
Compiler construction 2011

Lecture 10

More on code optimization

IR code optimizations revisited: loops
Native code generation revisited

Instruction selection
Instruction scheduling

Example

A motivating example

A simple Javalette function (in extension arrays1)

int sum (int [] a) {
int res=0;
for (int x : a)

res = res + x;
return res;

}

What code would you generate?

Example

Possible naive LLVM code, part 1

%arr = type { i32, [0 x i32] }*
define i32 @sum(%arr %__p__a) {
entry: %a = alloca %arr

store %arr %__p__a , %arr* %a
%_res_t0 = alloca i32
store i32 0 , i32* %_res_t0
%_x_t1 = alloca i32
%t2 = load %arr* %a
%t3 = getelementptr %arr %t2 , i32 0, i32 0
%t4 = load i32* %t3
%_indexx_t5 = alloca i32
store i32 0 , i32* %_indexx_t5
br label %lab0

lab0: %t6 = load i32* %_indexx_t5
%t7 = icmp slt i32 %t6 , %t4
br i1 %t7 , label %lab1 , label %lab2

Example

Possible naive LLVM code, part 2

lab1: %t8 = getelementptr %arr %t2 , i32 0, i32 1, i32 %t6
%t9 = load i32* %t8
store i32 %t9 , i32* %_x_t1
%t10 = load i32* %_res_t0
%t11 = load i32* %_x_t1
%t12 = add i32 %t10 , %t11
store i32 %t12 , i32* %_res_t0
%t13 = add i32 %t6 , 1
store i32 %t13 , i32* %_indexx_t5
br label %lab0

lab2: %t14 = load i32* %_res_t0
ret i32 %t14

}

Example

After opt -mem2reg

define i32 @sum(%arr %__p__a) {

entry: %t3 = getelementptr %arr %__p__a, i32 0, i32 0

%t4 = load i32* %t3

br label %lab0

lab0: %_res_t0.0 = phi i32 [0, %entry], [%t12, %lab1]

%_indexx_t5.0 = phi i32 [0, %entry], [%t13, %lab1]

%t7 = icmp slt i32 %_indexx_t5.0, %t4

br i1 %t7, label %lab1, label %lab2

lab1: %t8 = getelementptr %arr %__p__a, i32 0, i32 1, i32 %_indexx_t5.0

%t9 = load i32* %t8

%t12 = add i32 %_res_t0.0, %t9

%t13 = add i32 %_indexx_t5.0, 1

br label %lab0

lab2: ret i32 %_res_t0.0

}

Example

After opt -std-compile-opts
define i32 @sum(%arr nocapture %__p__a) nounwind readonly {

entry: %t3 = getelementptr %arr %__p__a, i32 0, i32 0

%t4 = load i32* %t3

%t71 = icmp sgt i32 %t4, 0

br i1 %t71, label %bb.nph, label %lab2

bb.nph: %tmp = zext i32 %t4 to i64

br label %lab1

lab1: %indvar = phi i64 [0, %bb.nph], [%indvar.next, %lab1]

%_res_t0.02 = phi i32 [0, %bb.nph], [%t12, %lab1]

%t8 = getelementptr %arr %__p__a, i64 0, i32 1, i64 %indvar

%t9 = load i32* %t8

%t12 = add i32 %t9, %_res_t0.02

%indvar.next = add i64 %indvar, 1

%exitcond = icmp eq i64 %indvar.next, %tmp

br i1 %exitcond, label %lab2, label %lab1

lab2: %_res_t0.0.lcssa = phi i32 [0, %entry], [%t12, %lab1]

ret i32 %_res_t0.0.lcssa

}

Example

Generated x86 assembly (with llc)
_sum: push EDI

push ESI

mov ECX, DWORD PTR [ESP + 12]

mov EDX, DWORD PTR [ECX]

test EDX, EDX

jg LBB0_2

xor EAX, EAX

jmp LBB0_4

LBB0_2: xor ESI, ESI

add ECX, 4

xor EAX, EAX

LBB0_3: add EAX, DWORD PTR [ECX]

add EDX, -1

adc ESI, -1

add ECX, 4

mov EDI, EDX

or EDI, ESI

jne LBB0_3

LBB0_4: pop ESI

pop EDI

ret

Comments
No local vars; no stack
frame handling.

Uses callee save
registers EDI and ESI;
note save/restore.

ECX holds address of
current array elem;
increased by 4 in each
iteration.

EDX counts nr of
elems remaining.

Use of ESI in loop
termination test??

IR optimization

Optimizations of loops

In computationally demanding applications, most of the time is spent in
executing (inner) loops.

Thus, an optimizing compiler should focus its efforts in improving loop
code.

The first task is to identify loops in the code. In the source code, loops are
easily identified, but how to recognize them in a low level IR code?

A loop in a CFG is a subset of the nodes that

has a header node, which dominates all nodes in the loop.

has a back edge from some node in the loop back to the header.
A back edge is an edge where the head dominates the tail.

IR optimization

Moving loop-invariant code out of the loop

A simple example

for (i=0; i<n; i++)
a[i] = b[i] + 3*x;

should be replaced by

t = 3*x;
for (i=0; i<n; i++)

a[i] = b[i] + t;

We need to insert an extra
node (a pre-header) before
the header.

Not quite as simple

for (i=0; i<n; i++)
for (j=0; j<n; j++)
a[i][j] = b[i][j]+10*i+3*x;

should be replaced by

t = 3*x;
for (i=0; i<n; i++) {

u = 10*i + t;
for (j=0; j<n; j++)
a[i][j] = b[i][j] + u;

}

IR optimization

Induction variables

A basic induction variable is an (integer) variable which has a single
definition in the loop body, which increases its value with a fixed
(loop-invariant) amount.

Example: n = n + 3

A basic IV will assume values in arithmetic progression when the loop
executes.

Given a basic IV we can find a collection of derived IV’s, each of which
has a single def of the form
m = a*n+b;
where a and b are loop-invariant.
The def can be extended to allow RHS of the form a*k+b where also k is
an already established derived IV.

IR optimization

Strength reduction for IV’s

n is a basic IV (only def is to
increase by 1).
k is derived IV.

Replace multiplication involved in
def of k by addition.

while (n<100) {
k = 7*n + 3;
a[k]++;
n++;

}

Replace multiplication involved in
def of derived IV by addition.

k = 7*n + 3;
while (n<100) {

a[k]++;
n++;
k+=7;

}

Could there be some problem with this transformation?

IR optimization

Strength reduction for IV’s, continued

The loop might not execute at all,
in which case k would not be
evaluated.
Better to perform loop inversion
first.

if (n<100) {
k = 7*n + 3;
do {
a[k]++;
n++;
k+=7;

} while (n<100);
}

If n is not used after the loop, it
can be eliminated from the loop

if (n<100) {
k = 7*n + 3;
do {
a[k]++;
k+=7;

} while (k<703);
}

IR optimization

One more example

Sample loop
int sum = 0;
for(i=0; i<1000; i++)
sum += a[i];

Strength reduction/IV techniques

%sum = 0
%off = 0
%addr = %addr.a
%end = add %addr.a,4000

L1: %a.i = load %addr
%sum = add %sum,%a.i
%addr = add %addr, 4
%stop = cmp lt %addr,%end
br %stop, L1, L2

L2:

What can these techniques do for
this loop?

Naive assembler code
%sum = 0
%i = 0

L1: %off = mul %i, 4
%addr = add %addr.a,%off
%a.i = load %addr
%sum = add %sum,%a.i
%i = add %i, 1
%stop = cmp lt %i,1000
br %stop, L1, L2

L2:

IR optimization

Loop unrolling

for (i=0; i<100; i++) for (i=0; i<100; i=i+4) {
a[i] = a[i] + x[i] a[i] = a[i] + x[i]

a[i+1] = a[i+1] + x[i+1]
a[i+2] = a[i+2] + x[i+2]
a[i+3] = a[i+3] + x[i+3]

}

In which ways is this an improvement?

What to do if upper bound is n?

Is unrolling four steps the best choice?

What could be the disadvantages?

Native code generation

Native code generation, revisited

More complications

So far, we have ignored some important concerns in code generation:

The instruction set in real-world processors typically offer many
different ways to achieve the same effect. Thus, when translating an
IR program to native code we must do instruction selection, i.e.
choose between available alternatives.

Often an instruction sequence contain independent parts that can be
executed in arbitrary order. Different orders may take very different
time; thus the code generator must do instruction scheduling.

Both these task are complex and interact with register allocation.

In LLVM, these tasks are done by the native code generator llc and the
JIT compiler in lli.

Native code generation

Instruction selection

Further observations
Instruction selection for RISC machines generally simpler than for
CISC machines.

The number of translation possibilities grow (combinatorially) as one
considers larger chunks of IR code for translation.

Pattern matching

The IR code can be seen as a pattern matching problem: The native
instructions are seen as patterns; instruction selection is the problem to
cover the IR code by patterns.

Two approaches

Tree pattern matching. Think of IR code as tree.

Peephole matching. Think of IR code as sequence.

Native code generation

Tree pattern matching, an example

a[i] := x as tree IR code
(from Appel)

MOVE

CONST xFP

CONST 4TEMP i

CONST aFP

+

*MEM

++

MEMMEM

a and x local vars, i in register.
a is pointer to first array element.

Algorithm outline

Represent native instructions
as patterns, or tree fragments.

Tile the IR tree using these
patterns so that all nodes in
the tree are covered.

Output the sequence of
instructions corresponding to
the tiling.

Two variants
Greedy algorithm (top down).

Dynamic programming (bottom
up); based on cost estimates.

Native code generation

A simple instruction set

ADD ri ← rj + rk

MUL ri ← rj ∗ rk

SUB ri ← rj − rk

DIV ri ← rj/rk

ADDI ri ← rj + c
SUBI ri ← rj − c
LOAD ri ← M[rj + c]

STORE M[rj + c]← ri

MOVEM M[rj]← M[ri]

Notes
We consider only
arithmetic and memory
instructions (no jumps!).

Assume special register
r0, which is always 0.

Example done in class.

Native code generation

Identifying patterns (incomplete)
+

MUL

MOVEM

STORE

LOAD

ADDI

ADD

MEMMEM

MOVE

MEM

MOVE

CONST

MEM

MOVE

CONST

+

MEM

MOVE

CONST

+

MEM

MOVE

MEMMEM

CONST

CONST

MEM

+

CONST

+

MEM

CONST

CONSTCONST

++

*

Native code generation

Peephole matching

Recall: peephole optimization

Code improvement by local simplification of the code within a small sliding
window of instructions.

Can be used for instruction selection
Often one further intermediate language between IR and native code;
peephole simplification done for that language.

Retargetable compilers

Instruction selection part of compiler generated from description of target
instruction set (code generator generators).

Native code generation

Instruction scheduling, background

Simple-minded, old-fashioned view of processor

Fetch an instruction, decode it, fetch operands, perform operation, store
result. Then fetch next operation, . . .

Modern processors

Several instructions under execution concurrently.

Memory system cause delays, with operations waiting for data.

Similar problems for results from arithmetic operations, that may take
several cycles.

Consequence
Important to understand data dependencies and order instructions
advantageously.

Native code generation

Instruction selection, example

Example (from Cooper)
w = w * 2 * x * y * z
Memory op takes 3 cycles, mult 2 cycles, add one cycle.
One instruction can be issued each cycle, if data available.

Schedule 1
r1 <- M [fp + @w]
r1 <- r1 + r1
r2 <- M [fp + @x]
r1 <- r1 * r2
r2 <- M [fp + @y]
r1 <- r1 * r2
r2 <- M [fp + @z]
r1 <- r1 * r2
M [fp + @w] <- r1

Schedule 2
r1 <- M [fp + @w]
r2 <- M [fp + @x]
r3 <- M [fp + @y]
r1 <- r1 + r1
r1 <- r1 * r2
r2 <- M [fp + @z]
r1 <- r1 * r3
r1 <- r1 * r2
M [fp + @w] <- r1

Native code generation

Instruction scheduling

Comments
Problem is NP-complete for realistic architectures.

Common technique is list scheduling: greedy algorithm for
scheduling a basic block.
Builds graph describing data dependencies between instructions and
schedules instructions from ready list of instructions with available
operands.

Interaction
Despite interaction between selection, scheduling and register allocation,
these are typically handled independently (and in this order).

Native code generation

Summing up

On optimization

We have only looked at a few of many, many techniques.

Modern optimization techniques use sophisticated algorithms and clever
data structures.

Frameworks such as LLVM make it possible to get the benefits of
state-of-the-art techniques in your own compiler project.

