
Compiler construction 2011

Lecture 9

Code optimization

General comments

An example in LLVM

SSA conversion

Constant propagation

Value numbering

More algorithms

General

Desired properties

Improve the code

Make execution faster.

Make execution consume less power.

Make program smaller.

These goals can be contradictory.

Don’t change semantics

Don’t change values returned.

Don’t change side effects.

Don’t change runtime errors(!).

Don’t change termination properties.

Often subtle points.

General

Full optimization is impossible

Full employment theorem for compiler writers

We cannot build a compiler that optimizes all programs fully for program
size.

Proof: The smallest non-terminating program without visible effects is
while (true) {}
A fully optimizing compiler would translate any non-terminating program to
this – and thus solve the halting problem.

Similar results for other optimization criteria.

General

Optimization at different stages

Where/when should we optimize?

We can optimize at different stages:

Source code.

Abstract syntax trees.

Three-address code.

Native code.

Except for source code, compilers do optimization at all these stages.

General

Code optimization

Improvement opportunities

Naive syntax-directed translation often gives code that can be
“obviously” improved.

Compiler-generated code such as e.g. address calculations for array
elements even more so.

One improvement often opens for other improvements.

Consequences

If you know that subsequent optimizations will be done, do not try to
be clever in the first code generation step.

Never rule out an optimization as useless by thinking that “the
programmer would never write that” – the compiler itself might do so!

General

Inlining
Replace function call by body

Parameters need to be substituted by arguments.
Renaming of vars may be needed.

+ Function call overhead disappears.

+ Activation record disappears.

+ Memory traffic reduced.

+ New optimization opportunities.

- Code becomes bigger.

This is often done at AST levels.

For imperative code (w. statements and return),
rewrite to return a var and place the var at the call site.

In the rest of the lecture, we focus on three address code/native code
optimization.

An example

An example of optimization in LLVM

int f () {
int i, j, k;
i = 8;
j = 1;
k = 1;
while (i != j) {

if (i==8)
k = 0;

else
i++;

i = i+k;
j++;

}
return i;

}

Comments
Human reader sees, with some
effort, that the C/Javalette function
f returns 8.

We follow how LLVM:s
optimizations will discover this
fact.

An example

Step 1: Naive translation to LLVM
define i32 @f() {

entry:

%i = alloca i32

%j = alloca i32

%k = alloca i32

store i32 8, i32* %i

store i32 1, i32* %j

store i32 1, i32* %k

br label %while.cond

while.cond:

%tmp = load i32* %i

%tmp1 = load i32* %j

%cmp = icmp ne i32 %tmp, %tmp1

br i1 %cmp, label %while.body,

label %while.end

while.body:

%tmp2 = load i32* %i

%cmp3 = icmp eq i32 %tmp2, 8

br i1 %cmp3, label %if.then,

label %if.else

if.then:

store i32 0, i32* %k

br label %if.end

if.else:

%tmp4 = load i32* %i

%inc = add i32 %tmp4, 1

store i32 %inc, i32* %i

br label %if.end

if.end:

%tmp5 = load i32* %i

%tmp6 = load i32* %k

%add = add i32 %tmp5, %tmp6

store i32 %add, i32* %i

%tmp7 = load i32* %j

%inc8 = add i32 %tmp7, 1

store i32 %inc8, i32* %j

br label %while.cond

while.end:

%tmp9 = load i32* %i

ret i32 %tmp9

}

An example

Step 2: Translating to SSA form (opt -mem2reg)

define i32 @f() {

entry:

br label %while.cond

while.cond:

%k.1 = phi i32 [1, %entry],

[%k.0, %if.end]

%j.0 = phi i32 [1, %entry],

[%inc8, %if.end]

%i.1 = phi i32 [8, %entry],

[%add, %if.end]

%cmp = icmp ne i32 %i.1, %j.0

br i1 %cmp, label %while.body,

label %while.end

while.body:

%cmp3 = icmp eq i32 %i.1, 8

br i1 %cmp3, label %if.then,

label %if.else

if.then:

br label %if.end

if.else:

%inc = add i32 %i.1, 1

br label %if.end

if.end:

%k.0 = phi i32 [0, %if.then],

[%k.1, %if.else]

%i.0 = phi i32 [%i.1, %if.then],

[%inc, %if.else]

%add = add i32 %i.0, %k.0

%inc8 = add i32 %j.0, 1

br label %while.cond

while.end:

ret i32 %i.1

}

An example

Step 3: Sparse Conditional Constant Propagation
(opt -sccp)

define i32 @f() {

entry:

br label %while.cond

while.cond:

%j.0 = phi i32 [1, %entry],

[%inc8, %if.end]

%k.1 = phi i32 [1, %entry],

[0, %if.end]

%cmp = icmp ne i32 8, %j.0

br i1 %cmp, label %while.body,

label %while.end

while.body:

br i1 true, label %if.then,

label %if.else

if.then:

br label %if.end

if.else:

br label %if.end

if.end:

%inc8 = add i32 %j.0, 1

br label %while.cond

while.end:

ret i32 8

}

An example

Step 4: CFG Simplification (opt -simplifycfg)
define i32 @f() {

entry:

br label %while.cond

while.cond:

%j.0 = phi i32 [1, %entry],

[%inc8, %if.end]

%k.1 = phi i32 [1, %entry],

[0, %if.end]

%cmp = icmp ne i32 8, %j.0

br i1 %cmp, label %if.end,

label %while.end

if.end:

%inc8 = add i32 %j.0, 1

br label %while.cond

while.end:

ret i32 8

}

Comments
If the function terminates, the
return value is 8.

opt has not yet detected that the
loop is certain to terminate.

An example

Step 5: Dead Loop Deletion opt -loop-deletion)

define i32 @f() {
entry:
br label %while.end

while.end:
ret i32 8

}

When discussing this sequence of
improvements we will make use of
a further capability of opt:
To generate graph visualizations
of the CFG. To the right is the
graph after Step 1.

SSA form

Static Single Assignment form

Def-use chains
Dataflow analysis often needs to connect a definition with its uses and,
conversely, find all definitions reaching a use.
This can be simplified if each variable has only one definition.

A new form of IR
Three-address code can be converted to SSA form by renaming variables
so that each variable has just one definition.

A non-example
s := 0
x := 1
s := s + x
x := x + 1

Converted to SSA
s1 := 0
x1 := 1
s2 := s1 + x1
x2 := x1 + 1

SSA form

Conversion to SSA

A harder example
s := 0
x := 1

L1: if x > n goto L2
s := s + x
x := x + 1
goto L1

L2:

Note the def/use difficulty:
In s + x, which def of s does the
use refer to?

Conversion started
s1 := 0
x1 := 1

L1: if x > n goto L2
s2 := s? + x?
x2 := x? + 1
goto L1

L2:

What should replace the three
’?’ ?

SSA form

An artificial device: φ-functions

Naive version
First pass: Add “definitions” of the form
x := φ(x , . . . , x) in the beginning of each block with several predecessors
and for each variable.
Second pass: Do renumbering.

After 1st pass
s := 0
x := 1

L1: s := φ(s,s)
x := φ(x,x)
if x > n goto L2
s := s + x
x := x + 1
goto L1

L2:

After 2nd pass
s1 := 0
x1 := 1

L1: s3 := φ(s1,s2)
x3 := φ(x1,x2)
if x3 > n goto L2
s2 := s3 + x3
x2 := x3 + 1
goto L1

L2:

SSA form

What are φ-functions?

A device during optimization

Think of φ-functions as function calls during optimization.
Later, some of them will be eliminated (e.g. by dead code elimination).
Others will after optimization be transformed to real code.
Idea: x3 := φ(x1,x2) will be transformed to an instruction
x3 := x1 at the end of left predecessor and x3 := x2 at end of right
predecessor.

Advantages

Many analyses become much simpler when code is in SSA form.

Main reason: we see immediately for each use of a variable where it was
defined.

SSA form

Step 2 of example revisited: To SSA form

SSA form

Computing SSA form; algorithm

We already did this

Yes, but the conversion inserts unnecessary φ-functions and is too
inefficient – the gains in analysis with SSA form may be lost in conversion.

Better algorithms

There are algorithms for finding the right number of φ-functions needed.
These are based on the notion of dominance; if you intend to use SSA
form, you need to learn about that – or use LLVM, which has tools to do it
for you.

Constant propagation

Simple constant propagation

A dataflow analysis based on SSA form

Uses values from a lattice L with elements
>: Certainly not a constant.
c1, c2, c3, . . .: The value is constant, as indicated.
⊥: Yet unknown, may be constant.
Each variable v is assigned an initial value val(v) ∈ L:
Variables with definitions v := c get val(v) = c,
input variables/parameters v get val(v) = >,
and the rest get val(v) = ⊥.

The lattice L

c1 c2 c3 c4 . . .

The lattice order
⊥ ≤ c ≤ > for all c.
ci and cj not related.

Constant propagation

Propagation phase, 1

Iteration

Initially, place all names n with val(n) 6= > on a worklist.
Iterate by picking a name from the worklist, examining its uses and
computing val of the RHS’s, using rules as

0 · x = 0 (for any x)

x · ⊥ = ⊥
x · > = > (x 6= 0)

plus ordinary multiplication for constant operands.

For φ-functions, we take the join ∨ of the arguments, where
⊥ ∨ x = x for all x , > ∨ x = > for all x , and

ci ∨ cj =

{ >, if ci 6= cj

ci , otherwise.

Constant propagation

Propagation phase, 2

Iteration, continued
Update val for the defined variables, putting variables that get a new value
back on the worklist.
Terminate when worklist is empty.

Termination
Values of variables on the worklist can only increase (in lattice order)
during iteration. Each value can only have its value increased twice.

A disappointment

In our running example, this algorithm will terminate with all variables
having value >.

We need to take reachability into account.

Constant propagation

Sparse Conditional Constant Propagation

Sketch of algorithm

Uses also a worklist of
reachable blocks.

Initially, only the entry block is
reachable.

In evaluation of φ functions,
only ⊥ flows from
unreachable blocks.

New blocks added to worklist
when elaborating terminating
instructions.

Result for running example as
shown to the right
(to be done in class).

Constant propagation

Correctness of SCCP

A combination of two dataflow analyses

Sparse conditional constant propagation can be seen as the combination
of simple constant propagation and reachability analysis/dead code
analysis.

Both of these can be expressed as dataflow problems and a framework
can be devised where the correctness of such combination can be proved.

Constant propagation

Final steps

Control flow graph simplification

Fairly simple pass; SCCP does not change graph structure of CFG even
when “obvious” simplifications can be done.

Dead Loop Elimination

Identifies an induction variable (namely j), which

increases with 1 for each loop iteration,

terminates the loop when reaching a known value,

is initialised to a smaller value.

When such a variable is found, loop termination is guaranteed and the
loop can be removed.

Value numbering

Common subexpression elimination

Problem
We want to avoid re-computing an expression; instead we want to use the
previously computed value.

Code example
a := b + c
b := a - d
c := b + c
d := a - d

Notes
The second occurrence of a - d
should not be computed;
instead we should use d := b.

Both occurrences of b + c must
be computed, since b is redefined
in-between.

Value numbering

Value numbering, 1

A classic technique

Works on three-address code within a basic block.

Each expression is assigned a value number (VN), so that expressions
that have the same VN must have the same value. (Note: The VN is not
the value of the expression.)

Data structures
A dictionary D1 that associates

a variable or a literal with a VN.
a triple (VN,operator,VN) with a VN.

Typically, D1 is implemented as a hash table.

A dictionary D2, mapping VNs to sets of variables (implemented as an
array).

Value numbering

Value numbering, 2
Algorithm

For each instruction x := y # z:

Look up VN ny for y in D1.
If not present, generate new unique VN ny and
put D1(y) = ny , D2(ny) = y.

Do the same for z.

Look up x in D1; if n found, remove x from D2(n).

Look up (ny ,#,nz) in D1.
If VN m found,

insert D1(x) = m (m has been computed before).
if D2(m) is non-empty, replace instruction by
x := v for some v in that set.

Otherwise, generate new unique VN m and
put D1(nx , #, ny) = m, D1(x) = m.

Add x to D2(m).

Value numbering

Value numbering, 3

Extended basic blocks
A subtree of the CFG where each
node has only one predecessor.
Each path through the EBB is
handled by value numbering.

To avoid starting from scratch,
use stacks of dictionaries.
(Needs SSA form.)

B1

B4 B5

B2 B3

B6

Algebraic identities

Value numbering can be
combined with code improvement
using identities such as

x · 0 = 0

0 · x = 0

x · 1 = x

1 · x = x

. . . = . . .

Avoid long sequences of tests!

More algorithms

Available expressions: a dataflow analysis

Purpose

An auxiliary concept in an intraprocedural analysis for finding common
subexpressions.

Definition
An expression x # y is available at a point P in a CFG if the expression is
evaluated on every path from the entry node to P and neither x nor y is
redefined after the last such evaluation.

Locally defined sets

We consider sets of expressions.
gen(n) is the set of expressions x # y that are evaluated in n without
subsequent definition of x or y.
kill(n) is the set of expressions x # y where n defines x or y without
subsequent evaluation of x # y.

More algorithms

Available expressions: the flow equations

Sets to compute by flow analysis

avail-in(n) is the set of available exprs at the beginning of n.
avail-out(n) is the set of available exprs at the end of n.

avail-out(n) = gen(n) ∪ (avail-in(n)− kill(n))

avail-in(n0) = {} for the entry node n0

avail-in(n) = ∩p∈preds(n)avail-out(p) (other n)

Motivation
An expr is available on exit from n if it is either generated in n or
it was already available on entry and not killed in n.

An expr is available on entry if it is available from all preds.

More algorithms

Available expressions: Comments

Solution method

Iteration from the initial sets avail-in(n) = avail-out = U, where U is
the set of all expressions occurring in the CFG (except for
avail-in(n0) = {}).
Converges to the greatest fixpoint. All sets shrink monotonically
during iterations.

Fixpoint solution has the property that any expr declared available is
really available.
This does not hold for previous iterations.

Sets can be represented as bit-vectors (U = all ones).

This is a forward problem; information flows from predecessors to
successors.
Thus one should try to compute predecessors first.

More algorithms

Common subexpression elimination

Available expressions can be eliminated

If dataflow analysis finds that y # z in an instruction x := y # z is
available we could eliminate it.
This a second, separate step (code transformation): replace instruction
by x := w. But how to find w?

Basic idea
Generate a new name w. Follow the control backwards along all paths until
a definition v := y # z is found (such a def must exist in all paths!).
Replace the def by
w := y # z
v := w

A more powerful idea

Find these definitions by dataflow analysis: reaching definitions.

More algorithms

Tail recursion

A different optimization

A recursive function is tail-recursive if it returns a value computed by
(just) a recursive call. This can (and should) be optimized to a loop.

Recursive form
int sumTo(int lim) {
return ack(1,lim,0);

}
int ack(int n,int k,int s){
if n>k then

return s;
else

return ack(n+1,k,s+n);
}

ack rewritten
int ack(int n,int k,int s){
L:

if n>k then
return s;

else
n = n+1;
k = k
s = s+n;
goto L;

}

More algorithms

Optimizations in gcc

On ASTs
Inlining, constant folding, arithm. simplification.

On RTL code (≈ three-address code)

Tail (and sibling) call optimization.

Jump optimization.

SSA pass: constant propagation, dead code elimination.

Common subexpression elimination, more constant propagation.

Loop optimization.

. . .

Difficult decisions: optimization order, repetitions.

More algorithms

What next?

Last lecture on Thursday: More on optimization.

Submission deadline next Thursday.

Oral exams in the exam week. Book a time slot!

