Spatial Data Structures
and Speed-Up Techniques

UIf Assarsson

Department of Computer Science and
Engineering

Chalmers University of Technology

Muddy Cards

e For original slides
— Contact me (bring a usb-stick)

e Math excercises
- Compulsory math labs ?

Muddy Cards — some results
e Math:

- Wanted: Real examples with numbers:
e “a slight misconception”
e Our goal is to make code.
— A concrete example...

e Book vs Slides:

- The exam will be on the material covered during the
lectures. If you understand everything in the lecture slides,
you may not need the book. However, the book explains in
more detail. Probably necessary complement to the lecture
slides to understand.

- Best graphics book of all books. There is no alternative
book covering the same material.

Have vou done yvour homework ;-) ?
Exercises

e Create a function (by writing code on
paper) that tests for intersection between:
- two spheres
— aray and a sphere
- view frustum and a sphere
- Ray and triangle (e.g. use formulas from last

lecture)
e Matrices

- Give a scaling matrix, translation matrix, rotation
matrix and simple orthogonal projection matrix

Ray/sphere test /
e Ray: r(¢)=o+td

e Sphere center: ¢, and radius r 0

e Sphere formula: ||p-c||=r

e Replace p by r(¢), and square it: @

(0+td—c)-(o+td—c)—-r" =0

t* +2((0—c¢) d)f + (0—¢)- (0-c) - 7

-b b
ax*+bx +¢c=0 = x=—= () _ <

2a 2a
Bool raySpherelntersect(vec3f o, d, ¢, float r, Vec3f &hitPt) {
float b = 2*((0-c).dot(d)); // dot 1s implemented in class Vec3f
float ¢ = (0-¢).dot(0-c¢);
1f(b*b/4<c) return false;
float t = -b/(2) - sqrt(b*b/4-c); // intersection for smallest t
if (t<0) t = -b/(2*a) + sqrt(b*b/4-c); // larger t
if (t<0) return false; else hitPt = o+d*t; / where * is an operator for vec mul
return true;

a

Misc

e Half Time wrapup slides will be available
in “Schedule” on home page

e There is an Advanced Computer
Graphics Seminar Course in sp 3+4, 7.5p

— One seminar every week
e Advanced CG techniques

- Do a project of your choice.
— Register to the course

Spatial data structures
o What is it?

- Data structure that organizes geometry in 2D or 3D or
higher

- The goal is faster processing

- Needed for most "speed-up techniques”
e Faster real-time rendering
e Faster intersection testing
e Faster collision detection
e Faster ray tracing and global illumination

e Games use them extensively

e Movie production rendering tools always use
them too

(Read "Designing a PC Game Engine”. Link
available on website)

TDA361 Computer Graphics

3 http:/ /www.cse.chalmers.se/edu/course/TDA361/index.html

Google

Apple

Yahoo! Google Maps YouTube News (424)v Popularv Dictionary.com Eniro Personer Ulf Assarss...s Home Page

o week 6: room HC1
o week 7: room HC3

NOTE 2: The follow-up course,
DAT205 Advanced Computer Graphics, will run in
study period 3+4 as usual, despite what studentportalen says.

Home page is continuously being updated

COURSE-PM

Course start: (sp2, week 1). Lectures each Wednesday 10-12, and Friday 9-12.
7,5 Hogskolepoéng

Grades: U (failed), 3,4, 5

Educational Level: Advanced

Institution: 37 - DATA- OCH INFORMATIONSTEKNIK

Teaching language: English

Teacher and Examiner: UIf Assarsson, intern phone 1775 (031-7721775)

room 4115, floor 4, the corridor along Rannvéagen, ED-huset E-mail: see above.

Course assistants: Erik Sintorn (erik dot sintorn at chalmers dot se), Ola Olsson (ola dot olsson at chalmers dot se), Markus Billeter (billeter
at chalmers dot se)

Course webpage: hitp://www.cse.chalmers.se/edu/course/TDA361/

Links:

Ll

o Links to related previous courses, now obsolete:
o TDA361 Computer Graphics: 2010, 2009, 2008,
°
°

More Links:

OpenGL Reference Manual 3.0

,including release 2.0.
, release 1.3.
, release 3. How to open a window etc.
OpenGL.org
GLSL manual and and good
, paper with optimizatiof tricks for ray tracing.
, paper about grid traversal.
, a free 3D-modelj
. Abaper about "game engine design”
open C++ code for loading and rendering 3ds-files.
Converter between 3D formats.

-some 3D models.

How?

e Organizes geometry in some hierarchy

In 2D space Data structure

Subscenel Subscene2

What’s the point?
An example

e Assume we click on screen, and want to
find which object we clicked on

/)
d Bmm =

_ 1) Test the root first
click! 2) Descend recursively as needed
3) Terminate traversal when possible

In general: get O(log n) instead of O(n)

3D example

Scene

4%

Subscenel Subscene2

Bounding Volume Hierarchy (BVH)

e Most common bounding volumes (BVs):

- Sphere
- Boxes (AABB and OBB)

e The BV does not contibute to the rendered
Image -- rather, encloses an object

e [he data structure is a k-ary tree
- Leaves hold geometry

— Internal nodes have at most
k children

— Internal nodes hold BVs that
enclose all geometry in its subtree

d B 7] &

Some facts about trees

e Height of tree, h, is longest path from root
to leaf

e A balanced tree is full except for possibly
missing leaves at level &

e Height of balanced tree with » nodes:
floor(log,(n))

e Binary tree (k=2) is the simplest

- k=4 and k=8 is quite common for computer
graphics as well

How to create a BVH?
Example: BV=AABB

e Find minimal box, then split along longest axis

. 0 X is longest

Find minimal D / Called TOP-DOWN method

boxes
Works similarly for other BVs
N y

Find minimal
boxes

Split along
Iongestaxw

Stopping criteria for Top-Down
creation

e Need to stop recursion some time...
— Either when BV is empty
— Or when only one primitive (e.g. triangle) is
inside BV
— Or when <n primitives is inside BV
— Or when recursion level [has been reached

e Similar critera for BSP trees and octrees

Binary Space Partitioning (BSP)
Trees

e Two different types:
— Axis-aligned
- Polygon-aligned

e General idea:
- Divide space with a plane

— Sort geometry into the space it belongs
— Done recursively

e If traversed in a certain way, we can get the

geometry sorted along an axis

- Exact for polygon-aligned
- Approximately for axis-aligned

» Divide space with a plane
« Sort geometry into the
space it belongs

Done recursively

Axis-Aligned BSP tree (1)

e Can only make a splitting plane along
X,Yy, Or Z

Minimal Split alon

0]0) ¢ : [::I'] §> ﬂ plre)meao ° I:I:'] §> ﬂ
= =\

Split along [::I'] E) Split along [::I'] §>|S s

plane plane

= =" /

Axis-Aligned BSP tree (2)

B D) L
] E): la Ib
Ib

Plane

Plane 1a

0 {ueld
>

- B|[C 2
A C Oﬁf

D E
\J 1D K
e Each internal node holds a divider plane
e Leaves hold geometry

e Differences compared to BVH
- Encloses entire space and provides sorting
- The BV hierarchy can be constructed in any way (no sort)
- BVHSs can use any desirable type of BV

Axis-aligned BSP tree
Rough sorting

e Test the planes against the point of view
e Test recursively from root

e Continue on the "hither” side with respect to the eye to
sort front to back

]

la

-

2
7

e \Works in the same way for polygon-

PN

eye

/

—

0

~—

A
-
4

o | W —

7
N

[

D

1

3

aligned BSP trees --- but that gives
exact sorting

2

FPS: 25724

Polygon-alighed BSP tree

e Allows exact sorting

e Very similar to axis-aligned BSP tree

— But the splitting plane are now located in the
planes of the triangles

Drawing Back-to-Front
recurse on farther side of P;
Draw P;

Recurse on hither side of P;

class BSPtree:
Polygon P;

Algorithm for BSP trees BSpuee behinde:

BSPtree frontOfP;

Tree CreateBSP(PolygonList L) {
If L. empty, return empty tree;

Else:
T->P = arbitrary polygon in L.
T->behindP = CreateBSP(polygons behind P)
T->frontOfP = CreateBSP(polygons in front of P)
Return T.
¥ Drawing Back-to-Front {

recurse on farther side of P;

Draw P;

Drawing Back-to-Front: Recurse on hither side of P;

void DrawBSP(Tree t) {
If (t==NULL) return;

If eye front of polygon t->P:

DrawBSP (t->behindP);

Draw P;

DrawBSP(t->frontOfP);
Else:

DrawBSP (t->frontOfP);

Draw P;

DrawBSP (t->behindP);

Octrees (1)

e A bit similar to axis-aligned BSP trees

e Will explain the quadtree, which is the 2D
variant of an octree

=N ’

o7 = &

% D || O)

e In 3D, each square (or rectangle)
becomes a box, and 8 children

Example of Octree

Recursively split space
in eight parts — equaly
along x,y,z dimension
simultaneously for each
level.

Example of an octree

Example of octree

Images from Lefebvre et al.

Octrees (2)

e Expensive to rebuild (BSPs are too)

e (loose octrees, page 656, 3:rd ed.)
- A relaxation to avoid problems

e Octrees can be used to
- Speed up ray tracing
— Faster picking
— Culling techniques

— Are not used that often in real-time contexts
o Anrexceplionisloose-octrecs

Scene graphs

e BVH is the data structure that is used most often
- Simple to understand
- Simple code

e However, it stores just geometry
- Rendering is more than geometry

e The scene graph is an extended BVH with:
- Lights
- Materials
— Transforms
- And more

Scene Graphs 5

Rota Rota
tion tion

Planet 1 Planet 2

Rota Rota Rota Rota
tion tion tion tion

| | \

Moon A

Scene Graphs

Group
User ID: 2

Scene Graphs

opo

.“ L)

T imm

hd{1555?4}1
iEmi E (A
| [Ei=l

He . and\Ne\k Leg /dnd\foot

M.1 5 1.1 M. gmsﬁnmgzl 132
g

Neck le Foot

Speed-Up Techniques

e Spatial data structures are used to speed up
rendering and different queries

e \Why more speed?
e Graphics hardware 2x faster in 6-12 months!
e Wait... then it will be fast enough!

e NOT!

e \We will never be satisfied

— Screen resolution: 3000x1500
— Realism: global illumination
- Geometrical complexity: no upper limit!

What we’ll treat now

e Culling techniques
e Level-of-detail rendering (LODs)

e “To cull” means “to select from group”

- "Sort out”, remove”, "cut away”, something
picked out and put aside as inferior.

e In graphics context: do not process data
that will not contribute to the final image

Different culling techniques
(red objects are skipped)

view frustum s detall

backface

‘ occlusion

Backface Culling

e Simple technique to discard polygons
that faces away from the viewer

e Can be used for:
— closed surface (example: sphere)

— or whenever we know that the backfaces never
should be seen (example: walls in a room)

e Two methods (screen space, eye space)

e \Which stages benefits?
e Rasterizer stage

Backface culling (cont’ d)

e Often implemented for you in the API
e OpenGL.:

e glCullFace (GL BACK) ;

e glEnable (GL CULL FACE) ;

e How to determine what faces away?

e First, must have consistently oriented polygons, e.g.,
counterclockwise 2

2

front facing 1 back facing

How to cull backfaces

e Two ways in different spaces:

0
igelal!

back

screen space

eye

eye Space

back

igelal!

View-Frustum Culling

e Bound every “natural” group of primitives
by a simple volume (e.g., sphere, box)

e If a bounding volume (BV) is outside the
view frustum, then the entire contents of
that BV is also outside (not visible)

Can we accelerate view frustum
culling further?

e Do what we always do in graphics...

e Use a hierarchical approach, e.g., a
spatial data structure (BVH, BSP)

e \Which stages benefits?
- Geometry and Rasterizer
— Possibly also bus between CPU and Geometry

Example of Hierarchical View D/E\
Frustum Culling /<§

P
5

]

}

Portal Culling

Portal culling example

e In a building from above
e Circles are objects to be rendered

Portal Culling Algorithm (1)

e Divide into cells with portals (build graph)

e For each frame:

— Locate cell of viewer and init 2D AABB to whole
screen

- * Render current cell with View Frustum culling
w.r.t. AABB

- Traverse to closest cells (through portals)

— Intersection of AABB & AABB of traversed portal
- Goto *

Portal Culling Algorithm (2)

e \When to exit:

- W
- W
ce

nen the current AABB is empty

nen we do not have enough time to render a
| (“far away” from the viewer)

e Also: mark rendered objects

Occlusion Culling

e Main idea: Objects that
lies completely
“behind” another set of
objects can be culled

e Hard problem to solve
efficiently

e Lots of research in this
area

Example

@

e Note that “Portal Culling” is type of
occlusion culling

final image

Occlusion culling algorithm

Use some kind of occlusion
representation Op

for each object g do:
if(not Occluded(Og ,9g))
render(g);
update(Or ,9);
end;
end;

Level-of-Detail Rendering

e Use different levels of detail at different
distances from the viewer

e More triangles closer to the viewer

LOD rendering

e Not much visual difference, but a lot faster

e Use area of projection of BV to select
appropriate LOD

Scene graph wit{n LODs

Car chair
Area?

small

Large area
area

medium
area

Far LOD rendering

e \When the object is far away, replace with
a quad of some color

e \When the object is really far away, do
not render it (called: detall culling)!

e Use projected area of BV to determine
when to skip

Exercise

e Create a function (by writing code on
paper) that performs hierarchical view
frustum culling
- void hierarchicalVFC(node* sceneGraphNode)

THE EN)

BONUS MATERIAL
Occlusion Horizon

e Target: urban scenery
- dense occlusion
— viewer is about 2 meters above
ground
e Algorithm:

— Process scene in front-to-back
using a quad tree

- Maintain a piecewise constant
horizon

— Cull objects against horizon

- Add visible objects’ occluding power
to the horizon

Occlusion testing with occlusion
horizons

e To process tetrahedron (which is behind
grey objects):
— find axis-aligned box of projection
— compare against occlusion horizon

culled

Update horizon

e \When an object is considered visible:

e Add its “occluding power” to the
occlusion representation

Example:

e Read about the detalls in paper on website
(compulsory material!)

