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1 Introduction

The purpose of this lab is to give an introduction to VHDL programming and
(to a larger extent) functional verification.

The homepage has a page with guidelines for design and verification, which
should be followed in this lab. It is found in the “Labs and Exams” section of
the Assignments page, just above the link to the lab. Note that you are provided
with a partial solution called StopwatchRemoved.vhdl. It was created from a
good correct solution by deleting parts (or rather replacing them by ...), so we
strongly advise you to use it!

2 The Circuit

You are supposed to create the control circuit for a stopwatch. The circuit has
three inputs: a 100 kHz clock, a start/stop switch and a lap/reset switch input.
The circuit has outputs to drive the display consisting of six digits (two for
minutes, two for seconds, and two for hundredths of seconds).

The stopwatch counter is initially reset to 00’00’00, with the display showing
the counter time. In this state, pressing the start/stop button starts counting,
with the display showing the counter time. Pressing the start/stop button again
stops the counting. Successive presses of start/stop continue or stop counting,
with the display showing the counter time.

If the lap/reset button is pressed while the counter is stopped and the display
is showing the counter time, the counter is reset to 00°00°00. If the lap/reset
button is pressed while the counter is running, the display freezes at the time
at which the lap/reset button was pressed, but the counter continues to run.
If the start/stop button is pressed, the counter stops, and the display remains
unchanged. Successive presses of start/stop continue or stop counting, with the
display unchanged. Pressing the lap/reset button while the display is frozen
causes it to return to displaying the current counter time, whether the counter
is running or stopped.



The switches are active high, which means that the input signal is high while
a switch is pressed. You should use signals of type std_logic (for switches, the
clock, etc) and unsigned, (for the digits).

3 Implementation

Read the “guidelines” page for more information about what is required here.
Make two different implementations of the stopwatch (two architectures for the
same entity):

3.1 The Behavioral Model

Start by making a behavioral model. You should keep in mind that it should
be easy to understand. The behavioral model is your specification of how the
circuit should work. Ideally, it should be easy to see the functional behavior of
the circuit by looking at the code.

3.2 Implementation at the Register Transfer Level

Make an RTL implementation of the circuit. The partial solution provided uses
the design shown in figure 1, and we strongly recommend that you do too. If
you use a finite state machine (as shown in the figure), you must describe its
states and transitions. A short description of the modules in figure 1 follows.
Since all of these modules are sequential, they all have a clock input, which is
not mentioned in the descriptions. The parameters of Count and Hold should

be implemented using generic parameters.

e Pos_Edge outputs ’1’ if its input has gone from low to high during
the last clock cycle. It may be tempting to use signal attributes like
’delayed or ’stable to achieve this, but remember that such attributes
are generally not synthesizable, so this is not allowed. A synthesizable
solution needs to use some kind of state machine.

e Finite State Machine decodes the button presses and determines which
state the stopwatch is in.

¢ Count(n, b) has two inputs: increase and reset (both std_logic),
and two outputs: counter, which is an unsigned with b bits), and carry
(which is a std_logic). Initially counter is 0 and carry is low. If
increase is low, counter has the same value as it had at last positive
clock edge. When increase is high, the value of counter is one higher
than it was at last positive clock edge, except if it was n-1 then. In that
case, the new value should be 0 and carry should be high. When reset
goes high, the counter should be reset to 0.

e Hold(n) has an n-bit unsigned output and an identical input, and an-
other std_logic input named enable. Whenever enable is low, the n-bit
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Figure 1: Suggested design of the circuit.



output is a copy of the input, and when enable is high, the output re-
mains unchanged until enable goes low (no matter what happens on the
input). Alternatively, the module can output whatever value was on the
output signal at the last positive clock edge, when enable is high.

Note 1: In previous years, students have discovered that there is a counter
element similar to the one describe above available in Sjoholm & Lindh. But that
counter has a major difference: there is a flipflop between the carry input and
the carry output (why?). The problem with this is when several digits change
value at the same time (for example, in the transition 59’59’99 — 00°00°00). A
flipflop on the carry will then cause one clock cycle delay between each digit’s
transition. This is probably not a desired behavior, and as you can imagine, it
is not very easy to write a specification to match this behavior.

Using the two-process method described by Gaisler (see his notes on the
Literature page) is a very good idea here. This method proposes two processes
in each architecture: one which is sensitive only to the clock (and perhaps reset),
and one which is sensitive to input signals and internal state, but not the clock.
In the combinational process, it is possible to immediately affect output signals
without going through the clocked process. This lets you get rid of the flipflop
on the carry output.

Note 2: In previous years, students have implemented “ripple counters” that
is, counters which are sensitive to edges on the carry signal. First of all, this
does not follow the specification above. Second, it goes against the guidelines
on the homepage, which state that there should be only one global clock signal.
We have also seen implementations were the clock is shut down by the carry
signal (clock gating). This should be avoided for the same reason.

4 Verification

Read the “guidelines” page for more information about what is required here.

4.1 Verifying the Behavioral Model

Start by verifying that your behavioral model works as it should. Here, you will
probably write your own test benches and study the input and output signals
in the simulator. Perhaps you will also be able to specify some properties and
use Jasper Gold (but this is not necessary, especially since the behavioral model
doesn’t have to be synthesizable).

4.2 Verifying the RTL Implementation

If you want, you can do the same verification on the RTL implementation as
you did on the behavioral model (but not only). However, the emphasis here
is to show that the RTL implementation is equivalent to the behavioral model.



Here, you will probably only study the output signals if you actually find bugs.
It’s excellent if you can use Jasper Gold in this step, but not required.

4.3 Formal Verification of the Counter

Verify that the counter module works as it should, using Jasper Gold. Try to
use the description of Count(n, b) as a source for your properties. Make sure
that your properties are complete, in the sense that they capture all aspects of
the counter elements.

4.4 Formal Verification of the Finite State Machine (FSM)

Verify that the Finite State Machine in your implementation works as it should,
using Jasper Gold.

4.5 Report

Write a short report on all of the verification that you have done (approximately
% — 1 page). Argue for why you think that your verification is enough, and
describe what properties you have verified. If there are aspects that you haven’t
tested, write that down and explain why. Think of it as if you were constructing
this circuit for a company that you work for, and write this report to explain
to your boss or co-workers why they should trust your circuit.

The important thing here is not to write a fancy report, but to describe
what you did in the verification.

5 Formalia

This is a normal laboration: You are allowed to work in pairs. You may not copy
solutions (or parts of solutions) between different groups, but you may discuss
your ideas (see more about cheating on the course homepage). Make sure that
both people in a pair work; in the take home exam, you’ll be doing something
similar on your own. During the lab you are encouraged to ask questions, but
during the week of the take home exam we will not answer questions about the
lab (and only urgent questions about the take home exam, with the possibility
of deduction of marks for help given by us).

Details of how and when to submit your solutions will be available on the
course page.

6 Summary

Submit
e All relevant VHDL code (all parts of the stopwatch and your test benches)

e PSL files, and other relevant parts of the verification



e Verification report

e If you have any other files than VHDL and PSL files, you must describe
them.
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