward—still, the resulting method is al-
ready an interesting complement to BDD-based verification methods, especially
for systems where the transition relation has no succinct BDD-representation.
However, the method is not complete, since the induction-step might not be
provable even though the property is true.

To make the method complete, the induction-step is strengthened in two
ways. Firstly, the property is assumed to hold for a path of n successive states,
rather than just one. This means that a longer base-case must be proven. Sec-
ondly, the states of the path are assumed to be unique. It follows immediately
from finiteness that the second strengthening makes the method complete in
the sense that there is always a length for which the induction-step is provable.
Soundness is treated in detail in section 4. Let us formalize the strengthened
induction by defining the following formulas:

Base, = I, A ((Pg/\Tg) Ao A (Pn,l/\Tn,l)) A P,

Step, = ((Po/\To) A A (Pn/\Tn)) A Pr

Unique,, := /\ (si # 8j41) = /\ \/_|(Si7k<—>3j7k)
i<ji<n i<i<n k

An interpretation of these formulas is depicted in Fig. 1. Note that when proving
correctness we show that the formulas are unsatisfiable. In the base-case we as-
sume that all shorter base-cases have been proved already, and add the property

to each state as this tends to make the resulting SAT-problem easier. With these
definitions, we can now state an algorithm that intertwines looking for bugs of
longer and longer lengths, and trying to prove the property by deeper and deeper
induction-steps:

Algorithm 1. “Temporal Induction”.

for n € 0..00 do
if (satisfiable([Base,)))
return PROPERTY FAILS
if (—satisfiable([Step,,] U [Unique,]))
return PROPERTY HOLDS

Variations of this algorithm are also meaningful. For instance, checking only the
base-case gives a pure bug-hunting algorithm, which delivers counter-examples
more quickly. By altering the formula of the base-case slightly, it is possible to
start at a higher n and taking bigger leaps than 1. Checking every size of n
may be unnecessarily costly. If the bug or proof is deep, taking bigger leaps
means solving fewer SAT-problems. However, if there is a bug, Algorithm 1 (as
stated) will always find a shortest counter-example. This may be important. In
the remainder of the article, we will show how the cost of incrementing n by
only 1 can be greatly reduced by solving the SAT-problems incrementally.

3 Incremental SAT

A typical stand-alone SAT-solver accepts a problem instance as input, solves
it, and outputs a model or an “Unsatisfiable” statement as result. This can be
inadequate if you wish to solve many similar SAT-instances. The most obvious
overhead is re-parsing the (almost) same clause set over and over again. But
more importantly, the same, often expensive, inferences may be carried out over
and over again. Equipping the SAT-solver with an interface that allows the next
SAT-instance to be specified incrementally from the current (solved) instance will
certainly remove the parsing problem, but may reduce the number of inferences
too.

We focus on the type of solver introduced by [MS99], based on conflict anal-
ysis and clause recording.? Such a solver implements a DPLL-style backtracking
search procedure [DLL62]. The idea behind augmenting the basic procedure with
conflict analysis is that for every conflict detected during the search, some effort
is spent on finding a reason for the conflict that can be encoded as a clause and
added to the clause set. The recorded clauses will serve as a cache for the same
type of conflicts in later parts of the search-space. For example, if assuming x
and y to be true led to a conflict, the clause {Z,7} may be recorded. Assuming
either = or y to be true in some later part of the search-tree, will immediately
give the implied value to the other variable, avoiding repetition of the possibly

2 This includes SAT-solvers such as: GRASP, SATO, ZCHAFF, LIMMAT, BERKMIN, and
the authors’ own solvers SATNIK and SATZO0O.

lengthy derivation. The effectiveness of this idea has been empirically established
by many authors. A motivation for incremental SAT is that the recorded clauses
may not only be useful in later parts of the search-tree of the same SAT-instance,
but also in a later similar SAT-instance.

To describe the different design issues encountered when implementing an
incremental SAT-system, we adopt an object-oriented view, using a solver object
which stores the problem clauses (the current SAT-instance) as well as the learnt
clauses (the recorded clauses). The solver has methods for modifying and solving
the current SAT-instance. The simplest imaginable interface would contain the
following methods:

addClause (Clause c) — will add a clause to the clause database.
solve — will solve the current instance.

Using this interface, the user is allowed to add clauses until he has specified the
first SAT-problem. He can then use solve to check if the problem is satisfiable
or not. If it is, he may add more clauses to constrain the problem further and
re-run solve. This procedure can be repeated until all SAT instances of interest
have been solved. Typically the last instance is unsatisfiable, from which point
no extension can be satisfiable.

This approach to incremental SAT, introduced in [Hok93|, is limited as
the user can never remove anything added. Many interesting incremental SAT-
problems requires some form of clause removal. Therefore [WKS01] suggested
the following interface to the solver:

addClause (Clause c)
removeClause (Clause c) — will remove an ezisting clause from the
solve clause database.

By this interface, any set of related problems can be solved incrementally. How-
ever, the ability to remove clauses clashes with conflict clause recording. The
conflict analysis is guaranteed to produce clauses that are implied by the prob-
lem clause set; thus adding these clauses can never cause unsoundness. But
removing problem clauses may suddenly render recorded clauses invalid. A de-
tailed dependency analysis must therefore be carried out to remove the invalid
clauses, which in turn may require extra book-keeping during the actual solving
process. For a longer treatment of this approach see [WKSO01].

In contrast, we propose the following interface which only enables the removal
of unit clauses. The motivation is that it is very simple to implement (5 lines of
code in our solver), while being expressive enough to encompass several inter-
esting incremental SAT-problems not expressible by the original interface:

addClause (Clause c)
solve (list(Literal) assumptions)

The extra list of literals passed to solve should be viewed as unit clauses to be
added during this particular solving, then removed upon return from the solver.
The reason that this approach is simpler is that all learned clauses are safe to

keep, and thus no extra book-keeping is needed. To see why it is safe, note that
the extra unit clauses can be seen (and implemented) as internal assumptions
by the search procedure, and that it is an inherent property of conflict clauses
that they are independent of the assumptions under which they occur. 3

4 Incremental Induction

In section 2.2 we saw a straight-forward algorithm for proving or disproving
safety properties by induction. We break this algorithm into two parts, the base-
case (“bug-finder”) and the induction-step (“upper-bound prover”), and show
how they can be implemented incrementally using the SAT-interface of section 3.

Algorithm 2 “Extending base”. Algorithm 3 “Extending step”.

addClauses([Io]) addClauses([Py)])

for n € 0..00 do forn € -1..—co do
addClauses([Pp]P™) solve({})
solve({Pn}) if (UNSATISFIABLE)
if (SATISFIABLE) return IND. STEP HOLDS

return PROPERTY FAILS addClauses([Ty])

addClause({pn}) addClauses([Py])
addClauses([Ty]) fori € 0.n+1 do

addClauses([s; # Sn))

A first observation on these algorithms is that they build the trace of states
related by the transition relation in different directions (n is decremented in the
step). Growing the trace forwards in the base-case allows us to keep the often
strong formula Iy fixed in the SAT-solver. Building the trace in the opposite
direction would force us to put the initial state constraints as an assumption
literal to “solve”, which will have the undesirable effect of making any recorded
conflict clause depending on the initial state ineffective in successive iterations.
Similarly in the step, growing the trace backwards makes it unnecessary to use
any assumption literal at all, which again promotes reuse of recorded clauses
between iterations.

Different top-level strategies for how to combine the two algorithms to a
safety-checking procedure are possible. To emulate Algorithm 1 of section 2.2,
the algorithms could be run in parallel, each with its own solver instance. As
soon as the induction-step succeeds for a particular length, an unsatisfiable base-
case of that length will constitute a proof of the safety property. However, it is
also possible to mix the two algorithms into one. We will then have to break the
natural direction of building the trace for either the base-case or the induction-
step. We arbitrarily chose to sacrifice the induction-step.

3 In fact, the more general interface can be simulated to a large extent. By inserting the
clause {z} UC, and passing T as an assumption literal, we achieve the same effect as
inserting C. Asserting x to be true afterwards will make the clause true forever, and
it will be removed from the clause database by the top-level simplification procedure
of the solver.

99

Algorithm 4 “Zig-zag”.

addClauses([Ip]?) — z is the definition literal for I
for n € 0..00 do
addClauses([Py]"™) — pn, @8 the definition literal for P,
solve({Pn}) — step: do not include Iy
if (UNSATISFIABLE) - P, must hold!
return PROPERTY HOLDS
solve({z,Pn}) — base-case: include I
if (SATISFIABLE) — counter-ezample found!
return PROPERTY FAILS
addClause({pn}) — assert Py, from now on
addClauses([Ty]) — assert transition from $pto Sp41
fori € 0.n-1do - add uniqueness constraints

addClauses([s; Z Sn))

The reason for stating this algorithm is partly to show that there is many pos-
sible ways of encoding the safety-checking procedure incrementally. With this
algorithm, the SAT-solver is allowed to share conflict clauses between the base-
case and the induction-step, which may be beneficial. We include the algorithm
in our benchmark section.

4.1 Discussion

We will now try to draw a map over possible induction based safety-checking
algorithms. Let us use the term bad state for a state were the safety property does
not hold. It is generally observed that checking safety properties is symmetric
with respect to the initial states and the bad states. Everything presented up to
this point could have been carried out backwards, with the roles of initial states
and bad states exchanged, and the transition relation inverted. We are going to
adopt this symmetrical view from now on.

In this view, we regard the induction-step as a method of finding an upper
bound on the length of a shortest counter-example, and the base-case as a way
of producing the counter-example. Now, what must a shortest counter-example
look like? It has to start in an initial state, it has to end up in a bad state, and
the states in between must not be either initial or bad (otherwise it could not
be a shortest counter-example). Using B (bad) for P we can view the set of
possible shortest counter-examples pictorially:

length 0: IB

length 1: IB ~ 1B

length 2: B ~ 1B X 1B

length 3: IB ~IB ~ 1B X 1B

length n: B A1 X1 X~ B X IB

Each line depicting a (shortest) counter-example corresponds to a conjunction
of constraints (Io ATy AB; AI; ATy A...). There is a lot of sharing between the
counter-examples of different lengths, and indeed if we remove either the initial
I or the final B from the n-th counter example, i.e.:

(1) BAmBA. . A AIB
or (2 BEMBXE2. .. EXBAXETI

then any counter-example of length n or longer will include all the constraints
of (1) and (2). This means that if either the constraints of (1) or (2), or any
subset of these, yields an unsatisfiable problem, then so will all possible shortest
counter-examples of longer lengths. Thus we have found an upper bound on the
shortest counter-example.

The picture above does not contain all constraints derivable from the fact
that we are considering a shortest counter-example. We can further conclude:

1. Between no two states is there a shorter path.

or weaker 2. Between no two non-neighbors is there a transition
(and the last state is unique).

or weaker 3. No two states are the same.

Any of these facts can be used when proving an upper bound. As long as we
keep adding constraints that must be fulfilled by shortest counter-examples, any
contradiction reached means we have established an upper bound. The reason for
stating weaker versions of the shortest-path requirement is that these versions
can be implemented more efficiently. Furthermore, we have already noted that
the third condition is enough to make the procedure complete. In the next section
we describe how the implementation of this condition can be improved.

Taking this subset-of-counter-example view, the induction-step we have used
in our algorithms can now be viewed as selecting the subset of (1) not contain-
ing any I:s but including the uniqueness constraints dictated by condition 3. *
Through experiments we found that this choice worked well in practice.

Finding a counter-example. If the user knows or has reason to believe that the
property is false, he may want to run just the base-case to quickly produce a
counter-example. In this case, it is less clear if any extra constraints should be
added to the trace. In Algorithm 1 and 2 we chose to add P. More constraints
mean more clauses in the solver, which leads to slower propagation, but also to a
smaller search-tree. Which of the two effects is predominant in a particular case
is hard to judge. In general, adding weak constraints is seldom a good idea.
Present BMC tools can optionally produce a SAT-problem stating that the
property fails among the first n steps rather than after exactly n steps. Care must
be taken before adding extra constraints to such formulations. For instance, one
can no longer require the states to be unique. One must also assume (or modify)

* The recurrence diameter introduced in [BCCZ99] can similarly be viewed as the
subset containing only the T':s together with uniqueness constraints.

the transition relation to always have a next state; or risk getting an unsatis-
fiable problem due to deadlock, even in the presence of a bug. A comparison
between this “one-shot” method and the incremental base-case is included in
our experiments.

4.2 TImproving the Unique States Requirement

The uniqueness constraints described in section 2.2 and used in Algorithm 1, 3
and 4 require each pair of states to be different. These requirements are statically
added, and their number will grow quadratically in the length of the induction-
step. For problems requiring high induction length, there is a risk of adding
numerous possibly superfluous constraints that will tax the SAT-solver heavily.
We propose a dynamic approach where the models returned by the solver in
the induction-step are examined, and only if two states are actually equal, a
constraint stating that they should be different is added. The solver must then
be run again, which may possibly cost more than adding superfluous constraints,
but hopefully the incrementality of the approach means that any re-run is very
quick. We verified experimentally that the method indeed seems to perform
better in general.

A question that has not been treated sufficiently in earlier presentations on
induction is what variables should be included in the uniqueness constraints.
It is not unusual to describe the FSM in the form of a sequential circuit. The
standard interpretation of a circuit is to consider both the latches (the state
holding elements) and the inputs as state variables of the FSM. However, it is
fairly clear that there is no need to include inputs in the uniqueness constraints.
If two states are equal except for the inputs, whatever value the inputs assume
in the second state, they could have assumed in the first. It is therefore safe to
require only the latch-variables do be different—a much stronger condition. In
fact, this is often what is implemented [CS00]. Note that failing to remove the
superfluous state variables from the uniqueness constraints gives an ineffective
induction algorithm, as each extra state variable has the potential of doubling
the depth needed to prove the step.

If on the other hand the FSM is given as two propositional formulas I and
T it is less clear what variables can be excluded.® We propose the following
solution:

1. Include only variables occurring both in the current and the next state
of the transition relation.

2. Do not add uniqueness constraints including the first or the last state of
the trace.

We refer to uniqueness constraints over this reduced set of state variables as
strong uniqueness.

% The result of parsing an SMV file often leaves you with just this.

: : —
Sil—nl SjIn Sil—l Sim
. 7.
M: . [sls=] .. sl ... M .. Jsfsr 51
Ti_l SIOIJt Tj SJ(:—LJI-t Ti_l SiOUt Sjilit Ti

Fig. 2. The picture shows the contraction of the counter-example M to M'. The state
variables constrained by the transition relations at the point of “gluing” are printed in
the boxes; the remaining trace is represented by the “...”.

Correctness. We will now prove that temporal induction with strong uniqueness
is sound. Recall that the induction-step can be strengthened by anything that
holds for a shortest counter-example. It then suffices to show that a counter-
example that is not strongly unique cannot be shortest. Let us introduce the
following notation:

silgft :=wvars(T;) N s; 8 = sile‘ft \ gkt
sirlght = UG,TS(Tifl) N s; siOUt = sirzght \ Sil'eﬂ
sireg = sileft N Simght

Let M be the model of a formula encoding a counter-example of depth n:
M E I A To ATy A...A T,y A B,

We now show by construction that if M |= (5,79 = s;7%9) forsome 0 < i < j <n
(M is not strongly unique) then there is a shorter counter-example. Define M’
over {8o,...,8n—(j—i)} as follows:

Sk) ,k? <1

(M(
M'(M(Sky(j—iy)) k>
MI(Siln — M(Sjln)

M'(M(
M(M(

M’ now constitutes a counter-example of depth n — (j —). We have contracted
the counter-example by simply removing all states between 7 and j (depicted in
Fig. 2). The only potential problem lies in the “gluing” of the head and the tail at
state i. However, the only constraints containing s; are T;_; and T;. But T;_;
does not contain any variables from s;**, so letting M(s;™) # M’(s;™) cannot
make T; ; false in M’. Similarly for T; which does not contain any variables
from s;°'. Finally M(s;"9) = M(s;"), so indeed M’ must be a model for
the constraints T;_; and T;. O

The proof can easily be extended to establish that the exclusion of the first and
the last state is superfluous if all variables of I occur in the next state of T and
all variables of B occur in the current state of T.

10

5 Experimental Results

The ideas presented in this paper were implemented in the prototype tool TIp®
which was integrated with the SAT-solver SATz00. All benchmarks were per-
formed on a 2 GHz Pentium 4 with 512 MB of memory running Linux. We set the
time-out for all launches to 10 minutes, and the memory limit to 400 MB. The
benchmarks were collected from several sources. In the tables, each benchmark
name is tagged with the source of the problem:

cadence — Example files from the CADENCE SMYV distribution.

cmu — Example files from the CMU SMYV distribution.

ken — SMV case studies from Ken McMillan’s web-page.

nusmv — Example files from the NUSMYV distribution.

vis — Example files from the VIS distribution.

texas — The Texzas 97 benchmarks available from Berkeley University.
eijk — ISCAS’89 sequential equivalence checking from [Eijk98].

irst — Problems from the Model Checking Group at IRST.

All problems were converted to flat SMV-format with only boolean variables
and no sub-modules. For each problem, the safety properties were extracted.
In this process, CTL formulas “EF” were changed into “AG—" and all fairness
constraints were removed. Different properties for the same system are indicated
by a subscript after the system name.

Counting each property as a separate instance, a total of 185 problem in-
stances were collected. As our first experiment, we ran TIP, CADENCE SMV,
CMU SMV, and NUSMYV on each of these instances. All tools were run with a
default set of options, providing no problem specific variable ordering:

Tip filename

CadSMV filename

CmuSMV -reorder filename

NuSMV -AG -dynamic -coi filename

Instances solved in less than 1 second by all tools were considered trivial and
removed, leaving 158 instances.

Comparison with BDD-tools. The result of the comparative experiment is
presented in Table 1. The default strategy of TIP runs the base-case and the
induction-step presented in Algorithm 2 and 8 in parallel, each with its own
solver instance. The two algorithms are given equal amount of CPU time, until
the point where either the base-case fails, and a counter-example is found, or
the induction-step is proven, and the remaining base-cases (if any) are proved
with 100% CPU.

The purpose of the experiment was to relate the performance of induction
to industrially applied methods, and to show the (lack of) correlation between
hardness for BDD-based methods and hardness for induction-based methods.

6 The tool TIP, the SAT-solver SATZOO and all benchmarks used in this article can
be downloaded from hitp://www.cs.chalmers.se/~een/

11

TIP was able to solve 6 instances where BDD-based verification failed, showing
that induction may be a valuable complementary method.”

Effect of incrementality. The second experiment we performed was a com-
parison of Algorithm 2 and & using the incremental interface of SATZOO and
using SATZOO as an external solver. In this experiment, we used only problem
instances where the property held. The result is presented in Table 2.

The experiment establishes a substantial speed-up by the incremental ap-
proach. Unsurprisingly, the gain was larger for instances where a long induction-
step was needed to prove the property.

From the table we can also see that the induction-step usually takes longer
to prove than the base-case. We observed the same behavior for instances where
the property failed (although not presented here). This is the reason the default
strategy of TIP does not increase the lengths of the step and base evenly, but
instead devotes the same amount of CPU to each. Otherwise, bugs may not be
found due to hard (and futile) induction-steps.

One solver instance or two. The third experiment compared Algorithm /
(“Zig-Zag”) using one solver instance to running the induction-step and the
base-case in separate solver instances. (“Dual”). In this experiment, the step and
the base were incremented evenly so that both methods would solve only the
minimal number of SAT-instances. We also include the standard implementation
of (complete) induction as presented in [SSS00]. The results are also in Table 2.

The experiment suggests that separate solver instances for the base and the
step is favorable. From the table we can also see that the incremental implemen-
tation of induction clearly outperforms the standard implementation.

BMC Comparison. In the fourth experiment, we compared incremental search
for counter-example to the “one-shot” approach described in section 4.1. The
result is presented in Table 3. The experiment shows that often you must know
the exact length of a shortest counter-example for the one-shot method to be
advantageous.

Uniqueness constraints. In the final experiment, we studied the effect of
adding uniqueness constraints dynamically and statically, including both in-
stances where the constraints must be added, and instances which are provable
without uniqueness constraints. The result is presented in Table 4.

The effect of sharpening the constraints by removing variables are not pre-
sented, as it is clearly advantageous. A study of the “eijk” equivalence checking
problems, where 9 out of 13 need uniqueness constraints, showed that none of
these could be solved within the time-bound without using the sharpening.

" These problems were all “TCAS II” problems from the NUSMV distribution, origi-
nally used in “Model Checking Large Software Specifications” [CAB98].

12

Tool Solved Alone in
(of 158) solving

CADENCE SMV 131 5
TP 92 6
CMU-SMV 90 0
NuSMV 73 0

Table 1. Tool comparison. The left column shows the total number of solved instances
within 10 minutes. The right column show how many of these instances no other tool
could solve. CADENCE SMV excelled by proving 22 instances that neither of the two
other SMVs could prove, and 39 more instances than TiIP. Still only 5 instances were
unique, as TIP solved many of the problems where NUSMV and CMU-SMYV failed,
plus 6 that CADENCE SMYV did not solve.

Name Len | Step™™® Stepe®* | Base'™® Base®®! | Dual ZigZag StdInd
cmu:periodic 97 70.7 [>600] 10.7 141.8 80.9 [>600] [>600]
eigk:S208c 259 448.0 [>600] [>600] [>600] | [>600] [>600] [>600]
eijk:S2080 258 483.2 [>600] [>600] [>600] | [>600] 564.2 [>600]
eigk:S208 259 436.7 [>600] [>600] [>600] | [>600] 503.7 [>600]
eigk:S298 59 27.7 [>600] 34.9 96.2 62.9 316.1 [>600]
eijk:S510 11 5.2 8.0 0.5 0.9 5.9 7.4 10.1
eigk:S820 12 6.1 22.9 6.4 12.5 12.6 20.2 30.1
eigk:S832 12 7.6 28.2 5.8 12.9 13.4 25.1 35.2
eigk:S953 8 1.7 4.2 0.1 0.2 1.9 4.2 4.4
ken:oop 30 39.4 [>600] 0.3 74 39.9 492.0 254.0
nusmv:guidance; 11 2.8 10.2 0.8 3.4 3.5 3.9 11.1
nusmv:guidance; 28 120.3 [>600] 315.0 [>600] 438.9 [>600] [>600]
nusmu:tcass 7 1.3 3.1 0.2 0.3 1.5 1.9 4.3
nusmu:tcass 6 1.3 3.3 0.0 0.1 1.3 1.8 3.2
teras:parsesyss 4 12.2 13.5 0.2 0.2 14.7 12.5 7.8
vis:prodcell; 2 30 256.6 [>600] 112.8 4455 | 367.3 [>600] [>600]
vis:prodcell;s 9 4.6 124 0.1 0.6 4.8 3.7 14.7
vis:prodcell;4 17 313 185.1 7.3 14.2 38.7 52.3 219.9
vis:prodcellys 24 109.3 [>600] 23.0 80.1 | 132.4 216.7 [>600]
vis:prodcellis 6 2.1 4.1 0.0 0.1 2.1 1.2 4.7
vis:prodcell;7 28 211.3 [>600] 52.4 277.5 265.0 [>600] [>600]
vis:prodcellss 14 21.4 1179 0.4 3.2 21.8 28.6 128.9
vis:prodcellig 23 61.6 457.0 234 86.0 85.0 1785 [>600]
vis:prodcellay 38 391.9 [>600] [>600] [>600] | [>600] [>600] [>600]

Table 2. Ezperimental results for the effect of incremental SAT vs. external SAT. All
times are in seconds. The experiment includes all instances where the property was
proved to hold in in the first experiment. Launches where all methods took less than 3
seconds have been left out. “Dual” stands for running one iteration of Alg.2 and Alg.3
interchangeably; “ZigZag” refers to Alg.4; “StdInd” stands for standard induction with
all uniqueness constraints statically added and using an external SAT-solver.

13

Name Length | Incremental Perfect 25%-off

BMC Guess Guess
nusmu:tcas; 11 3.6 3.7 5.0
nusmuv:tcasy 15 9.7 9.7 18.2
nusmu:tcass 24 48.7 40.1 125.2
nusmuv:tcasg 17 13.6 13.5 38.2
tezas:parsesysi 10 9.3 0.8 1.1
teras:parsesyss 9 3.3 0.7 0.9
tezas:two-procs 16 4.7 1.0 2.9
texas:two-procy 20 20.9 1.8 9.1
vis:eisenberg 20 20.7 18.1 79.1

Table 3. Ezperimental result for incremental BMC vs. SAT-instances of fized length.
All times are in seconds. “Perfect Guess” means the SAT-instance encode “there is a
bug of length < k” where k is the length of the shortest counter-example. “25%-off”
means k is multiplied by 1.25. Launches where all methods took less than 3 seconds
have been left out.

Name Len | Time? Time® | Ban? Ban® | Clau? Clau® | Conf? Conf®
cmu:periodic 97 70.7 1204 0 4656 455k 908k 15k 14k
eigk:S208 259 436.7 [>600] 258 [>20000] 186k - 76k -
eijk:S298 59 27.7 66.6 114 1653 69k 296k 24k 25k
ken:oopi 30 39.4 504 113 406 67k 101k 32k 30k
nusmu:guidancer 28 120.3 66.9 0 378 151k 276k 56k 28k

vis:prodcell;» 30 256.6 252.7
vis:prodcelli4 17 31.3 41.7
vis:prodcell; s 24 109.3 134.3
vis:prodcell; 7 28 211.3 253.6
vis:prodcell;g 14 21.4 25.5
vis:prodcellig 23 61.6 71.9
vis:prodcellay 38 391.9 490.1

406 346k 439k 48k 43k
120 189k 217k 11k 13k
253 273k 330k 29k 29k
351 322k 400k 45k 46k

78 153k 171k 10k 10k
231 260k 311k 18k 18k
666 440k 588k 60k 61k

S OO OO oo

Table 4. Ezperimental results for dynamic vs. static uniqueness constraints in the
induction-step. All times are in seconds. Launches taking less than 10 seconds or hav-
ing shorter length than 5 has been left out. A superscript “d” means dynamic (on
demand) adding of uniqueness constraints. A superscript “s” means static adding of
uniqueness constraints between all pairs of states. “Ban” is the number of constraints
added (banning two states from being equal). “Clau” is the final number of clauses in
the solver. “Conf” is the total number of conflicts in the search-tree of the solver. Only
three problems actually needed uniqueness constraints to be provable, and in almost
all other cases it incurred a cost to add them. For the three cases where the constraints
were necessary, adding them dynamically lead to a speed-up. Without uniqueness con-
straints these three problem are not provable by induction. The dynamic method thus
saves the user from guessing for each problem if uniqueness constraints should be used
or not without incurring any extra cost.

14

6 Related Work

Incremental BMC was independently introduced by Ofer Strichman in [Stri01]
and Sakallah et. al. in [WKSO01]. Our approach differs from previous attempts
in that we keep all clauses from previous iterations (including conflict clauses).
Moreover, we complete the method with incremental temporal induction. Strich-
man’s work further includes several techniques to enhance the SAT-solving of
BMC problems, including internal constraints replication for copying invariant
conflict clauses between the time steps of the trace, and BMC specific variable
decision strategies [Stri00].

Related techniques for proving upper bounds for BMC are presented in
[KS03] (computing the recurrence diameter) and [BKAO02] (approximating the
diameter by structural analysis). In particular, the authors of [KS03] suggest
another solution to the quadratic blow-up of uniqueness constraints by adding
a sorting network for the state variables to the SAT-problem.

7 Conclusions

Temporal induction has been used before to prove upper bounds for BMC
[SSS00]. In these efforts, the authors established it too costly to gradually in-
crease the depth of the induction proof using an external SAT-solver. We have
shown that integrating the SAT-solver and the induction procedure overcomes
this cost. Furthermore, we sharpened the unique-states constraints by a syn-
tactic analysis on the transition relation; an improvement that was absolutely
necessary for many of our benchmarks to go through.

By extensive testing we further reinforced the view that induction is an im-
portant complement to BDD-based methods for safety-checking. The combina-
tion of techniques presented in this paper results in what the authors believe to be
the first efficient and complete induction based checker produced by academia.
Enabled by the incremental SAT-interface, we explored an online method of
adding uniqueness constraints on demand. To a large extent the method saves
the user from deciding manually whether or not to add these constraints, making
temporal induction a more push-button technique.

As a side-effect of implementing temporal induction incrementally, we got
an incremental BMC for safety properties. The efforts on incremental BMC
by [Stri01,WKS01] was based on extensive adaptation of the underlaying SAT-
solver. We have shown that results of the same magnitude can be achieved by
a much smaller modification of the solver. A standard way of applying BMC
is to generate a single SAT-problem encoding the presence of a bug within &
time steps. We have compared this method to iterating up to k incrementally
and found that the incremental approach was faster in most cases, even if k was
specified as close as 25% above the length of a shortest counter-example.

8 Future Work

The single most significant factor for the success of temporal induction is the
induction depth needed. We therefore believe the most important direction of

15

research is towards methods of automatically strengthening the induction-step in
order to reduce this depth. A successful method achieving this was presented in
[Eijk98,BC00]. It works by finding invariant equivalences or implications between
the state variables and internal points. Casting this method into our incremental
system looks very promising. Stronger constraints on the shape of a shortest
counter-example were suggested in [SSS00], but have not yet been successfully
applied. We would like to investigate if a dynamic approach similar to that we
used for uniqueness constraints might be helpful.

Finally, there are many possible ways of tuning the SAT-solver to incre-
mental temporal induction. In particular, we wish to explore native uniqueness
constraints, as well as the methods presented in [Stri00,Stri01] for specialized
variable orderings and constraint replication.

Acknowledgments

We would like to thank Per Bjesse and Mary Sheeran for their careful reading
and valuable criticism of the manuscript for this paper.

References

[BKAO02] J. Baumgartner, A. Kuehlmann, J. Abraham “Property Checking via Structural
Analysis” in CAV 2002, LNCS:2404, Springer-Verlag.

[BCO00] P. Bjesse, K. Claessen. “SAT-based Verification without State Space Traversal”
in FMCAD 2000, LNCS:1954, Springer-Verlag.

[BCCZY9] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. “Symbolic model checking without
BDDs” in TACAS 1999, LNCS:1579, Springer.

[BCRZ99] A. Biere, E.M. Clarke, R. Raimi, and Y. Zhu. “Verifying safety properties of a
PowerPC[tm] microprocessor using symbolic model checking without BDDs”
in CAV 1999, LNCS:1633.

[Bry86] R.E. Bryant. “Graph-based algorithms for boolean function manipulation” in
IEEE Trans. on Computers, C-35(8), Aug. 1986.

[CAB98] W. Chan, R.J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, J.D. Reese
“Model Checking Large Software Specifications” in IEEE Tran. on Software
Engineering 24(7), Jul. 1998

[CFF+01] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, M.Y. Vardi. “Ben-
efits of bounded model checking at an industrial setting” in CAV 2001,

LNCS:2102.

[CS00] K. Claessen, M. Sheeran. “A Tutorial on Lava: A Hardware Description and
Verification System” at http://www.cs.chalmers .se/ koen/Lava, 2000

[DLL62] M. Davis, M. Logman, D. Loveland. “A machine program for theorem proving”
in Communications of the ACM, vol 5, 1962.

[Eijk98] C.A.J. van Eijk. “Sequential equivalence checking without state space traver-
sal” in Proc. Conf. on Design, Automation and Test in Europe, 1998.

[Hok93] J.N. Hooker “Solving the Incremental Satisfiability Problem” in Journal of Logic
Programming, vol 15, 1993.

[KS03] D. Kroening, O. Strichman ¢“Efficient Computation of Recurrence Diameters”
in VMCAI 2003 LNCS:2575, Springer-Verlag 2003.

[MS99] J.P. Marques-Silva, K.A. Sakallah. “GRASP: A Search Algorithm for Proposi-
tional Satisfiability” in IEEFE Transactions on Computers, vol 48, 1999.

[MZo01] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, S. Malik “Chaff: Engineering
an Efficient SAT Solver” in DAC 2001.

[Strioo] O. Strichman “Tuning SAT checkers for Bounded Model Checking” in CAV
2000, LNCS:1855, Springer-Verlag.

[Strio1] O. Strichman “Pruning techniques for the SAT-based Bounded Model Check-

ing Problem?” in Proc. 11" Advanced Research Working Conf. on Correct Hardware

Design and Verification Methods, 2001.

[SSSo00] M. Sheeran, S. Singh, G. Stalmarck. “Checking safety properties using induction
and a SAT-solver” in FMCAD 2000, LNCS:1954.

[WKS01] J. Whittemore, J. Kim, K. Sakallah. “SATIRE: A New Incremental Satisfiability
Engine” in DAC 2001, ACM Press.

16

