
1 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

Security

� General Concepts

� Threats in Distributed Systems

� Access Control

� Authentication Protocols

� Kerberos

� Cryptography

� with Private Keys

� with Public Keys

� Signing Messages

2 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

General Concepts

� Security

� confidentiality

the capability to protect objects and information from non- authorized use.

� integrity

the capability to protect objects and information from non- authorized changes.

3 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

Threats in Distributed Systems

� threat

� accidental threats

� intentional threats

• passive attack

• active attack

Locked room

Computer

Locked room

Computer

Attacker

4 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

Trojan Horses, Virus and Worms

� exists in the system without permit from the system owner,

� can transfer from one computer to another,

� have potential capability to destroy or hurt files,

� have capability to hinder proper users from obtaining service.

5 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

Security Mechanisms

� prevention

� detection

� recovery

6 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

Access Control

� Protection Domains

� Access matrix

� Access lists

• per object

� Capability lists

• per protection domain (“user”)

Object

P
ro

te
ct

io
n

 D
o
m

ai
n
s

i

k

access rights for
object i within
protection domain k

7 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

Capability

� A Capability will normally be composed of a three part bit pattern:

• a unique identifier for the object or resource that is associated with the capability,

• a specification of the access rights to the object, e.g. one boolean bit for each allowed operation
type,

• a random number making it hard to guess the content of the capability and also to make a fraud.

This pattern will be encrypted so only the service giver can decrypt (read) it).

Identifying and Authentication Protocols

� Authentication - to verify an Identity.

� Main classes of Authentication in a distributed system:

� Authentication of the contents of a message, i.e. verifying that the content is the same at receiving as

at sending.

� Authentication of the origins i of a message, i.e. verifying that the real sender of the message is the

indicated sender.

� Authentication of identities, i.e. verifying that an entity has the identity it claims.

� Authentication exists in the following combinations:

� Host – Host.

� User – Host.

� Process – process.

� Client-server communication.

� Peer-to-peer communication.

� Authentication Protocol - to execute authentication in a distributed system

9 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

Authentication Protocol

Example:

Common login routine, e.g. like in UNIX:

U → H U
H → U "Password?"

U → H passwd
H compute λ = f(passwd).

Coimpare λ with what is stored in a special file,
the "password-file".

if equal:then start login shell

H → U "%"

else: abort login

10 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

Cryptography

� symmetrical encrypting: kE = kD

� asymmetrical encrypting: kE ≠ kD

clear text

encrypting function

cryptogram
M’ = E(kE,M)

cryptogram

decrypting function

clear text
M = D(kD,M’)

11 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

Authentication Protocol using symmetrical encrypting (1)

� In the following we will use the following notation:

• m: Clear text message

• m’: Encrypted message

• E(k,m): Encryption function with key k.

• D(k,m’): Decryption function with key k.

� First try:

P create m = "I am P"

 compute m’ = E(k,m)
P → Q m,m’

Q verify that D(k,m’) = m
if equal then accept

else reject

This protocol is vulnerable to replaying.

12 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

Authentication Protocol using symmetrical encrypting (2)

� Second try:

P → Q "I am P"

Q → P ts //ts is a unique value read from the clock each time
P compute ts’ = E(k,ts)

P → Q ts’
Q verify that D(k,ts’) = ts

if equal then accept

else reject

This protocol is secure but can not be used due to the problem to administer the many keys.
There has to be one key for each pair of processes P and Q.

13 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

Three way Authentication Protocol

� Third try:

A notifies the Authentication Server:

P → Q "I am P"

Q → P ts
P compute ts’ = E(kP,ts)

P → Q ts’
Q compute ts’’ = E(kQ,P,ts’)

Q → A ts’’
A retreive (P,ts’) by decrypting: D(kQ,ts’’)

compute ts’’’ = D(kP,ts’)(= ts)
compute m = E(kQ,ts’’’)

A → Q m
Q verify D(kQ,m) = ts

if equal then accept

else reject

14 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

Authentication Protocol using asymmetrical encrypting

� We will use the following notation:

• keP: Encryption key (public)

• kdP: Decryption key (secret)

P → Q "I am P"

Q → P ts

P compute ts’ = E(keP,ts)
P → Q ts’
Q verify that ts = D(kdP,ts’)

if equal then accept

else reject

15 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

Authentication Protocol using asymmetrical encrypting
Three Way

P → Q "I am P"

Q → P ts

P compute ts’ = E(keP,ts)
P → Q ts’

Q → A "I need P’s public key"

A retreive kdP from the database
 compute c = E(keA,P,kdP)

A → Q P,c
Q retreive (P,kdP) by decrypting: D(kdA,c)

 verify ts = D(kdP,ts’)
if equal then accept

else reject

16 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

Kerberos

� MIT - Athena project

� ticket-granting server

� authentication server

� Two main protocols:

� The credential-initialization protocol.

Authentication of users login in to the system.

Is performed by the Kerberos authentication server.

Certificated user will get a ticket-granting ticket.

� The client-server authentication protocol.

Authentication of user processes that requests services over the network.

The authentication is executed as a three part authentication between client, server, and Kerberos

ticket-granting server.

17 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

The credential-initialization protocol

� We will use the following notation:

• L: session key length of life

• T: a timestamp

U → H U
H → Auth U, TGS
Auth retreive kU and kTGS from the database

generate a session key k

create tickTGS = E(kTGS, (U,TGS,k,T,L))
Auth → H E(kU, (TGS, k, T, L, tickTGS))
H → U "Password?"

U → H passwd

H compute λ = f(passwd)
decrypt D(kU, (TGS,k,T,L,tickTGS))
with λ to obtain k, tickTGS
if not succeed:

 abort login
else

 keep tickTGS and k.
erase passwdU from memory

18 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

The client-server authentication protocol

C → TGS S, tickTGS, E(k, (C, T1))
TGS retreive k from tickTGS by decrypting with kTGS

retreive T1 from E(k, (C, T1)) by decrypting with k.
test T1 to the local clock

create tickS = E(kS, (C,S, k´, T´, L´))
TGS → C E(k, (S, k´, T´, L´, tickS))
C retreive k´ and tickS by decrypting with k.
C → S tickS, E(k´, (C, T2))
S retreive k´ from tickS by decrypting with kS.

retreive T2 from E(k´, (C, T2)) by decrypting with k´.
test T2 to the local clock.

S → C E(k´, (T2 + 1))

19 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

Cryptography

� private keys
symmetrical cryptographic algorithms

Pros:

• Fast encryption/decrypting

• Cheap encryption/decrypting

• Implemented in hardware

Cons:

• Must be frequently exchanged

• Must be transported in a safe manner

20 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

� public keys
asymmetrical cryptographic algorithms

Pros:

• Can be openly transported

• All can send encrypted to all others

• Doesn’t need frequently exchange

Cons:

• Slow encryption/decrypting

• Expensive encryption/decrypting

� Strategy:

� private key algorithm

• for normal data

� public key algorithm

• for distributing private keys

21 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

Private keys

� unicity distance:

• the number of bytes with the same key needed to retrieve it using the redundancy

� reducing redundancy:

� block cipher

� product cipher

E D

CA

M

M = DK(C)<C = EK(M)>M

AI

attacker

additional information

K K

22 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

Different types of cipher

� Permutation cipher can be cracked using the frequencies of the letters in the English language.
The more text with the same key the easier it will be done.

We will attack at dawn Xk xjmm buubdl bu ebxo

Ai ampp exxego ex hear

abcdefghijklmnopqrstuvwxyz

qazwsxedcrfvtgbyhnujmiklpo

Ks kcvv qjjqzf qj wqkg

a) Message. b) Caesar cipher (Shift cipher, K=1).

c) Shift cipher, K=4.

K:

d) Permutation cipher, key K.

23 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

Block cipher

� To crack Block Cipher the frequencies of letter combinations must be used which will require more text

We will attack at dawn

We w ill atta ck a t da wn

a) Message.

e) Block cipher.

24 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

Product cipher

� To make it harder to crack we encrypt several times in a row.

� Beware: This is no guarantee that it will be harder to crack,
e.g. two permutation ciphers after each other will just give one new permutation cipher.

D

K2

D

K1

E

M

K1

E

M1

K2

M1 M<M2>

25 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

Different Attacks

� Attack:

� only encrypted text

� known encrypted text

� chosen encrypted text

� secure system

� once use key

• expensive

• key as long as the encrypted text
- hard to create
- hard to transport

26 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

DES

Data Encryption Standard

� IBM

� DARPA

� standard

� hardware

� cheap and fast

� block length: 64 bits

� key length 56 bits + 8 control bits

27 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

Triple DES (3DES)

� A more secure variant of DES

� Encryption, decrypting and Encryption again of the blocks according to DES.

Should be done using different keys.

� estimated to be 256 times safer then DES.

� will probably be used for long time

� As Advanced Encryption Standard for safe encryption the US government has chosen the Rijndael
algorithm (Joan Daemon, Vincent Rijmen).

� A block cipher with variable block and key length.

28 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

Public Key

� hard to compute KD when KE is known

� trap door function

E D

M = DKD(C)<C = EKE(M)>M

KE KD

KE known KD secret

29 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

RSA

Rivest-Shamir-Adleman 1978

• choose two big primes p and q

• let n = p ∗ q

• choose a random number e.

• let KE = (e,n) be the public key

� Encryption:

• Dive the message into blocks not bigger than n-1 bytes

• M = P1 P2 ... Pm

• Compute Ci = Pi
e modulo n.

• C = C1 C2 ... Cm will be the encrypted message.

30 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

RSA

Decrypting

� Uses Euler’s totient function:

φ(n) = (p − 1) ∗ (q − 1)

for which it holds:

XY mod n = XY mod φ(n)

� d is computed by solving the equation:

e∗d mod φ(n) = 1

� For each Ci we compute:

Ci
d mod n = P i

e∗d mod n = Pi
e∗d mod φ(n) = Pi

1 = Pi

� The message is decrypted!

31 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

RSA - Example

� Assume that we have chosen:

p = 73, q = 151 and e = 11

� This implies n = p∗q = 11 023.

� The public key will be (e,n).

� The secret key (d,n) is computed by solving:

11∗d mod ((73 − 1)∗(151 − 1)) = 1

� giving

d∗11 mod 10 800 = 1 ⇒ d = 5 891

� We will now show how the message: “How are you?” is sent in a secure way.

� The letters will be coded as numbers:

H→33, o→14, w→22 ... ?→66

32 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

� The message will be:

33 14 22 62 00 17 04 62 24 14 20 66.

� We will use blocks with 4 digits. The message will be:

P1 = 3 314, P2 = 2 262, P3 = 0 017, P4 = 0 462, P5 = 2 414, P6 = 2 066.

� The sender will encrypt each block as:

C1 = 3 31411 mod 11 023 = 10 260.

C2 = 9 489, C3 = 1 782, C4 = 727, C5 = 10 032, C6 = 2 253.

� The encrypted message C = (C1 .. C6) that is sent will be:

10 260, 9 489, 1 782, 727, 10 032, 2 253.

� The receiver will decrypt using the secret key (d):

10 260d mod n = 10 2605 891 mod 11 023 = 3 314 = P1

33 (33) - DISTRIBUTED SYSTEMS Security - Sven Arne Andreasson - Computer Science and Engineering

Signing messages

� RSA algorithm is symmetric

I:

� encrypted using KE

� decrypt using KD

II:

� encrypted using KD

� decrypt using KE

D2 E1D1

M;M

E2

M1;M M1;M M;M<M2>

M1 = D1(M) M2 = E2(M1;M)

