
The StopwathMagnus Bj�orkmab�s.halmers.seRevised by Emil AxelssonApril 3, 20081 IntrodutionThe purpose of this lab is to give an introdution to VHDL programming and(to a larger extent) funtional veri�ation.The homepage has a page with guidelines for design and veri�ation, whihshould be followed in this lab. It is found in the \Labs and Exams" setion ofthe Assignments page, just above the link to the lab. Note that you are providedwith a partial solution alled StopwathRemoved.vhdl. It was reated from agood orret solution by deleting parts (or rather replaing them by ...), so westrongly advise you to use it!2 The CiruitYou are supposed to reate the ontrol iruit for a stopwath. The iruit hasthree inputs: a 100 kHz lok, a start/stop swith and a lap/reset swith input.The iruit has outputs to drive the display onsisting of six digits (two forminutes, two for seonds, and two for hundredths of seonds).The stopwath ounter is initially reset to 00'00'00, with the display showingthe ounter time. In this state, pressing the start/stop button starts ounting,with the display showing the ounter time. Pressing the start/stop button againstops the ounting. Suessive presses of start/stop ontinue or stop ounting,with the display showing the ounter time.If the lap/reset button is pressed while the ounter is stopped and the displayis showing the ounter time, the ounter is reset to 00'00'00. If the lap/resetbutton is pressed while the ounter is running, the display freezes at the timeat whih the lap/reset button was pressed, but the ounter ontinues to run.If the start/stop button is pressed, the ounter stops, and the display remainsunhanged. Suessive presses of start/stop ontinue or stop ounting, with thedisplay unhanged. Pressing the lap/reset button while the display is frozenauses it to return to displaying the urrent ounter time, whether the ounteris running or stopped. 1



The swithes are ative high, whih means that the input signal is high whilea swith is pressed. You should use signals of type std logi (for swithes, thelok, et) and unsigned, (for the digits).3 ImplementationRead the \guidelines" page for more information about what is required here.Make two di�erent implementations of the stopwath (two arhitetures for thesame entity):3.1 The Behavioral ModelStart by making a behavioral model. You should keep in mind that it shouldbe easy to understand. The behavioral model is your spei�ation of how theiruit should work. Ideally, it should be easy to see the funtional behavior ofthe iruit by looking at the ode.3.2 Implementation at the Register Transfer LevelMake an RTL implementation of the iruit. The partial solution provided usesthe design shown in �gure 1, and we strongly reommend that you do too. Ifyou use a �nite state mahine (as shown in the �gure), you must desribe itsstates and transitions. A short desription of the modules in �gure 1 follows.Sine all of these modules are sequential, they all have a lok input, whih isnot mentioned in the desriptions. The parameters of Count and Hold shouldbe implemented using generi parameters.� Pos Edge outputs '1' if its input has gone from low to high duringthe last lok yle. It may be tempting to use signal attributes like'delayed or 'stable to ahieve this, but remember that suh attributesare generally not synthesizable, so this is not allowed. A synthesizablesolution needs to use some kind of state mahine.� Finite State Mahine deodes the button presses and determines whihstate the stopwath is in.� Count(n, b) has two inputs: inrease and reset (both std logi),and two outputs: ounter, whih is an unsigned with b bits), and arry(whih is a std logi). Initially ounter is 0 and arry is low. Ifinrease is low, ounter has the same value as it had at last positivelok edge. When inrease is high, the value of ounter is one higherthan it was at last positive lok edge, exept if it was n-1 then. In thatase, the new value should be 0 and arry should be high. When resetgoes high, the ounter should be reset to 0.� Hold(n) has an n-bit unsigned output and an idential input, and an-other std logi input named enable. Whenever enable is low, the n-bit2



hun_0

Count(10, 4)

Count(10, 4)

Count(6, 4)

Count(10, 4)

Count(6, 4) Hold(4)

Hold(4)

Hold(4)

Hold(4)

Hold(4)

Hold(4)

min_1

hun_1

sec_0

sec_1

min_0

Count(1000, 10)

reset is_running is_lapped

start/stop lap/reset

Finite State Machine

Pos_Edge Pos_Edge

Count(10, 4)

Figure 1: Suggested design of the iruit.3



output is a opy of the input, and when enable is high, the output re-mains unhanged until enable goes low (no matter what happens on theinput). Alternatively, the module an output whatever value was on theoutput signal at the last positive lok edge, when enable is high.Note 1: In previous years, students have disovered that there is a ounterelement similar to the one desribe above available in Sj�oholm & Lindh. But thatounter has a major di�erene: there is a ipop between the arry input andthe arry output (why?). The problem with this is when several digits hangevalue at the same time (for example, in the transition 59'59'99 ! 00'00'00). Aipop on the arry will then ause one lok yle delay between eah digit'stransition. This is probably not a desired behavior, and as you an imagine, itis not very easy to write a spei�ation to math this behavior.Using the two-proess method desribed by Gaisler (see his notes on theLiterature page) is a very good idea here. This method proposes two proessesin eah arhiteture: one whih is sensitive only to the lok (and perhaps reset),and one whih is sensitive to input signals and internal state, but not the lok.In the ombinational proess, it is possible to immediately a�et output signalswithout going through the loked proess. This lets you get rid of the ipopon the arry output.Note 2: In previous years, students have implemented \ripple ounters" { thatis, ounters whih are sensitive to edges on the arry signal. First of all, thisdoes not follow the spei�ation above. Seond, it goes against the guidelineson the homepage, whih state that there should be only one global lok signal.We have also seen implementations were the lok is shut down by the arrysignal (lok gating). This should be avoided for the same reason.4 Veri�ationRead the \guidelines" page for more information about what is required here.4.1 Verifying the Behavioral ModelStart by verifying that your behavioral model works as it should. Here, you willprobably write your own test benhes and study the input and output signalsin the simulator. Perhaps you will also be able to speify some properties anduse Jasper Gold (but this is not neessary, espeially sine the behavioral modeldoesn't have to be synthesizable).4.2 Verifying the RTL ImplementationIf you want, you an do the same veri�ation on the RTL implementation asyou did on the behavioral model (but not only). However, the emphasis hereis to show that the RTL implementation is equivalent to the behavioral model.4



Here, you will probably only study the output signals if you atually �nd bugs.It's exellent if you an use Jasper Gold in this step, but not required.4.3 Formal Veri�ation of the CounterVerify that the ounter module works as it should, using Jasper Gold. Try touse the desription of Count(n, b) as a soure for your properties. Make surethat your properties are omplete, in the sense that they apture all aspets ofthe ounter elements.4.4 Formal Veri�ation of the Finite State Mahine (FSM)Verify that the Finite State Mahine in your implementation works as it should,using Jasper Gold.4.5 ReportWrite a short report on all of the veri�ation that you have done (approximately12 { 1 page). Argue for why you think that your veri�ation is enough, anddesribe what properties you have veri�ed. If there are aspets that you haven'ttested, write that down and explain why. Think of it as if you were onstrutingthis iruit for a ompany that you work for, and write this report to explainto your boss or o-workers why they should trust your iruit.The important thing here is not to write a fany report, but to desribewhat you did in the veri�ation.5 FormaliaThis is a normal laboration: You are allowed to work in pairs. You may not opysolutions (or parts of solutions) between di�erent groups, but you may disussyour ideas (see more about heating on the ourse homepage). Make sure thatboth people in a pair work; in the take home exam, you'll be doing somethingsimilar on your own. During the lab you are enouraged to ask questions, butduring the week of the take home exam we will not answer questions about thelab (and only urgent questions about the take home exam, with the possibilityof dedution of marks for help given by us).Details of how and when to submit your solutions will be available on theourse page.6 SummarySubmit� All relevant VHDL ode (all parts of the stopwath and your test benhes)� PSL �les, and other relevant parts of the veri�ation5



� Veri�ation report� If you have any other �les than VHDL and PSL �les, you must desribethem.7 AknowledgementsParts of this text are opied from an exerise inPeter J Ashenden. Designer's Guide to Vhdl. Morgan Kaufmann, 2001.

6


