

Identifying and Authentication Protocols

- □ Authentication to verify an Identity.
- □ Main classes of Authentication in a distributed system:
 - Authentication of the contents of a message, i.e. verifying that the content is the same at receiving as at sending.
 - Authentication of the origins i of a message, i.e. verifying that the real sender of the message is the indicated sender.
 - Authentication of identities, i.e. verifying that an entity has the identity it claims.
- □ Authentication exists in the following combinations:
 - O Host Host.
 - User Host.
 - Process process.
- Client-server communication.
- Peer-to-peer communication.
- □ Authentication Protocol to execute authentication in a distributed system

Capability

- A Capability will normally be composed of a three part bit pattern:
 - a unique identifier for the object or resource that is associated with the capability,
 - a specification of the access rights to the object, e.g. one boolean bit for each allowed operation type,
 - a random number making it hard to guess the content of the capability and also to make a fraud.

This pattern will be encrypted so only the service giver can decrypt (read) it).

Authentication Protocol	Cryptography	
Example:		
Common login routine, e.g. like in UNIX: $\begin{array}{c} & & \\ \hline & & \\ & &$	clear text $\xrightarrow{\text{encrypting function}}$ cryptogram $M' = E(\mathbf{k}_{\mathrm{E}}, M)$	
$ \begin{array}{cccc} H & \rightarrow U & "Password?" \\ U & \rightarrow H & passwd \\ H & compute \lambda = f(passwd). \\ & Coimpare \lambda with what is stored in a special file, the "password-file". \\ & if equal:then start login shell \\ H & \rightarrow U & "%" \\ & else: abort login \end{array} $	cryptogram $\xrightarrow{\text{decrypting function}} M = D(k_D, M')$ clear text	
	\Box symmetrical encrypting: $k_E = k_D$	
	asymmetrical encrypting: $k_F \neq k_D$	
9 (33) - DISTRIBUTED SYSTEMS Security - Sven Ame Andreasson - Computer Science and Engineering (i) Authentication Protocol using symmetrical encrypting (1) In the following we will use the following notation:	10 (33) - DISTRIBUTED SYSTEMS Security - Sven Ame Andreasson - Computer Science and Engineering 🛞 CHALMERS	
• m: Clear text message	Second try:	
 <i>m</i>': Encrypted message <i>E</i> (<i>k</i>,<i>m</i>) : Encryption function with key <i>k</i>. <i>D</i> (<i>k</i>, <i>m</i>') : Decryption function with key <i>k</i>. 	$\begin{array}{ccccc} P & \rightarrow Q & \text{"I am P"} \\ Q & \rightarrow P & ts //ts \text{ is a unique value read from the clock each time} \\ P & & & & & & \\ P & & & & & & \\ P & \rightarrow Q & ts' & = E(k, ts) \\ P & \rightarrow Q & ts' \\ Q & & & & & & & \\ \end{array}$	
$\begin{array}{ccc} P & & & & \text{create } m = "1 \text{ am } P" \\ & & & & \text{compute } m' = E(k,m) \\ P & \rightarrow Q & & m,m' \\ Q & & & \text{verify that } D(k,m') = m \\ & & & \text{if equal then accept} \\ \hline & & & \text{else reject} \end{array}$ This protocol is vulnerable to replaying.	This protocol is secure but can not be used due to the problem to administer the many keys. There has to be one key for each pair of processes P and Q.	

Three way Authentication Protocol	Authentication Protocol using asymmetrical encrypting Image: We will use the following notation: Image: Lew Encrypting law (multiple)		
Third try:			
P \rightarrow Q "I am P" Q \rightarrow P ts P compute $ts' = E(k_Q, P, ts')$ Q \rightarrow Q Q \rightarrow A A retreive (P, ts') by decrypting: $D(k_Q, ts'')$ compute $ts''' = D(k_P, ts')$ (= ts) compute $ts''' = D(k_P, ts')$ (= ts) compute $m = E(k_Q, ts''')$ A \rightarrow Q M \forall verify $D(k_Q, m) = ts$ if equal then accept else reject	$\begin{array}{c} P & \rightarrow Q & \text{"I am P"} \\ Q & \rightarrow P & ts \\ P & \text{compute } ts' = E(ke_{p},ts) \\ P & \rightarrow Q & ts' \\ Q & \text{verify that } ts = D(kd_{p},ts') \\ & \text{if equal then accept} \\ & \text{else reject} \end{array}$		
3 (33) - DISTRIBUTED SYSTEMS Security - Sven Ame Andreasson - Computer Science and Engineering Authentication Protocol using asymmetrical encrypting Three Way	I4 (33) - DISTRIBUTED SYSTEMS Security - Sven Ame Andreasson - Computer Science and Engineering Kerberos Image: Instrume the image of the		
$\begin{array}{cccc} P & \rightarrow Q & \text{"I am P"} \\ Q & \rightarrow P & ts \\ p & & \text{compute } ts' = E(ke_{P},ts) \\ P & \rightarrow Q & ts' \\ Q & \rightarrow A & \text{"I need P's public key"} \\ A & & \text{retreive } kd_{P} \text{ from the database} \\ & & \text{compute } c = E(ke_{A},P,kd_{P}) \\ A & \rightarrow Q & P,c \\ Q & & \text{retreive } (P,kd_{P}) \text{ by decrypting: } D(kd_{A},c) \\ & & \text{verify } ts = D(kd_{P},ts') \\ & & \text{if equal then accept} \\ & & \text{else reject} \end{array}$	 Incket-granting server authentication server Two main protocols: The credential-initialization protocol. Authentication of users login in to the system. Is performed by the Kerberos authentication server. Certificated user will get a ticket-granting ticket. The client-server authentication protocol. Authentication of user processes that requests services over the network. The authentication is executed as a three part authentication between client, server, and Kerberos ticket-granting server. 		

The credential-initialization protocol

- Use the following notation:
 - *L*: session key length of life
 - T: a timestamp

U	\rightarrow H	U
Н	\rightarrow Auth	U, TGS
Auth		retreive $k_{\rm H}$ and $k_{\rm TGS}$ from the database
		generate a session key k
		create $tick_{TGS} = E(k_{TGS}, (U, TGS, k, T, L))$
Auth	\rightarrow H	$E(k_{\rm II}, ({\rm TGS}, k, T, L, tick_{\rm TGS}))$
Н	\rightarrow U	"Password?"
U	\rightarrow H	passwd
Н		compute $\lambda = f(passwd)$
		decrypt $D(k_{\text{U}}, (\text{TGS}, k, T, L, tick_{\text{TGS}}))$
		with $\hat{\lambda}$ to obtain k, tick _{TGS}
		if not succeed:
		abort login
		else
		keep $tick_{TCS}$ and k .
		erase $passwd_{II}$ from memory

17 (33) - DISTRIBUTED SYSTEMS Security - Sven Ame Andreasson - Computer Science and Engineering

```
() CHALMERS
```

Cryptography

private keys

symmetrical cryptographic algorithms

Pros:

- Fast encryption/decrypting
- Cheap encryption/decrypting
- Implemented in hardware

Cons:

- Must be frequently exchanged
- Must be transported in a safe manner

The client-server authentication protocol

С		\rightarrow TGS	S, $tick_{TGS}$, $E(k, (C, T_1))$
Т	GS		retreive k from $tick_{\mathrm{TGS}}$ by decrypting with k_{TGS}
			retreive T_1 from $E(k, (C, T_1))$ by decrypting with k .
			test T_1 to the local clock
			create $tick_{S} = E(k_{S}, (C, S, k', T', L'))$
Т	GS	\rightarrow C	$E(k, (S, k', T', L', tick_S))$
C			retreive k' and $tick_{S}$ by decrypting with k .
C		\rightarrow S	$tick_{S}$, $E(k', (C, T_2))$
S			retreive k' from $tick_{S}$ by decrypting with k_{S} .
			retreive T_2 from $E(k', (C, T_2))$ by decrypting with k' .
			test T_2 to the local clock.
S		\rightarrow C	$E(k', (T_2 + 1))$

18 (33) - DISTRIBUTED SYSTEMS Security - Sven Ame Andreasson - Computer Science and Engineering

() CHALMERS

 public keys asymmetrical cryptographic algorithms
 Pros:

 Can be openly transported
 All can send encrypted to all others
 Doesn't need frequently exchange

 Cons:

 Slow encryption/decrypting
 Expensive encryption/decrypting
 Strategy:

 private key algorithm
 for normal data
 public key algorithm
 for distributing private keys

(CHALMERS

