Software Engineering using Formal Methods

Reasoning about Programs with Dynamic Logic

Wolfgang Ahrendt

3 October 2013

SEFM: DL 1 CHALMERS/GU 131003 1/46

Part |

Where are we?

SEFM: DL 1 CHALMERS/GU 131003 2 /46

Where Are We?

before specification of JAVA programs with JML
now dynamic logic (DL) for resoning about JAVA programs
after that generating DL from JML+JAva
+ verifying the resulting proof obligations

SEFM: DL 1 CHALMERS/GU 131003

3746

Motivation

Consider the method

public void doubleContent (int[] a) {
int i = 0;
while (i < a.length) {
ali] = al[i] * 2;
i++;

We want a logic/calculus allowing to express/prove properties like, e.g.:

If a # null
then doubleContent terminates normally
and afterwards all elements of a are twice the old value

SEFM: DL 1 CHALMERS/GU 131003 4/ 46

Motivation (contd.)

One such logic is dynamic logic (DL).
The above statemet in DL would be:

a # null
Na#b
AVint i;((0 < iAi < a.length) — a[i] = b[i])
— (doubleContent (a) ;)
Vint i;((0 <iAi < a.length) — a[i] =2 *b[i])

» DL combines first-order logic (FOL) with programs
» Theory of DL extends theory of FOL

» Necessary to look closer at FOL at first

» Then extend towards DL

SEFM: DL 1 CHALMERS/GU 131003 5/ 46

Today

introducing dynamic logic for JAVA

> recap first-order logic (FOL)
» semantics of FOL
» dynamic logic = extending FOL with

» dynamic interpretations
» programs to describe state change

SEFM: DL 1 CHALMERS/GU 131003

6/46

Repetition: First-Order Logic

Signature

A first-order signature ¥ consists of
> aset Ty of types
> a set Fy of function symbols

» a set Py of predicate symbols

Type Declarations

> T X; ‘variable x has type 7’
> p(71,...,7r); ‘predicate p has argument types 7y,..., 7,
» 7 f(71,...,7/); ‘function f has argument types 71,...,7;

and result type 7'’

SEFM: DL 1 CHALMERS/GU 131003

7746

Part [l

First-Order Semantics

SEFM: DL 1 CHALMERS/GU 131003 8 /46

First-Order Semantics

From propositional to first-order semantics

» In prop. logic, an interpretation of variables with { T, F} sufficed
» In first-order logic we must assign meaning to:

» function symbols (incl. constants)

> predicate symbols

» Respect typing: int i, List 1 must denote different elements

What we need (to interpret a first-order formula)
. A collection of typed universes of elements
A mapping from variables to elements

For each function symbol, a mapping from arguments to results

SRR

For each predicate symbol, a set of argument tuples where that
predicate holds

SEFM: DL 1 CHALMERS/GU 131003 9 /46

First-Order Domains/Universes

1. A collection of typed universes of elements

Definition (Universe/Domain)

A non-empty set D of elements is a universe or domain.
Each element of D has a fixed type given by 6 : D — Ty

> Notation for the domain elements of type 7 € Tx:
D" ={deD|d)=r1}
» Each type 7 € Ty must ‘contain’ at least one domain element:

DT £ ()

SEFM: DL 1 CHALMERS/GU 131003 10 / 46

First-Order States

3. For each function symbol, a mapping from arguments to results
4. For each predicate symbol, a set of argument tuples where that
predicate holds

Definition (First-Order State)
Let D be a domain with typing function J.
For each f be declared as 7 f(71,...,7);

and each p be declared as p(1,...,7/);

Z(f) is a mapping Z(f) : D™ X --- x D" — DT
Z(p)isaset Z(p) CD™ x --- x D™

Then S = (D, 4,7) is a first-order state

SEFM: DL 1 CHALMERS/GU 131003 11 / 46

First-Order States Cont’d

Signature: int i; int j; int f(int); Object obj; <(int,int);

pint , pint [7()?
(2,2) no
(2,17) yes
(17,2) no
(17,17) no

Example
D = {17, 2, o}
The following Z is a possible interpretation:
Z(i)=17
1(j) = 17
Z(obj) =0
DInt | 7(f)
2| 2
17| 2

One of uncountably many possible first-order states!

SEFM: DL 1

CHALMERS/GU

12/ 46

Semantics of Reserved Signature Symbols

Definition
Reserved predicate symbol for equality: =

Interpretation is fixed as Z(=) = {(d,d) | d € D}

Exercise: write down all elements of the set Z(=) for example domain

SEFM: DL 1 CHALMERS/GU 131003 13 / 46

Signature Symbols vs. Domain Elements

» Domain elements different from the terms representing them

» First-order formulas and terms have no access to domain

Example

Signature: Object objl, obj2;
Domain: D = {o}

In this state, necessarily Z(obj1) = Z(obj2) = o

SEFM: DL 1 CHALMERS/GU 131003 14 / 46

Variable Assignments

2. A mapping from variables to domain elements

Definition (Variable Assignment)

A variable assignment 8 maps variables to domain elements
It respects the variable type, i.e., if x has type 7 then §(x) € DT

SEFM: DL 1 CHALMERS/GU 131003 15 / 46

Semantic Evaluation of Terms

Given a first-order state S and a variable assignment
it is possible to evaluate first-order terms under S and 8

Definition (Valuation of Terms)
vals 3 : Term — D such that vals g(t) € D™ for t € Term,:

» vals g(x) = B(x)
> Va/‘g’ﬁ(f(tl, 59009 tr)) = Z(f)(valgwg(tl), 0004 Va/‘gﬁ(tr))

SEFM: DL 1 CHALMERS/GU 131003

16 / 46

Semantic Evaluation of Terms Cont’d

Example
Signature: int i; int j; int f(int);
D = {17, 2, o} Variables: Object obj; int x;

int
I(i) = 17 D Z(f) Va.r B
7(3) = 17 2| 17 obj | o
17| 2 x| 17

SEFM: DL 1 CHALMERS/GU 131003 17 / 46

Preparing for Semantic Evaluation of Formulas

Definition (Modified Variable Assignment)
Let y be variable of type 7, 8 variable assignment, d € D7:

B() ;:{ PRl

SEFM: DL 1 CHALMERS/GU 131003

18/ 46

Semantic Evaluation of Formulas

Definition (Valuation of Formulas)
vals g(¢) for ¢ € For

> Valsjﬁ(p(tl, 0000 tr)) =T iff (Va/‘g’ﬁ(tl), YT valgﬁ(t,)) S I(p)
> Valgwg((ﬁ AN w) =T iff Va/5”3(¢) =T and Valgwg(w) =T

> ...as in propositional logic

> valsp(V7 x; ¢) =T iff valggy(¢) =T forall d € D7

> valsg(37 x; ¢) =T iff valggs(¢) = T for at least one d € D7

SEFM: DL 1 CHALMERS/GU 131003 19 / 46

Semantic Evaluation of Formulas Cont’d

Signature: int j; int f(int); Object obj; <(int,int);

Example
D = {17, 2, o}
7(j) = 17
Z(obj) =0
Dint | 7(f)
2] 2
17 2

pint , pint [7(<)?
(2,2) F
2,17)| T
(17,2) F
(17,17) F

> Va/gﬁ(f(j) <j) ?

> vals g(Jint x; f(x) =x) 7

» vals g(V0Object ol; V0Object 02; ol = 02) 7

SEFM: DL 1

CHALMERS/GU

20/ 46

Semantic Notions

Definition (Satisfiability, Truth, Validity)

vals g(¢) = T (S, satisfies ¢)
SE¢ iff for all B :valsg(¢) =T (¢ istruein S)
= ¢ iff forall S: Sk ¢ (¢ is valid)

Example
» f(j) <jistruein S
» Jint x; i = x is valid

» Jint x; =(x = x) is not satisfiable

SEFM: DL 1 CHALMERS/GU 131003

21 /46

Part 11l

Towards Dynamic Logic

SEFM: DL 1 CHALMERS/GU 131003 22 / 46

Type Hierarchy

First, we refine the type system of FOL:

Definition (Type Hierarchy)
» Ty is set of types
» Given subtype relation ‘C', with top element

» TCcany forall 7 € Ty

Example (A Minimal Type Hierarchy)
T = {any}

All signature symbols have same type any.

Example (Type Hierarchy for Java)

(see next slide)

SEFM: DL 1 CHALMERS/GU

131003

237746

Modelling Java in FOL: Fixing a Type Hierarchy

Signature based on Java’s type hierarchy (simplified)

any
A

int Object

@ser—defined c@

A

Null

Each class in APl and target program is a type, with appropriate
subtyping.

SEFM: DL 1 CHALMERS/GU 131003 24 [46

Modelling Classes and Fields in FOL

Modeling instance fields

v

Person domain of all Person objects: DPerson

int age
int id

v

v

int setAge(int newAge)

. for each class C with field 7 a:
int getId()

FSym declares function 7 a(C);

v

each o € DP®*°" has associated age value

Z(age) is mapping from Person to int

Field Access

Signature FSym: int age(Person); Person p;

Java/JML expression p.age >= 0
Typed FOL age(p)>=0
KeY postfix notation for FOL p.age >= 0

Navigation expressions in KeY look exactly as in Java/JML

SEFM: DL 1 CHALMERS/GU 131003

25 /46

Dynamic View

Only static properties expressable in typed FOL, e.g.,

> Values of fields in a certain range
» Property (invariant) of a subclass implies property of a superclass

> ...

Considers only one state at a time.

Goal: Express functional properties of a program, e.g.
If method setAge is called on an object o of type Person

and the method argument newAge is positive
then afterwards field age has same value as newAge.

131003 26 / 46

SEFM: DL 1 CHALMERS/GU

Observation

Need a logic that allows us to

» relate different program states, i.e., before and after execution,
within one formula

» program variables/fields represented by
constant/function symbols that depend on program state

Dynamic Logic meets the above requirements. J

SEFM: DL 1 CHALMERS/GU 131003 27 / 46

Dynamic Logic

(Java) Dynamic Logic

Typed FOL
> -+ programs p
» + modalities (p)¢, [p]¢ (p program, ¢ DL formula)
> + ... (later)

An Example
i>5 — [i =1+ 10;]i>15

Meaning?
If program variable i is greater than 5, then after executing i = i + 10;,
i is greater than 15.

SEFM: DL 1 CHALMERS/GU 131003 28 / 46

Type Hierarchy

Dynamic Logic = Typed FOL + ...

Type hierarchy

Ty = {int, boolean, any} with int, boolean incomparable, both are
subtypes of any

int and boolean are the only types for today.
Classes, interfaces etc. in next lecture.

SEFM: DL 1 CHALMERS/GU 131003 29 / 46

Program Variables

Dynamic Logic = Typed FOL + ...

i>5 — [i =1+ 10;]i>15

Program variable i refers to different values before and after execution of
a program.

» Program variables like i are state-dependent constant symbols.

> Value of state dependent symbols changeable by program.

Three words one meaning: flexible, state-dependent, non-rigid

SEFM: DL 1 CHALMERS/GU 131003 30/ 46

Rigid versus Flexible Symbols

Signature of dynamic logic defined as in FOL, but:
In addition there are flexible symbols
Rigid versus Flexible
» Rigid symbols, same interpretation in all program states

> First-order variables (aka logical variables)

» Built-in functions and predicates such as 0,1,...,+,*%,...,<,...

» Flexible (or non-rigid) symbols, interpretation depends on state

Capture side effects on state during program execution

» Functions modeling program variables and fields are flexible

Any term containing at least one flexible symbol is also flexible

SEFM: DL 1 CHALMERS/GU 131003

31 /46

Signature of Dynamic Logic

Definition (Dynamic Logic Signature)

Y = (PSym,, FSym,, FSym¢, a), FSym, N FSym; =0
Rigid Predicate Symbols ~ PSym, = {>, >=,...}

Rigid Function Symbols FSym, = {+, —, %, 0, 1,...}
Flexible Function Symbols FSym, = {i,j, k,...}

Standard typing: boolean TRUE; <(int,int); etc.

Flexible constant/function symbols FSym, used to model
» program variables (constants) and
» fields (unary flexible functions)

SEFM: DL 1 CHALMERS/GU 131003

32 /46

Dynamic Logic Signature - KeY input file

\sorts {
// only additional sorts (predefined: int/boolean/any)
}
\functions {
// only additional rigid functions
// (arithmetic functions like +,- etc. predefined)
}

\predicates { /* same as for functions */ }
\programVariables { // flexible functions

int i, j;
boolean b;

Empty sections can be left out. J

SEFM: DL 1 CHALMERS/GU 131003 33/ 46

Variables

Logical Variables

Typed logical variables (rigid), declared locally in quantifiers as T x;

Program Variables

Flexible constants int i; boolean p; used as program variables

SEFM: DL 1 CHALMERS/GU 131003 34 /46

Dynamic Logic Programs

Dynamic Logic = Typed FOL + programs ...
Programs here: any legal sequence of JAVA statements.

Example
Signature for FSymy: int r; int i; int n;
Signature for FSym,: int 0; int +(int,int); int -(int,int);
Signature for PSym,: <(int,int);
i=0;
r=0;
while (i<n) {
i=i+1;
r=r+i;
}

r=r+r-n;

Which value does the program compute in r? J

SEFM: DL 1 CHALMERS/GU 131003 35 /46

Relating Program States: Modalities

DL extends FOL with two additional (mix-fix) operators:

» (p)¢ (diamond)
> [pl¢ (box)

with p a program, ¢ another DL formula

Intuitive Meaning
» (p)¢: p terminates and formula ¢ holds in final state
(total correctness)

> [p]¢: If p terminates then formula ¢ holds in final state
(partial correctness)

Attention: JAVA programs are deterministic, i.e., if a JAVA program
terminates then exactly one state is reached from a given initial state.

SEFM: DL 1 CHALMERS/GU 131003 36 / 46

Dynamic Logic - Examples

Let i, j, old_i, old_j denote program variables.
Give the meaning in natural language:
l.i=oldi— (i =i+ 1;)i>oldi
Ifi = 1 + 1; is executed in a state where i and old_i have the
same value, then the program terminates and in its final state the
value of i is greater than the value of old_i .
2. i =o0ld.i — [while(true){i = old_i - 1;}]i >old.i
If the program is executed in a state where i and old_i have the
same value and if the program terminates then in its final state the
value of i is greater than the value of old_i.
3.Vx. ((p)i=x + (qQi=x)
p and g are equivalent concerning termination and the final value
of i.

SEFM: DL 1 CHALMERS/GU 131003 37/ 46

Dynamic Logic - KeY input file

— KeY

\programVariables { // Declares global program variables
int i, j;
int old_i, old_j;

\problem { // The problem to werify is stated here.
i=oldi->\{ i=i+1; ¥>1i>oldi
}

KeY —

Visibility: Program variables declared
» global can be accessed anywhere in the formula.
» inside modality like pre — (int j; p)post only visible in p and
post and only if declaration on top level.

SEFM: DL 1 CHALMERS/GU 131003 38/ 46

Dynamic Logic Formulas

Definition (Dynamic Logic Formulas (DL Formulas))

» Each FOL formula is a DL formula

» If p is a program and ¢ a DL formula then {ngj} is a DL formula
» DL formulas closed under FOL quantifiers and connectives

» Program variables are flexible constants: never bound in quantifiers
» Program variables need not be declared or initialized in program

» Programs contain no logical variables

» Modalities can be arbitrarily nested

SEFM:

DL1 CHALMERS/GU 131003 39 / 46

Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)
> Vint y; (((x = 1;)x=y) < ((x = 1*¥15)x=y))
Well-formed if FSym contains int x;
» Jint x; [x = 1;](x =1)
Not well-formed, because logical variable occurs in program
» (x = 1;)([while (true) {}]false)

Well-formed if FSym contains int x;
program formulas can be nested

SEFM: DL 1 CHALMERS/GU 131003

40 /46

Dynamic Logic Semantics: States

First-order state can be considered as program state

> Interpretation of flexible symbols can vary from state to state
(eg, program variables, field values)
> Interpretation of rigid symbols is the same in all states

(eg, built-in functions and predicates)

Program states as first-order states

From now, consider program state s as first-order state (D, d,7)

» Only interpretation Z of flexible symbols in FSym, can change
= only record values of f € FSym¢,
» States is set of all states s

SEFM: DL 1 CHALMERS/GU 131003

41746

Kripke Structure

Definition (Kripke Structure)
Kripke structure or Labelled transition system K = (States, p)

» State (=first-order model) s = (D, §,Z) € States

» Transition relation p : Program — (States — States)

p(p)(s1) = 52
iff.
program p executed in state s1 terminates and its final state is s2,
otherwise undefined.
> p is the semantics of programs € Program
» p(p)(s) can be undefined (‘—'):
p may not terminate when started in s
» Our programs are deterministic (unlike PROMELA):

p(p) is a function (at most one value)

SEFM: DL 1 CHALMERS/GU 131003 42 [46

Semantic Evaluation of Program Formulas

Definition (Validity Relation for Program Formulas)

>

sk ()¢ iff p(p)(s) is defined and p(p)(s) I

(p terminates and ¢ is true in the final state after execution)
skE=[ple iff p(p)(s) E ¢ whenever p(p)(s) is defined

(If p terminates then ¢ is true in the final state after execution)

Duality: (p)¢ iff —[p]—¢

Exercise: justify this with help of semantic definitions
Implication: if (p)¢ then [p]¢

Total correctness implies partial correctness

> converse is false
> holds only for deterministic programs

SEFM:

DL1 CHALMERS/GU 131003

437746

More Examples

valid?
meaning?

Example
Vry ((Px=y) & (@x=y))
Not valid in general

Programs p behave q equivalently on variable 7 x

Example
dry, (x=y — (p)true)
Not valid in general

Program p terminates if initial value of x is suitably chosen

SEFM: DL 1 CHALMERS/GU

131003

44] 46

Semantics of Programs

In labelled transition system K = (States, p):
p : Program — (States — States) is semantics of programs p € Program

p defined recursively on programs J

Example (Semantics of assignment)

States s interpret flexible symbols f with Zs(f)

p(x=t;)(s) = s’ where s’ identical to s except Zy(x) = vals(t)

Very tedious task to define p for JAVA. = Not in this course.
Next lecture, we go directly to calculus for program formulas!

SEFM: DL 1 CHALMERS/GU 131003 45 / 46

Literature for this Lecture

KeY Book Verification of Object-Oriented Software (see course web
page), Chapter 10: Using KeY
KeY Book Verification of Object-Oriented Software (see course web

page), Chapter 3: Dynamic Logic (Sections 3.1, 3.2, 3.4,
3.5, 3.6.1,3.6.3, 3.6.4)

Note: Not lecture Tuesday Oct. 8. J

SEFM: DL 1

CHALMERS/GU 131003 46 / 46

	Titlepage
	Where are we?
	First-Order Semantics
	Domain
	State
	Variable Assignment
	Term Valuation
	Formula Valuation
	Semantic Notions

	Towards Dynamic Logic
	Type Hierarchy
	Modelling in FOL
	Signature
	Terms
	Program Formulas
	States
	Program Formula Valuation
	Semantics
	Literature

