
The Stopwat
hMagnus Bj�orkmab�
s.
halmers.seRevised by Emil AxelssonApril 3, 20081 Introdu
tionThe purpose of this lab is to give an introdu
tion to VHDL programming and(to a larger extent) fun
tional veri�
ation.The homepage has a page with guidelines for design and veri�
ation, whi
hshould be followed in this lab. It is found in the \Labs and Exams" se
tion ofthe Assignments page, just above the link to the lab. Note that you are providedwith a partial solution 
alled Stopwat
hRemoved.vhdl. It was 
reated from agood 
orre
t solution by deleting parts (or rather repla
ing them by ...), so westrongly advise you to use it!2 The Cir
uitYou are supposed to 
reate the 
ontrol 
ir
uit for a stopwat
h. The 
ir
uit hasthree inputs: a 100 kHz 
lo
k, a start/stop swit
h and a lap/reset swit
h input.The 
ir
uit has outputs to drive the display 
onsisting of six digits (two forminutes, two for se
onds, and two for hundredths of se
onds).The stopwat
h 
ounter is initially reset to 00'00'00, with the display showingthe 
ounter time. In this state, pressing the start/stop button starts 
ounting,with the display showing the 
ounter time. Pressing the start/stop button againstops the 
ounting. Su

essive presses of start/stop 
ontinue or stop 
ounting,with the display showing the 
ounter time.If the lap/reset button is pressed while the 
ounter is stopped and the displayis showing the 
ounter time, the 
ounter is reset to 00'00'00. If the lap/resetbutton is pressed while the 
ounter is running, the display freezes at the timeat whi
h the lap/reset button was pressed, but the 
ounter 
ontinues to run.If the start/stop button is pressed, the 
ounter stops, and the display remainsun
hanged. Su

essive presses of start/stop 
ontinue or stop 
ounting, with thedisplay un
hanged. Pressing the lap/reset button while the display is frozen
auses it to return to displaying the 
urrent 
ounter time, whether the 
ounteris running or stopped. 1



The swit
hes are a
tive high, whi
h means that the input signal is high whilea swit
h is pressed. You should use signals of type std logi
 (for swit
hes, the
lo
k, et
) and unsigned, (for the digits).3 ImplementationRead the \guidelines" page for more information about what is required here.Make two di�erent implementations of the stopwat
h (two ar
hite
tures for thesame entity):3.1 The Behavioral ModelStart by making a behavioral model. You should keep in mind that it shouldbe easy to understand. The behavioral model is your spe
i�
ation of how the
ir
uit should work. Ideally, it should be easy to see the fun
tional behavior ofthe 
ir
uit by looking at the 
ode.3.2 Implementation at the Register Transfer LevelMake an RTL implementation of the 
ir
uit. The partial solution provided usesthe design shown in �gure 1, and we strongly re
ommend that you do too. Ifyou use a �nite state ma
hine (as shown in the �gure), you must des
ribe itsstates and transitions. A short des
ription of the modules in �gure 1 follows.Sin
e all of these modules are sequential, they all have a 
lo
k input, whi
h isnot mentioned in the des
riptions. The parameters of Count and Hold shouldbe implemented using generi
 parameters.� Pos Edge outputs '1' if its input has gone from low to high duringthe last 
lo
k 
y
le. It may be tempting to use signal attributes like'delayed or 'stable to a
hieve this, but remember that su
h attributesare generally not synthesizable, so this is not allowed. A synthesizablesolution needs to use some kind of state ma
hine.� Finite State Ma
hine de
odes the button presses and determines whi
hstate the stopwat
h is in.� Count(n, b) has two inputs: in
rease and reset (both std logi
),and two outputs: 
ounter, whi
h is an unsigned with b bits), and 
arry(whi
h is a std logi
). Initially 
ounter is 0 and 
arry is low. Ifin
rease is low, 
ounter has the same value as it had at last positive
lo
k edge. When in
rease is high, the value of 
ounter is one higherthan it was at last positive 
lo
k edge, ex
ept if it was n-1 then. In that
ase, the new value should be 0 and 
arry should be high. When resetgoes high, the 
ounter should be reset to 0.� Hold(n) has an n-bit unsigned output and an identi
al input, and an-other std logi
 input named enable. Whenever enable is low, the n-bit2



hun_0

Count(10, 4)

Count(10, 4)

Count(6, 4)

Count(10, 4)

Count(6, 4) Hold(4)

Hold(4)

Hold(4)

Hold(4)

Hold(4)

Hold(4)

min_1

hun_1

sec_0

sec_1

min_0

Count(1000, 10)

reset is_running is_lapped

start/stop lap/reset

Finite State Machine

Pos_Edge Pos_Edge

Count(10, 4)

Figure 1: Suggested design of the 
ir
uit.3



output is a 
opy of the input, and when enable is high, the output re-mains un
hanged until enable goes low (no matter what happens on theinput). Alternatively, the module 
an output whatever value was on theoutput signal at the last positive 
lo
k edge, when enable is high.Note 1: In previous years, students have dis
overed that there is a 
ounterelement similar to the one des
ribe above available in Sj�oholm & Lindh. But that
ounter has a major di�eren
e: there is a 
ip
op between the 
arry input andthe 
arry output (why?). The problem with this is when several digits 
hangevalue at the same time (for example, in the transition 59'59'99 ! 00'00'00). A
ip
op on the 
arry will then 
ause one 
lo
k 
y
le delay between ea
h digit'stransition. This is probably not a desired behavior, and as you 
an imagine, itis not very easy to write a spe
i�
ation to mat
h this behavior.Using the two-pro
ess method des
ribed by Gaisler (see his notes on theLiterature page) is a very good idea here. This method proposes two pro
essesin ea
h ar
hite
ture: one whi
h is sensitive only to the 
lo
k (and perhaps reset),and one whi
h is sensitive to input signals and internal state, but not the 
lo
k.In the 
ombinational pro
ess, it is possible to immediately a�e
t output signalswithout going through the 
lo
ked pro
ess. This lets you get rid of the 
ip
opon the 
arry output.Note 2: In previous years, students have implemented \ripple 
ounters" { thatis, 
ounters whi
h are sensitive to edges on the 
arry signal. First of all, thisdoes not follow the spe
i�
ation above. Se
ond, it goes against the guidelineson the homepage, whi
h state that there should be only one global 
lo
k signal.We have also seen implementations were the 
lo
k is shut down by the 
arrysignal (
lo
k gating). This should be avoided for the same reason.4 Veri�
ationRead the \guidelines" page for more information about what is required here.4.1 Verifying the Behavioral ModelStart by verifying that your behavioral model works as it should. Here, you willprobably write your own test ben
hes and study the input and output signalsin the simulator. Perhaps you will also be able to spe
ify some properties anduse Jasper Gold (but this is not ne
essary, espe
ially sin
e the behavioral modeldoesn't have to be synthesizable).4.2 Verifying the RTL ImplementationIf you want, you 
an do the same veri�
ation on the RTL implementation asyou did on the behavioral model (but not only). However, the emphasis hereis to show that the RTL implementation is equivalent to the behavioral model.4



Here, you will probably only study the output signals if you a
tually �nd bugs.It's ex
ellent if you 
an use Jasper Gold in this step, but not required.4.3 Formal Veri�
ation of the CounterVerify that the 
ounter module works as it should, using Jasper Gold. Try touse the des
ription of Count(n, b) as a sour
e for your properties. Make surethat your properties are 
omplete, in the sense that they 
apture all aspe
ts ofthe 
ounter elements.4.4 Formal Veri�
ation of the Finite State Ma
hine (FSM)Verify that the Finite State Ma
hine in your implementation works as it should,using Jasper Gold.4.5 ReportWrite a short report on all of the veri�
ation that you have done (approximately12 { 1 page). Argue for why you think that your veri�
ation is enough, anddes
ribe what properties you have veri�ed. If there are aspe
ts that you haven'ttested, write that down and explain why. Think of it as if you were 
onstru
tingthis 
ir
uit for a 
ompany that you work for, and write this report to explainto your boss or 
o-workers why they should trust your 
ir
uit.The important thing here is not to write a fan
y report, but to des
ribewhat you did in the veri�
ation.5 FormaliaThis is a normal laboration: You are allowed to work in pairs. You may not 
opysolutions (or parts of solutions) between di�erent groups, but you may dis
ussyour ideas (see more about 
heating on the 
ourse homepage). Make sure thatboth people in a pair work; in the take home exam, you'll be doing somethingsimilar on your own. During the lab you are en
ouraged to ask questions, butduring the week of the take home exam we will not answer questions about thelab (and only urgent questions about the take home exam, with the possibilityof dedu
tion of marks for help given by us).Details of how and when to submit your solutions will be available on the
ourse page.6 SummarySubmit� All relevant VHDL 
ode (all parts of the stopwat
h and your test ben
hes)� PSL �les, and other relevant parts of the veri�
ation5



� Veri�
ation report� If you have any other �les than VHDL and PSL �les, you must des
ribethem.7 A
knowledgementsParts of this text are 
opied from an exer
ise inPeter J Ashenden. Designer's Guide to Vhdl. Morgan Kaufmann, 2001.

6


