
1 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

Netsim

� A simulation program for developing, demonstrating and testing distributed algorithms (protocols).

� A Java program with Java interfaces.

2 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

Basics

� To use the program a Distributed Algorithm or Protocol must be implented and compilated using the given
ProtocolInterface.

� Then the compiled code can be loaded into Netsim for simulation using an appropriate computer network.

� You can get this network by editing a new network or by loading a previously saved network.

� Creating and/or modification of the network is done in edit mode.

� Before simulation the simulated protocol must be chosen. This is done in protocol mode. If you haven't
loaded your protocol using parameters you can here instead load any compiled java class that offers the
given interface. It is also possible to choose different protocols for different nodes in the network.

� N.B. If you load a protocol with the same class name a second time it will not be loaded since the java

machine thinks it already is loaded. If you have to correct your protocol you must restart the Netsim

program before loading it (or give it a different class name).

� After having choosed both network and protocol the simulation can be started by entering simulation
mode.

3 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

Initiating Simulation

� While entering the simulation mode the initiation operation
public void initiate(NodeInterface myNode)

for the protocols in the nodes is called.
In most cases it is appropriate for the protocols to start to listen to its in links when this is called.

� Then the simulation can be started by starting the simulation clock.

� To get things to happen at a specific node there should be a public void trigg() operation that can
be called.
e.g. you can let your protocol send messages to neighbour nodes when the trig is activated.

� When performing the simulation the network graphics shows how the messages propagates and how the
nodes can shift among different states.

4 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

The Protocol Interface

� The simulated protocol must offer the interface netsim.protocol.ProtocolInterface

� There is an easier way to implement the protocol by using netsim.protocol.ProtocolAdapter.
This adapter implements the interface and also takes care of listening to the in-links keeping the operations
in a monitor.

� By implementing the receiveMessage(netsim.protocol.Message m, netsim.protocol.InLink link)

operation, a subclass will receive all in-messages in a safe way.

� At initiation this subclass must start with calling

public void initiate(NodeInterface myNode)

{

super.initiate(myNode); // this will start a listening thread for

// each in-link.

.....

In most cases it will be convenient to use this Adapter.
If not, the threads that will be listening to the in-links must be implemented by the protocol.

� When simulating a computer communication protocol it might be better to not use the adapter, since it
hides some of the difficulties to the simulator.

5 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

The Messages

� The messages sent can be any class that implements the netsim.protocol.Message interface.

6 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

Work order

1. Choose network

2. Choose protocol

3. Simulate

7 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

Simulation

1. Start Simulation clock

2. Trigg a node

3. See what happens

- A link can be stopped to see how the algorithm will behave for slow links.

- The simulation speed can be changed.

- ...

8 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

Starting NETSIM

� NETSIM program is compiled into a java jar that requires java 1.6 or higher.

� It is best started with a command file that will look a little different for LINUX and Windows.

� LINUX (Unix):

java -cp Netsim.jar:myclassdir netsim.Start -ClassDir myclassdir

where myclassdir is where you put the compiled classes that you want to load into the program.

(if you are using packages you must have the corresponding directory tree).

� Windows, the following bat-file:

java -cp Netsim.jar;myclassdir netsim.Start -ClassDir myclassdir

where you have put the bat-file in the same directory as Netsim.jar.

� Note the difference between : and ; in the two examples!

9 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

Compiling your algorithm

� You can compile your javaclass as

javac -cp Netsimprotocol.jar:myclassdir MyClass.java

The jar-file with the interfaces that you will need for compilation can be found at the NETSIM homepage.

10 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

ProtocolInterface

initiate

void initiate(NodeInterface myNode)

This operation is called by the system when initiating a simulation. It gives the reference to the

NodeInterface. The protocol object is also supposed to start listening to its inlinks when getting this call.

Parameters:

myNode - NodeInterface gives the reference to the NodeInterface

toString

java.lang.String toString()

The String returned by this operation is treated as the name of the protocol by the system and will be shown

on the menues.

Overrides:

toString in class java.lang.Object

Returns:

String protocol name

11 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

trigg

void trigg()

 throws java.lang.Exception

This operation is called by the system every time that Trigg is clicked on the corresponding node. Can be

used for starting actions by a single node.

Throws:

java.lang.Exception

stop

void stop()

This is called by the system when simulation ends or when Stop is clicked for this node. If the Stop is clicked

a crash is supposed to be simulated by the protocol. In most cases this can be done by stopping listening to the

inlinks.

12 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

ProtocolAdapter

� ProtocolAdapter takes care of in-links, threads and monitor.

Constructor Summary

ProtocolAdapter()

Methods inherited from interface

Netsim.protocol.ProtocolInterface

toString, trigg

13 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

myNode

protected NodeInterface myNode

A reference to the corresponding NodeInterface.

myNodeName

protected java.lang.String myNodeName

Gives the nodes name, i.e. my name.

inLinks

protected InLink[] inLinks

Gives an array of all inlinks to this node.

outLinks

protected OutLink[] outLinks

Gives an array of all outlinks to this node.

running

protected boolean running

is true until the stop() operation has been called. Then it will become false.

Field Detail

14 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

ProtocolAdapter

public ProtocolAdapter()

initiate

public void initiate(NodeInterface myNode)

This must be called when initiating the simulation. If the subclass also needs initiation (which is most likely)

it must first call this as:

 public void initiate(NodeInterface myNode)

 {

 super.initiate(myNode);

Specified by:

initiate in interface ProtocolInterface

Parameters:

myNode - NodeInterface

Constructor Detail

Method Detail

15 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

stop

public void stop()

This is called by the system when simulation ends or when Stop is clicked for this node. If the Stop is clicked

a crash is supposed to be simulated by the protocol. This adpterclass makes it stop listening to its inlinks

which in most cases will be enough for this simulation. If not the subclass most provide a stop() operation

that must start with:

 public void stop()

 {

 super.stop();

otherwise the link listening threads will not end properly.

Specified by:

stop in interface ProtocolInterface

16 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

sendMessageSynchronized

protected void sendMessageSynchronized(Message message,

 OutLink outlink)

 throws java.lang.Exception

If the subclass needs to send a message that is synchronized with the incoming messages threads, it can be

done by using this operation.

Parameters:

message - Message

outlink - OutLink

Throws:

java.lang.Exception

receiveMessage

protected abstract void receiveMessage(Message msg,

 InLink myLink)

 throws java.lang.Exception

This operation will be called for every message that is received by the node. It gives the message and the

corresponding nnlink-

Parameters:

msg - Message

myLink - InLink

Throws:

java.lang.Exception

17 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

NodeInterface

getName

java.lang.String getName()

returns the name of the node

Returns:

String

getInlinks

InLink[] getInlinks()

returns an array of all inlinks to the node

Returns:

InLink[]

getOutLinks

OutLink[] getOutLinks()

returns an array of all outlinks from the node

Returns:

OutLink[]

18 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

sendTo

void sendTo(java.lang.String neighbourName,

 Message message)

 throws NetworkBroken,

 NotFound

sends a clone of message to the neighbour node with the name neighbourName.

Parameters:

neighbourName - String

message - Message

Throws:

NetworkBroken - will only be thrown if the link is defined as safe

NotFound - if there is no outlink with the corresponding neighbour name.

sendTo

void sendTo(InLink neigbour,

 Message message)

 throws NetworkBroken,

 NotFound

sends a clone of message on the outlink corresponding to inlink neigbour.

Parameters:

neigbour - InLink

message - Message

Throws:

19 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

NetworkBroken - will only be thrown if the link is defined as safe

NotFound - if there is no outlink with the corresponding inlink.

sendToAllOutlinks

void sendToAllOutlinks(Message message)

 throws NetworkBroken

sends a clone of message on all outlinks.

Parameters:

message - Message

Throws:

NetworkBroken

sendToAllBut

void sendToAllBut(java.lang.String neigbourName,

 Message message)

 throws NetworkBroken

sends a clone of message on all outlinks except the outlink to neigbourName.

Parameters:

neigbourName - String

message - Message

Throws:

NetworkBroken - will only be thrown if the link is defined as safe

20 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

sendToAllBut

void sendToAllBut(InLink neigbour,

 Message message)

 throws NetworkBroken

sends a clone of message on all outlinks except the outlink corresponding to inlink neigbour.

Parameters:

neigbour - InLink

message - Message

Throws:

NetworkBroken - will only be thrown if the link is defined as safe

setTimeOut

TimeOut setTimeOut(int time,

 TimeoutInterface customer)

to set a timeout after time time units

Parameters:

customer - TimeoutInterface

21 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

� operations that only change node color:

setWaken

void setWaken()

will set the node color on the screen to "waken" for the corresponding node. Only for graphical appearance!

setReady

void setReady()

will set the node color on the screen to "ready" for the corresponding node. Only for graphical appearance!

setIdle

void setIdle()

will set the node color on the screen to "idle" for the corresponding node. Only for graphical appearance!

setActive

void setActive()

will set the node color on the screen to "active" for the corresponding node. Only for graphical appearance!

setError

void setError()

will set the node color on the screen to "error" for the corresponding node. Only for graphical appearance!

22 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

setError

void setError(java.lang.String ErrorMessage)

Parameters:

ErrorMessage - will be shown in a dialog menue if not the node already was in error state. will set the

node color on the screen to "error" for the corresponding node.

23 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

� operations that is used for onput/output of data:

createVisibleInteger

VisibleInteger createVisibleInteger(java.lang.String name,

 int startValue)

returns an object that can be seen on the screen. This object can also be used for input of data to the protocol.

Parameters:

name - String will appear as label for the value

startValue - int

Returns:

VisibleInteger

createVisibleString

VisibleString createVisibleString(java.lang.String name,

 java.lang.String startValue)

returns an object that can be seen on the screen. This object can also be used for input of data to the protocol.

Parameters:

name - String will appear as label for the value

startValue - String

Returns:

VisibleString

createVisibleBoolean

24 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

VisibleBoolean createVisibleBoolean(java.lang.String name,

 boolean startValue)

returns an object that can be seen on the screen. This object can also be used for input of data to the protocol.

Parameters:

name - String will appear as label for the value

startValue - boolean

Returns:

VisibleBoolean

writeLogg

void writeLogg(java.lang.String row)

What is written to this log can be read by opening the log for a node on the screen. There will also be

common log for all the nodes where all log data can be read in global time order.

Parameters:

row - String

25 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

OutLink

sendMessage

void sendMessage(Message message)

 throws NetworkBroken

A clone of message will be sent on the link.

Parameters:

message - Message

Throws:

NetworkBroken - will only be thrown if the link is defined as safe

getOutNodeName

java.lang.String getOutNodeName()

Gives the name of the corresponding neighbour.

Returns:

String

setMarked

void setMarked(boolean marked)

can be used to give the corresponding link a different color on the screen. Only used for graphical apperence!

26 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

getLongestLinkTime

int getLongestLinkTime()

returns the longest time (in time units) that it will take for a message to pass the link It can be used when

setting timeouts.

Returns:

int

27 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

InLink

receiveMessage

Message receiveMessage()

 throws NetworkBroken

Will wait for a message on the inlink and then deliver it when a message arrives.

Returns:

Message

Throws:

NetworkBroken - will only be thrown if the link is defined as safe

getInNodeName

java.lang.String getInNodeName()

Gives the name of the corresponding neighbour.

Returns:

String

setMarked

void setMarked(boolean marked)

can be used to give the corresponding link a different color on the screen. Only used for graphical apperence!

28 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

getLongestLinkTime

int getLongestLinkTime()

returns the longest time (in time units) that it will take for a message to pass the link. It can be used when

setting timeouts.

Returns:

int

setTimeOut

TimeOut setTimeOut(int time,

 TimeoutInterface customer)

to set a timeout after time time units. If the inlink already has got a timeout set this will be canceled and

replaced by this.

Parameters:

time - int

customer - TimeoutInterface

Returns:

TimeOut,

29 (29) - DISTRIBUTED SYSTEMS Netsim - Sven Arne Andreasson - Computer Science and Engineering

Message

clone

Message clone()

This must return a proper clone of the message object. This is very important since it otherwise can be

improper influences among the protocol instances that will ruin the simulation.

Returns:

Message

getTag

java.lang.String getTag()

This defines how the message will be tagged on the screen.

Returns:

String

