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Abstract. Extending linear temporal logic by adding regular expres-
sions increases its expressiveness. However, as for example, problems in
recent versions of Accellera’s Property Specification Language (PSL) as
well as in OpenVera’s ForSpec and other property languages show, it is
a non-trivial task to give a formal denotational semantics with desirable
properties to the resulting logic. In this paper, we argue that specifying
an operational semantics may be helpful in guiding this work, and as a
bonus leads to an implementation of the logic for free. We give a concrete
operational semantics for Weak PSL, which is the safety property subset
of PSL. We also propose a denotational semantics which we show to be
equivalent to the operational one. This semantics is inspired by a new
denotational semantics proposed in recent related work.

1 Introduction

Accellera and PSL Accellera [1] is an organization supported by major ac-
tors in the electronic design industry with the objective to promote the use of
standards in this industry. In spring 2003, a standard property specification lan-
guage for hardware designs was agreed upon, PSL 1.0 [2]. The standard defines
the syntax and semantics of PSL formally. A new version of the language, PSL
1.1 [3] was finalized in spring 2004.

The logical core of PSL consists of standard Linear Temporal Logic (LTL) con-
structs augmented with regular expressions and aborts. Thus, PSL contains the
notion of formula, which is an entity of extended LTL that can be satisfied by
an infinite sequence of letters, and the notion of expression, which is a regular
expression that can only be satisfied by a finite sequence of letters. A letter
simply defines the values of all variables at one point in time.

Expressions can be converted into formulas, by using, for example, the weak
embedding of an expression r, written {r} in PSL 1.1 syntax. In both PSL 1.0
and 1.1, a sequence s of letters makes {r} true, if there is a finite prefix of s that
satisfies r or all finite prefixes of s can be extended to satisfy r. However, the
nature of this extension is different in the two PSL versions, which accounts for
differences mentioned below.

Further, the semantics of PSL has to cope with the fact that properties are
supposed to be used both in static verification — checking that a property holds
solely by analyzing the design — and in dynamic verification — checking that



a property holds for a concrete and finite trace of the design. To deal with
dynamic verification, satisfiability is extended to finite (truncated) sequences
even for formulas [7, 8].

Anomalies The semantics of both PSL 1.0 and 1.1 are given by means of
denotational semantics. One problem with this approach is that for some con-
structs it may be far from obvious what definition should be chosen. Making a
seemingly intuitively correct decision can lead to undesirable properties of the
resulting logic.

For example in PSL 1.0 the formula1 {[∗]; a}, which is the weak embedding of an
expression that is satisfied by any sequence ending with the atom a, is satisfied by
any sequence that makes a always false. However, the formula {[∗];F} (where we
have simply replaced a by the false constant F ) is not satisfied by any sequence.
Thus, {[∗];F} is not satisfied even if it is aborted at the first time instance. This
issue is discussed in for example [7, 4].

In response to this, Accellera has developed a different semantical paradigm
that is used in the current iteration, PSL 1.1. In this semantics, the notion of
model is changed by introducing a new semantical concept; a special letter >
that can satisfy any one-letter expression, regardless if it is contradictory or not.
Unfortunately, PSL 1.1 suffers from a similar anomaly: F and {a&&{a; a}} (a
so-called structural contradiction) are equivalent in an intuitive sense (neither
can be satisfied on actual runs of a system), but are not interchangeable in
formulas. Thus {[∗];F} is satisfied if it is aborted at the first time instance
whereas {[∗]; {a&&{a; a}}} is not. This peculiarity is not specific to PSL; it is
for example also present in ForSpec’s reset semantics.

There is work underway within Accellera to deal with this anomaly either by
discouraging the use of particular ”degenerate formulas” (e.g. those containing
structural contradictions), thus excluding the ones that are not well-behaved in
this respect, or by extending the model concept further to include models on
which structural contradictions are satisfied.

Operational semantics The company Safelogic develops tools for static and
dynamic verification of PSL properties of hardware designs. When implement-
ing our tools, we faced two problems. Firstly, particular simplification rules we
expected to hold in the logic actually did not hold and could thus not be used.
Secondly, in the denotational semantics definitions there is no indication as how
to implement checkers and verifiers for PSL properties.

Our approach was to define a structural operational semantics for the subset of
PSL we considered. This subset is precisely the subset of PSL in which safety
properties can be expressed. The operational semantics is a small-step letter-

by-letter semantics with judgments of the form φ
`
−→ ψ. The intention is that in

order to check if a sequence s starting with the letter ` satisfies φ, we simply
check that the tail of s (without `) satisfies ψ, and so on.

1 In PSL 1.0 weak embedding does occur but not in the form of independent formulas.
This difference to PSL 1.1 is irrelevant to the present point, so we ignore it for the
sake of simplicity of presentation.



There are two advantages of this approach. (1) The operational semantics can
directly be used for implementing dynamic verification of properties, and also
forms the basis of the implementation of our static verification engine. (2) When
specifying a structural operational semantics, there are far less choices to be
made than in a denotational semantics, so there is less room for mistakes.

In a recent related work a new denotational semantics for LTL with regular
expressions on truncated words has been investigated [8]. This semantics can be
extended to a full PSL semantics that fixes the anomalies in the semantics of
PSL 1.0 and 1.1 [10]. We have shown that our operational semantics is sound
and complete on the weak fragment of PSL with respect to such an extension
of this denotational semantics to full PSL. Hopefully, the next iteration of PSL
will adopt a denotational semantics with this property!

This paper The rest of this paper is organized as follows. In Section 2, we
specify a safety property subset of PSL. In Section 3, we define a structural
operational semantics for this language. In Section 4, we present a denotational
semantics for our subset of PSL, corresponding to [8, 10]. In Section 5, we show
lemmas relating the two semantics, and state soundness and completeness of our
operational semantics. Section 6 concludes.

2 Weak Property Language

In this section, we identify a subset of PSL, called Weak Property Language
(WPL). This subset can only be used to write safety properties. As is done in
the PSL Language Reference Manuals [2, 3], we start by assuming a non-empty
set P of atomic propositions, and a set of boolean expressions B over P . We
assume two designated boolean expressions true, false belonging to B.

We start by defining regular expressions, which then provide the base case in
the definition of full WPL.

Definition 1 (RE). If b ∈ B, the language of regular expressions (REs) r has
the following grammar:

r ::= ⊥ | ε | b | r1; r2 | r1|r2 | r1&&r2 | r∗.

The expression ⊥ denotes the expression with the empty language, ε is the
expression that only contains the empty word (see Section 4.4 for an explanation
of why those expressions not present in [2, 3] were introduced), r1; r2 stands for
sequential composition between r1 and r2, r1|r2 stands for choice, r1&&r2 stands
for intersection, r∗ is the Kleene star.

Now we are in a position to define full WPL.

Definition 2 (WPL). If r, r1 and r2 are REs, and b a boolean expression, the
language of WPL formulas φ and ψ has the following grammar:

φ, ψ ::= {r} | φ1 ∧ φ2 | φ1 ∨ φ2 | Xφ | φ1Wφ2 | r |⇒ φ | φ abort b.



The formula {r} is the weak embedding of the expression r, φ1 ∧ φ2 is formula
conjunction, φ1 ∨ φ2 is formula disjunction, Xφ is the next operator, φ1Wφ2 is
the weak until operator, r |⇒ φ is suffix implication, and φ abort b is the abort
operator. The logical negation operator ¬ only appears at the boolean level, and
not at the formula level, because that would enable the creation of non-safety
formulas.

Suffix implication r |⇒ φ is satisfied by a word if whenever r accepts a prefix of
the word, the formula φ holds on the rest of that word. The formula φ abort b is
satisfied by a word if φ is not made false by that word before b holds. A formal
definition of these constructs is given in Section 3 by means of an operational
semantics, and in Section 4 by means of a denotational semantics.

For reasons of simplicity we have omitted the treatment of the overlapping op-
erators : and |→. The semantic definitions for those operators (See [6, 10]) are
very similar to those for ; and |⇒.

3 A Structural Operational Semantics for WPL

It is customary to give semantics to temporal logics using sequences of states,
where each state contains information about the truth-values of all atoms. In the
PSL formal semantics [2, 3], a state is called a letter, written `, and sequences of
states are called words. The set of all letters is written Σ. The details of letters
are not important here. However, we assume that there is a satisfaction relation
 between states Σ and boolean expressions B, such that for all letters ` ∈ Σ,
`  true and ` 6 false.

In this section, we present a structural operational semantics for WPL. Our op-
erational semantics is inspired by Brzozowski’s derivatives of regular expressions
[5]. We use judgments of the form

φ
`
−→ ψ.

The intuition behind such a judgment is that in order to check if a word starting
with the letter ` satisfies φ, one can just as well check that ψ is satisfied by the
word without the first letter. So, for a finite word w = (`0, `2, . . . , `n), we can
check if w satisfies φ by finding φ0 . . . φn such that

φ
`0−→ φ0

`1−→ φ1 . . .
`n−→ φn,

and check that none of φi is false. We will be more formal about this later.

3.1 Letters and Words

We define the following preliminaries. A word is a finite or infinite sequence
of letters from Σ. We use ε to denote the empty word. We use juxtaposition
to denote concatenation, i.e. if w = (`0, . . . , `n) and v = (`′

0
, . . . (, `′n)) then

wv = (`0, . . . , `n, `
′
0
, . . . (, `′n)). If w is infinite then wv is w. We observe that



concatenation is associative, i.e. w(vu) = (wv)u for all w, v and u, and ε is the
identity, i.e. εw = wε = w for all w. We will use ` both for denoting the letter `
and the word consisting of the single letter `.

Word indexing is defined as follows. If i < |w| then wi is the i+ 1st letter of w
and wi... is the suffix of w starting at i. If i ≥ |w| then wi... = ε. If k ≤ j < |w|,
then wk...j means (wk , . . . , wj). If j < k < |w|, then wk...j is ε.

We use v ≤ w and ’v is a prefix of w’ to say that there is a u such that vu = w

and v < w to say that v ≤ w and v 6= w.

3.2 Operational Rules for RE

We start by giving rules for the basic REs. A boolean expression b accepts a
letter ` only if ` satisfies b. In that case, the remaining expression is the empty
word. Falsity and the empty word accept no letters.

(Bool) b
`
−→

{

ε if `  b

⊥ otherwise

(Bot) ⊥
`
−→ ⊥

(Empty) ε
`
−→ ⊥

For sequential composition r1; r2, we use two rules. If r1 cannot accept the empty
word, r2 will not be touched. However, if r1 can accept the empty word, we need
to consider the case that r2 accepts ` as well. Thus, we need a function em that
calculates if a given RE can accept the empty word or not.

Definition 3. We define (inductively) for REs:

em(⊥) = false

em(ε) = true

em(b) = false

em(r1; r2) = em(r1) and em(r2)

em(r1|r2) = em(r1) or em(r2)

em(r1&&r2) = em(r1) and em(r2)

em(r∗) = true

The rules for sequential composition then look as follows.

(Seq1)
r1

`
−→ r′

1

r1; r2
`
−→ r′

1
; r2

not em(r1)

(Seq2)
r1

`
−→ r′

1
r2

`
−→ r′

2

r1; r2
`
−→ (r′

1
; r2)|r′2

em(r1)



The rules for choice and intersection simply apply the rules to both of the
operands.

(ReOr)
r1

`
−→ r′

1
r2

`
−→ r′

2

r1|r2
`
−→ r′

1
|r′

2

(ReAnd)
r1

`
−→ r′

1
r2

`
−→ r′

2

r1&&r2
`
−→ r′

1
&&r′

2

And finally, for a Kleene star r∗ to accept a letter, the expression r must be able
to accept the letter.

(Star)
r

`
−→ r′

r∗
`
−→ r′; r∗

3.3 Operational Rules for WPL

Weak embedding of expressions simply parses the ` through the expression until
what is left of the expression can accept the empty word.

(Re1)
r

`
−→ r′

{r}
`
−→ {r′}

not em(r)

(Re2) {r}
`
−→ {true∗} em(r)

Here, we use the formula {true∗} since it accepts every word.

Formula disjunction and conjunction are identical to their regular expression
counterparts.

(WplOr)
φ1

`
−→ φ′

1
φ2

`
−→ φ′

2

φ1 ∨ φ2

`
−→ φ′

1
∨ φ′

2

(WplAnd)
φ1

`
−→ φ′

1
φ2

`
−→ φ′

2

φ1 ∧ φ2

`
−→ φ′

1
∧ φ′

2

The rule for next simply drops the next operator.

(Next) Xφ
`
−→ φ

The rule for weak until is directly derived from the fact that weak until is a
solution of the following equation: φ1Wφ2 = φ2 ∨ (φ1 ∧X(φ1Wφ2)).

(Until)
φ1

`
−→ φ′

1
φ2

`
−→ φ′

2

φ1Wφ2

`
−→ φ′

2
∨ (φ′

1
∧ (φ1Wφ2))



For suffix implication, there are two rules: one that triggers the formula φ to be
true when r accepts the empty word, and one that does not trigger φ. One can
see these rules as dual to the rules for sequential composition.

(Si1)
r

`
−→ r′

r |⇒ φ
`
−→ r′ |⇒ φ

not em(r)

(Si2)
r

`
−→ r′ φ

`
−→ φ′

r |⇒ φ
`
−→ (r′ |⇒ φ) ∧ φ′

em(r)

Finally, an abort checks its formula until the boolean becomes true. So, when
checking φ abort b with respect to ` we first check whether φ is already contra-
dicted. If not and b is satisfied by ` then we abort the checking of φ abort b by
accepting. If b is not satisfied by ` or φ is contradicted already then we do not
abort.

(Abort1)
φ

`
−→ φ′

φ abort b
`
−→ φ′ abort b

not ok(φ) or ` 6 b

(Abort2) φ abort b
`
−→ {true∗} ok(φ) and `  b

In order to calculate if a regular expression or formula has been contradicted,
we use the function ok, which is to be defined in the next section.

This concludes the operational rules for WPL. As standard, we define → to be
the least relation satisfying the above operational rules. However, it is easy to
see that → actually is a total function from formulas and letters to formulas.

3.4 Not Yet Contradicted

Here, we define the function ok that calculates whether a given regular expression
or formula has been contradicted yet, w.r.t. the sequence of letters that has
already been visited. An expression or formula is said to be ok when it has
not yet been contradicted in this sense. For basic regular expressions, only ⊥
is not ok. For composite expressions and formulas, this information is simply
propagated.

Definition 4. We define (inductively) for REs and WPLs:

ok(⊥) = false ok({r}) = ok(r)

ok(ε) = true ok(φ1 ∧ φ2) = ok(φ1) and ok(φ2)

ok(b) = true ok(φ1 ∨ φ2) = ok(φ1) or ok(φ2)

ok(r1; r2) = ok(r1) ok(Xφ) = true

ok(r1|r2) = ok(r1) or ok(r2) ok(φ1Wφ2) = ok(φ1) or ok(φ2)

ok(r1&&r2) = ok(r1) and ok(r2) ok(r |⇒ φ) = true

ok(r∗) = true ok(φ abort b) = ok(φ)



Finally, we make the following observation, which is that any regular expression
accepting the empty string is an ok expression.

Lemma 1 (Empty is OK). For all REs r, em(r) ⇒ ok(r).

The function ok is used in the operational rules for abort, but also in the
definition of the operational semantics.

3.5 The Operational Semantics

As we have seen in the informal explanation of the operational rules, we are
interested in the result of applying the rules above iteratively to formulas with
respect to words from the alphabet Σ. This is possible to do since the rules
presented above are deterministic; given a formula φ and a letter `, there is a

unique formula φ′ such that φ
`
−→ φ′. Thus, the relation

`
−→ is a total function.

Iteratively applying the operational rules on a formula φ over the letters of a
word w is written φ〈w〉:

Definition 5 (After a Word). For a RE or WPL p and a finite word w, we
(inductively) define p〈w〉 as follows:

p〈ε〉 = p,

p〈`w〉 = p′〈w〉, where p
`
−→ p′.

Now we are ready to define what it means for a formula to be true according to
the operational semantics, denoted by `.

Definition 6 (The Operational Semantics). For all WPLs and REs p, and
all words w we define

w ` p ⇔ for all finite v such that v ≤ w, ok(p〈v〉).

Intuitively, this means that a word w makes a formula φ true if and only if
iteratively applying the operational semantics on φ using w only produces ok

formulas.

We observe the following useful lemma, which says that if an expression of for-
mula is not ok, it will stay not ok even after applying it to a word.

Lemma 2 (Conservation of Misery). For all WPLs and REs p, we have

¬ ok(p) ⇒ for all finite u, ¬ ok(p〈u〉).

It immediately follows, that for finite words w, in order to decide if w ` p, it
suffices to check the final result p〈w〉.

Lemma 3. For all WPLs and REs p, if w is finite

w ` p ⇔ ok(p〈w〉).



Since all functions involved in the above are computable, this gives us a sim-
ple procedure for checking if a finite word satisfies a formula according to the
operational semantics.

Note that the operational semantics presented above does not have the anomaly
described in the introduction. For example, we have, for all words w, that w `

{true∗; (a&&(a; a))}. To see this, observe that, for any `, {true∗; (a&&(a; a))}
`
−→

{(true∗; (a&&(a; a)))|r}, for some r. Thus, the ok-ness of the formula is not
affected by accepting any finite word.

3.6 Properties of the Operational Semantics

We observe the following interesting properties of the operational semantics and
iterated application of the operational rules. These lemmas are key steps in the
correctness proofs for the completeness and soundness theorems in Sections 5.2
and 5.3. Apart from this, the details of this section are not important for the
remainder of the paper.

We start with some observations related to applying an expression or formula
to a word.

Lemma 4. For all REs and WPLs p, all letters `, and all finite words w and
v, we have

p〈w〉〈v〉 = p〈wv〉,

p
`
−→ p〈`〉,

p〈w〉
`
−→ p〈w`〉.

The second observation we make is that applying a word preserves disjunctions
and conjunctions.

Lemma 5 (Preservation of Disjuncts and Conjuncts). For all finite words
w, for WPLs φ and ψ, and for REs r1 and r2,

(φ ∨ ψ)〈w〉 = φ〈w〉 ∨ ψ〈w〉

(φ ∧ ψ)〈w〉 = φ〈w〉 ∧ ψ〈w〉

(r1|r2)〈w〉 = r1〈w〉 | r2〈w〉

(r1&&r2)〈w〉 = r1〈w〉 && r2〈w〉

Finally, a direct consequence of the above lemma and Lemma 2 is that disjunc-
tion and conjunction are compositional w.r.t. the operational semantics.

Lemma 6 (Operational Compositionality). For all finite words w, for WPLs
φ and ψ, and for REs r1 and r2,

w ` φ ∨ ψ ⇔ w ` φ or w ` ψ

w ` φ ∧ ψ ⇔ w ` φ and w ` ψ

w ` r1|r2 ⇔ w ` r1 or w ` r2

w ` r1&&r2 ⇔ w ` r1 and w ` r2



4 Denotational Semantics

Alternatively, we can define a denotational semantics for WPL. The following
definitions are inspired by a related not yet published work [8]. In Section 4.4
we briefly describe the relation between this semantics and the official PSL 1.1
one.

4.1 Weak and Neutral Words

We have noted that for all finite w and all REs r, w ` true∗; r. It doesn’t matter
whether r is satisfiable or not. We want the denotational semantics to mirror
this. So our definition must provide a kind of partial matching where the word
w is only required to match ”the beginning” of the RE r, mirroring the way
in which an RE is true according to the operational semantics if it is not yet
contradicted when the word finishes.

To accomplish this we introduce in addition to the usual neutral words also weak
words.

Let N denote the set of finite and infinite words over Σ, and N f ⊂ N the set
of finite words over Σ. The elements of N are called neutral words. Let W =
{u−|u ∈ Nf}. We assume thatW andN are disjunct and that the mapping (−)−

is injective. Whenever the notation u− is used, it is understood that u ∈ N f .
The elements of W are called weak words. Note in particular that ε− ∈W .

Let A = N ∪W , and define concatenation in A as follows. For all u, v ∈ N ,
uv is equal to the concatenation in N , and if u is finite then u(v−) = (uv)−.
For all u, v ∈ A, if u is infinite or u ∈ W then uv = u. With this definition
concatenation in A is associative and ε is the unique identity element. Define
the length of an element w in N as the number of letters in w if w is finite and
ω otherwise, and in A according to |u−| = |u| for all u ∈ Nf .

Word indexing in A is defined as follows. For i < |w|, (w−)i = wi. We let
(w−)i... = (wi...)−. We also let (w−)k...j = wk...j for j, k < |w|.

4.2 Tight Satisfaction

We start by giving a definition of tight satisfaction |≡. Tight satisfaction relates
finite words from A to REs. A finite neutral word intuitively tightly satisfies a
regular expression if the word completely matches the expression. A finite weak
word intuitively tightly satisfies a regular expression if the process of matching
the word (from left to right) does not contradict the expression.



Definition 7. Let r, r1 and r2 denote REs, b a boolean, and w,w1, . . . , wj words
in A. We define inductively:

w 6|≡ ⊥
w|≡ b ⇔ either w = ε−, or |w| = 1 and w0

 b

w|≡ r1; r2 ⇔ there are w1, w2 such that w = w1w2 and w1|≡ r1 and w2|≡ r2
w|≡ r1|r2 ⇔ w|≡ r1 or w|≡ r2
w|≡ r1&&r2 ⇔ w|≡ r1 and w|≡ r2
w|≡ r∗ ⇔ either w = ε, or

there exists w1, w2, . . . , wj such that w = w1w2 · · ·wj

and for all i such that 1 ≤ i ≤ j, wi|≡ r

w|≡ ε ⇔ w|≡ false∗

We note the following lemmas.

Lemma 7. For all REs r that do not syntactically contain ⊥ as a subexpression,
we have that ε−|≡ r.

Lemma 8. For all REs r and v, w ∈ A such that v ≤ w, we have that w|≡ r ⇒
vε−|≡ r.

4.3 Formula Satisfaction

We now define formula satisfaction �. Formula satisfaction relates words from
N to WPLs, and defines when a finite or infinite word satisfies a formula. A
word intuitively satisfies a formula if the process of accepting the word does not
contradict the formula.

Definition 8. Let φ and ψ denote WPLs, b a boolean, r an RE, and w, u, v etc.
words in N . We define inductively:

w � {r} ⇔ for all finite v ≤ w there is u ≤ v−, such that u|≡ r

w � φ ∧ ψ ⇔ w � φ and w � ψ

w � φ ∨ ψ ⇔ w � φ or w � ψ

w � Xφ ⇔ if |w| ≥ 1 then w1...
� φ

w � φWψ ⇔ for all k such that wk... 6� φ there is j ≤ k such that wj...
� ψ

w � r |⇒ φ ⇔ for all u, v such that uv = w if u|≡ r then v � φ

w � φ abort b⇔ either w � φ, or
there is k < |w| such that wk

 b and (w0...k−1) � φ

The following lemma follows by structural induction from Lemma 7:

Lemma 9. For all WPLs φ that do not syntactically contain ⊥ as a subexpres-
sion, we have that ε � φ.

Note that the denotational semantics presented above does not have the anomaly
described in the introduction. For example, we have, for all words w, that w �

{true∗; (a&&(a; a))}. To see this, take any finite prefix v of w. Then we have
v|≡ true∗ and ε−|≡ a&&(a; a). It follows that vε−|≡ true∗; (a&&(a; a)).



4.4 Relations to PSL Semantics

An investigation into the relation between the semantics of Section 4 and the
official PSL semantics is outside the scope of this article. We have however
investigated this relation thoroughly. We have provided a refined criterion of de-
generacy and a denotational relation of satisfaction for the entire unclocked PSL
language on weak, neutral and strong words, and showed that ours is equivalent
to the official PSL 1.1 one on formulas that are non-degenerate in this sense. For
details of this see [10].

The semantics in Section 4 is a simplified version of the semantics of [10]. It is
simplified in three ways:

1. It only covers the weak fragment of PSL.
2. It omits certain operators like : and |→, as explained in Section 2.
3. It omits a requirement of non-emptiness present in the case for {r}.

This last omission was made for the sake of simplicity of presentation. A conse-
quence of the PSL 1.1. semantics is that if |w| > 0 then w 6� {ε}. It is perhaps
not impossible to define operational rules that mirror this requirement, but it
seems to require more complicated rules than the ones we present.

We also introduced the RE symbols ⊥ and ε that are not present in [2, 3]. It was
necessary to differentiate falsity that is already visited (⊥ which should be false
on ε−) from falsity that is not already visited (false which should be true on ε−)
in the operational rules to get Lemma 10. It was also convenient for defining the
operational rules in a succinct way to introduce a symbol ε that is only tightly
satisfied by empty words.

5 Relations Between the Semantics

In this section we show that the operational semantics and denotational seman-
tics are tightly coupled. The proofs are merely outlines; for more details see
[6].

5.1 The Stepping Lemmas

We can show the following two basic lemmas, which confirms our intuition about

the operational judgments r
`
−→ r′ and φ

`
−→ φ′.

Lemma 10 (RE Stepping). For REs r and r′, if r
`
−→ r′, then for all w ∈ A

`w|≡ r ⇔ w|≡ r′.

Using Lemma 10 we can prove the following.

Lemma 11 (WPL Stepping). For WPLs φ and ψ, if φ
`
−→ φ′, then for all

w ∈ N

`w � φ ⇔ w � φ′.

The above lemmas are key steps in the completeness and soundness proofs.



5.2 Completeness

In order to show completeness of the operational semantics with respect to the
denotational semantics, we first observe the following. If a words satisfies an RE,
then that RE is ok.

Lemma 12 (Tight True is Ok). For any RE r, and for w ∈ A

w|≡ r ⇒ ok(r).

We can lift that observation to the level of WPLs.

Lemma 13 (True is Ok). For any WPL φ, and for w ∈ A

w � φ ⇒ ok(φ).

Lemmas 11 and 4 can be be used to show the following generalization of Lemma
11 which shows the tight relationship between the denotational semantics � and
applying a formula to a word.

Lemma 14. For any WPL φ, and for w ∈ N

w � φ⇔ for every finite v such that vu = w, u � φ〈v〉.

Finally, we use Lemmas 14 and 13 to show completeness.

Theorem 1 (Completeness). For any WPL φ, and for w ∈ N

w � φ ⇒ w ` φ.

5.3 Soundness

In order to show soundness of the operational semantics with respect to the
denotational semantics, we use Lemmas 1, 5 to show a tight relationship between
the denotational semantics |≡ and applying an expression to a word.

Lemma 15 (Empty is Tight). For any RE r, and for all finite v ∈ N

em(r〈v〉) ⇔ v|≡ r.

Lemmas 5 and 15 can be used to show that the operational semantics is compo-
sitional w.r.t. sequential composition.

Lemma 16 (Seq is Sound). For any two REs r1 and r2, and for all words w

w ` r1; r2 ⇒

either w ` r1 or there are v, u such that vu = w and v|≡ r1 and u ` r2.

We use Lemma 16, 10, 7, 6 to show the following very strong lemma.



Lemma 17 (Tight Soundness). For any RE r, and for all finite w ∈ N

w ` r ⇒ w−|≡ r.

Finally, we use Lemma 17, 11, 6 to show soundness.

Theorem 2 (Soundness). For any WPL φ, and for w ∈ N

w ` φ ⇒ w � φ.

6 Conclusions and Future Work

We have defined an operational semantics for the weak fragment of PSL, and
proved it sound and complete with respect to a new denotational semantics. This
denotational semantics is a straightforward extension of earlier work [8], but it
is not equivalent to either the official PSL 1.0 or PSL 1.1 semantics. Since our
goal was to fix the anomalies in these semantics, it is not surprising that we end
up with a different semantics.

However, there is work underway within Accellera to introduce the concept of
a ”degenerated formula”, which is a formula that contains a structural contra-
diction (such as a&&(a; a)). The idea is that users of PSL are discouraged to
use these degenerated formulas since they are the cause of the anomalies in the
official semantics. We have created a formal definition of ’degenerate’, and shown
that (a variant of) our semantics agrees with the PSL 1.1 semantics for all non-
degenerate formulas. The details of this however are beyond the scope of this
paper (but see [10]).

Defining an operational semantics can help in guiding the work of defining a
denotational one, but it also gives a direct way of implementing dynamic prop-
erty checking. We also use the operational semantics as a basis of an algorithm
for static property checking. It is far from clear how the denotational semantics
could guide an implementation.

For space reasons, we have not included all weak PSL operators in our language
WPL. Some of these operators, such as the clock operators, are actually express-
ible in terms of the operators presented here. Others, such as the overlapping
versions of sequential composition (written :) and suffix implication (written
|→), are not expressible in terms of our operators. In any case, for reasons of
clarity and efficiency, it is often a good idea to introduce dedicated operational
rules for new operators. The actual operational rules for the overlapping opera-
tors : and |→ are very similar to their non-overlapping counterparts. Dedicated
clock rules require some more work; we believe that annotating the → operator
with extra clock information may be the right way to do this.

We are collaborating with Mike Gordon of Cambridge University in encoding our
denotational semantics for full PSL [10] in the HOL higher order logic formalism
with the purpose of proving relevant properties.2 Earlier Gordon encoded the

2 This ongoing work is documented at http://cvs.sourceforge.net/viewcvs.py/hol/
hol98/examples/PSL/experimental-semantics/.



official PSL 1.0 and 1.1 semantics in HOL but experienced problems relating to
the anomalies when trying to derive observers from those formal specifications
[9]. We hope that these problems will be overcome using our semantics.

Currently, we are also working on extending our operational semantics to also
deal with non-safety properties. The next step would then be to relate that
semantics to the strong satisfiability described in [10].
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