Processes

O Threads
O Client-Server Architectures

O Code Migration

1 (10) - DISTRIBUTED SYSTEMS Processes - Sven Arne Andreasson - Computer Science and Engineering

Use of Threads in Distributed Applications

O Threads in Clients

O Concurrent programming can be used to update a web page gradually to make a more pleasant user
experience.

O Threads in Servers

QO Concurrent programming can be used to allow many clients at the same time sharing the server and its
resources.

QO here it must be assured that there is no data corruption by use of mutual exclusion.
This instead might cause deadlock or starvation.

3 (10) - DISTRIBUTED SYSTEMS Processes - Sven Arne Andreasson - Computer Science and Engineering

@ cHALMERS

Threads

O A Process has a given memory space.
O Different processes have different memory space.
Thread - lightweight process
In a multi-threaded process many threads shares the same memory space.
QO Concurrent programming
0 In a distributed system when one process calls another (e.g. a client calls a server) its thread will transfer
(logically) to that other process (and another memory space).

A server “borrows” the clients thread.

Q Distributed and concurrent programming

2 (10) - DISTRIBUTED SYSTEMS Processes - Sven Arne Andreasson - Computer Science and Engineering

@ cHALMERS

Client-Server Architectures
O Servers can be

QO Stateful:
Information about the Client state is maintained by the Server.

* Might be useful if there is multiple messages sent to the server.
* The information in messages can be reduced.
* Security might be easier to implement.

* But can lead to complex protocols and error handling.

QO Stateless:
Information about the Client state is not maintained by the Server.

* The normal solution if there is only service requests that are independent of each other and only
use a single message each.

» Simple protocols and error handling must be performed by the client.
« If it is used for multiple dependant requests the server must rely on the client that is doing right.

* Security problem. e.g. NES protocol.

4 (10) - DISTRIBUTED SYSTEMS Processes - Sven Arne Andreasson - Computer Science and Engineering

@ cHALMERS

@ cHALMERS

Virtual Machines

For Clients:
QO Web browser.
Q Java (machine)
O For Servers:
QO Java machine
O For general distributed system:
QO Java machine

QO Custom made virtual layer

Platforms “independent” of the underlying operating system.

5 (10) - DISTRIBUTED SYSTEMS Processes - Sven Arne Andreasson - Computer Science and Engineering

@ cHALMERS

Code Migration
To move processes to other computers.
Can be decided
O before starting a process
QO while a process is running
Mainly used for performance issues: Load Balancing

Can also be used for enhancing availability:

* move its ongoing processes to another computer.

* Tandem systems since 1970ies

QO If a computer is breaking down, or if it has to be upgraded or given service

7 (10) - DISTRIBUTED SYSTEMS Processes - Sven Arne Andreasson - Computer Science and Engineering

@ cHALMERS

Clients

Server Cluster

Server Clusters

N 1 Y Y e Y N B O o

‘ Application Server

‘ Application Server ‘ Application Server

‘ Application Server

‘ Database ‘ ‘ Database ‘

6 (10) - DISTRIBUTED SYSTEMS Processes - Sven Arne Andreasson - Computer Science and Engineering

@ cHALMERS

0 Weak Mobility

Different types of Code Migration (1)

move before starting a process. Only transfer the code segment.

O Sender-initiated mobility
e.g. load balancing

* Execute at target process
» Execute in separate process

O Receiver-initiated mobility

* Execute at target process
e.g. java applets

» Execute in separate process

8 (10) - DISTRIBUTED SYSTEMS Processes - Sven Arne Andreasson - Computer Science and Engineering

@ cHALMERS

Different types of Code Migration (2) Heterogeneous Systems

O Strong Mobility O Processes migration between different type of systems/hardware
move running process. Must transfer the programs environment (resource segment and execution segment
as well as the code segment. O The code might have to be compiled differently
QO Sender-initiated mobility O Example for Heterogeneous Hardware (for program cat in Linux):
« Migrate process * in a single system the binary will be in the /bin directory
« Clone process « for a heterogeneous system:

hidden directories
QO Receiver-initiated mobility Ibinlcat =
* Migrate process Ibin/catlintel

- binary for Intel processor
* Clone process

/bin/cat/motorola
- binary for Motorola processor

* One program has a directory with different compiled code for different processors.

» The system can choose the appropriate code when it has chosen which processor to use.

9 (10) - DISTRIBUTED SYSTEMS Processes - Sven Arne Andreasson - Computer Science and Engineering ﬁ 10 (10) - DISTRIBUTED SYSTEMS Processes - Sven Arne Andreasson - Computer Science and Engineering
¢ & cHALMERS eineerie @ cHALMERS

