
1 (10) - DISTRIBUTED SYSTEMS Processes - Sven Arne Andreasson - Computer Science and Engineering

Processes

� Threads

� Client-Server Architectures

� Code Migration

2 (10) - DISTRIBUTED SYSTEMS Processes - Sven Arne Andreasson - Computer Science and Engineering

Threads

� A Process has a given memory space.

� Different processes have different memory space.

� Thread - lightweight process

� In a multi-threaded process many threads shares the same memory space.

� Concurrent programming

� In a distributed system when one process calls another (e.g. a client calls a server) its thread will transfer 
(logically) to that other process (and another memory space).
A server “borrows” the clients thread.

� Distributed and concurrent programming

3 (10) - DISTRIBUTED SYSTEMS Processes - Sven Arne Andreasson - Computer Science and Engineering

Use of Threads in Distributed Applications

� Threads in Clients

� Concurrent programming can be used to update a web page gradually to make a more pleasant user 

experience.

� Threads in Servers

� Concurrent programming can be used to allow many clients at the same time sharing the server and its 

resources.

� here it must be assured that there is no data corruption by use of mutual exclusion.

This instead might cause deadlock or starvation.

4 (10) - DISTRIBUTED SYSTEMS Processes - Sven Arne Andreasson - Computer Science and Engineering

Client-Server Architectures

� Servers can be

� Stateful:

Information about the Client state is maintained by the Server.

• Might be useful if there is multiple messages sent to the server.

• The information in messages can be reduced.

• Security might be easier to implement.

• But can lead to complex protocols and error handling.

� Stateless:

Information about the Client state is not maintained by the Server.

• The normal solution if there is only service requests that are independent of each other and only 
use a single message each.

• Simple protocols and error handling must be performed by the client.

• If it is used for multiple dependant requests the server must rely on the client that is doing right.

• Security problem. e.g. NFS protocol.



5 (10) - DISTRIBUTED SYSTEMS Processes - Sven Arne Andreasson - Computer Science and Engineering

Virtual Machines

� Platforms “independent” of the underlying operating system.

� For Clients:

� Web browser.

� Java (machine)

� For Servers:

� Java machine

� For general distributed system:

� Java machine

� Custom made virtual layer

6 (10) - DISTRIBUTED SYSTEMS Processes - Sven Arne Andreasson - Computer Science and Engineering

Server Clusters

�

Database

Server Cluster

Clients

Application Server Application Server Application ServerApplication Server

Interface Server

Database Database Database

7 (10) - DISTRIBUTED SYSTEMS Processes - Sven Arne Andreasson - Computer Science and Engineering

Code Migration

� To move processes to other computers.

� Can be decided 

� before starting a process

� while a process is running

� Mainly used for performance issues: Load Balancing

� Can also be used for enhancing availability:

� If a computer is breaking down, or if it has to be upgraded or given service

• move its ongoing processes to another computer.

• Tandem systems since 1970ies

8 (10) - DISTRIBUTED SYSTEMS Processes - Sven Arne Andreasson - Computer Science and Engineering

Different types of Code Migration (1)

� Weak Mobility
move before starting a process. Only transfer the code segment.

� Sender-initiated mobility

e.g. load balancing

• Execute at target process

• Execute in separate process

� Receiver-initiated mobility

• Execute at target process
e.g. java applets

• Execute in separate process



9 (10) - DISTRIBUTED SYSTEMS Processes - Sven Arne Andreasson - Computer Science and Engineering

Different types of Code Migration (2)

� Strong Mobility
move running process. Must transfer the programs environment (resource segment and execution segment 
as well as the code segment.

� Sender-initiated mobility

• Migrate process

• Clone process

� Receiver-initiated mobility

• Migrate process

• Clone process

10 (10) - DISTRIBUTED SYSTEMS Processes - Sven Arne Andreasson - Computer Science and Engineering

Heterogeneous Systems

� Processes migration between different type of systems/hardware

� The code might have to be compiled differently

� Example for Heterogeneous Hardware (for program cat in Linux):

• in a single system the binary will be in the /bin directory

• for a heterogeneous system:
hidden directories

 /bin/cat ⇒

 /bin/cat/intel

- binary for Intel processor

 /bin/cat/motorola

- binary for Motorola processor

 ...

• One program has a directory with different compiled code for different processors.

• The system can choose the appropriate code when it has chosen which processor to use.


