
Compiler construction 2011

Lecture 8

Control-flow graph and basic blocks

Data-flow analysis

Liveness analysis

Register allocation.

Three-address code

Pseudo-code
To discuss code optimization we employ a (vaguely defined) pseudo-IR
called three-address code which uses virtual registers but does not
require SSA form.

Instructions
x := y # z where x, y and z
are register names or literals
and # is an arithmetic operator.

goto L where L is a label.

if x # y then goto L
where # is a relational
operator.

x := y

return x

Example code
s := 0
i := 1

L1: if i > n goto L2
t := i * i
s := s + t
i := i + 1
goto L1

L2: return s

Control-flow graph

Control-flow graph

Code as graph

Each instruction is a node.

Edge from each node to its
possible successors.

Example code
s := 0
i := 1

L1: if i > n goto L2
t := i * i
s := s + t
i := i + 1
goto L1

L2: return s

Example as graph

L1: if i > n goto L2

L2: return s

 goto L1

i := i + 1

s := s + t

t := i * i

s := 0

i := 1

Control-flow graph

Static vs dynamic analysis

Dynamic analysis

If in some execution of the program . . .

Dynamic properties are in general undecidable.
Compare with the halting problem:
“P halts” vs “P reaches instruction I”.

Static analysis

If there is a path in the control-flow graph . . .

Basis for many forms of compiler analysis –
but in general we don’t know if that path will ever be taken during
execution.
Results are approximations – we must make sure to err on the correct side.



Control-flow graph

Dataflow analysis

A static analysis

General approach to code analysis.
Useful for many forms of intraprocedural optimization:

Common subexpression elimination,
Constant propagation,
Dead code elimination,
. . .

Within a basic block, simpler methods often suffice.

Liveness analysis

Example: Liveness of variables

Definitions and uses
An instruction x := y # z defines x and uses y and z.

Liveness
A variable v is live at a point P in the control-flow graph (CFG) if there is a
path from P to a use of v along which v is not defined.

Uses of liveness information
Register allocation: a non-live variable need not be kept in register.

Useless-store elimination: a non-live variable need not be stored to
memory.

Detecting uninitialized variables: a local variable that is live on
function entry.

Optimizing SSA form; non-live vars don’t need Φ-functions.

Liveness analysis

Liveness analysis: Concepts

Def sets
The def set def(n) of a node n is the set of variables that are defined in n
(a set with 0 or 1 elements).

Use sets
The use set use(n) of a node n is the set of variables that are used in n.

Live-out sets
The live-out set live-out(n) of a node n is the set of variables that are live
at an out-edge of n.

Live-in sets
The live-in set live-in(n) of a node n is the set of variables that are live at
an in-edge of n.

Liveness analysis

An example

1st example revisited

L1: if i > n goto L2

L2: return s

 goto L1

i := i + 1

s := s + t

t := i * i

s := 0

i := 1

Live-in sets

Instr # Set
1 { n }
2 { n, s}
3 {i, n, s}
4 {i, n, s }
5 {i, n, s, t}
6 {i, n, s}
7 {i, n, s}
8 { s }

How can these be computed?



Liveness analysis

The dataflow equations

For every node n, we have

live-in(n) = use(n) ∪ (live-out(n)− def(n))

live-out(n) = ∪s∈succs(n)live-in(s).

where succs(n) denote the set of successor nodes to n.

Computation

Let live-in, def and use be arrays indexed by nodes.
foreach node n do live-in[n] = ∅
repeat

foreach node n do
out = ∪s∈succs(n)live-in[s]
live-in[n] = use[n] ∪ (out - def [n])

until no changes in iteration.

Liveness analysis

Solving the equations

Example revisited

Instr def use succs live-in
1 {s} {} {2} {}
2 {i} {} {3} {}
3 {} {i,n} {4,8} {}
4 {t} {i} {5} {}
5 {s} {s,t} {6} {}
6 {i} {i} {7} {}
7 {} {} {3} {}
8 {} {s} {} {}

Initialization done above.
live-in updated from top to bottom in each iteration (to be completed in
class).
But is there a better order?

Liveness analysis

Liveness: A backwards problem

Fixpoint iteration

We iterate until no live sets change during an iteration; we have
reached a fixpoint of the equations.

The number of iterations (and thus the amount of work) depends on
the order in which we use the equations within an iteration.

Since liveness info propagates from successors to predecessors in
the CFG, we should start with the last instruction and work
backwards.
(Since the program contains a loop, this is just a heuristic).

Liveness analysis

Another node order

Working from bottom to top, we get

Instr def use succs live-in0 live-in1 live-in2

1 {s} {} {2} {} {n} {n}
2 {i} {} {3} {} {n,s} {n,s}
3 {} {i,n} {4,8} {} {i,n,s} {i,n,s}
4 {t} {i} {5} {} {i,s} {i,n,s}
5 {s} {s,t} {6} {} {i,s,t} {i,n,s,t}
6 {i} {i} {7} {} {i} {i,n,s}
7 {} {} {3} {} {} {i,n,s}
8 {} {s} {} {} {s} {s}



Liveness analysis

Implementing data flow analysis

Data structures
Any standard data structure for graphs will work; one should arrange
for succs to be fast.

For sets of variables one may use bit arrays with one bit per variable.
Then union is bit-wise or, intersection bit-wise and and complement
bit-wise negation.

Termination
The live sets grow monotonically in each iteration, so the number of
iterations is bounded by N2, where N is the number of variables.
In practice, for realistic code, the number of iterations is much smaller.

Node ordering

A heuristically good order can be found by doing a depth-first search of the
CFG and reversing the node ordering.

Liveness analysis

Basic blocks

Motivations
Control-graph with instructions as nodes become big.

Between jumps, graph structure is trivial (straight-line code).

Definition
A basic block starts at a labelled instruction or after a conditional
jump. (First basic block starts at beginning of function).

A basic block ends at a (conditional) jump.

We ignore code where an unlabeled statement follows an unconditional
jump (such code is unreachable).

Liveness analysis

Example

Testing if n is prime

p := 0

B6

B5

B4

B3

B2

B1
i := 2
p := 1

if n < 2 goto B5

s := i * i
if s > n goto B6

r := n % i
if r == 0 goto B5

i := i + 1
goto B2

Notes
Edges correspond to
branches.

Jump destinations are now
blocks, not instructions.

We may insert empty blocks.

Analysis of control-flow
graphs often done on graph
with basic blocks as nodes.

Liveness analysis

Liveness analysis for CFG graphs of basic blocks

We can easily modify data flow analysis to work on control flow graphs of
basic blocks.

With knowledge of live-in and live-out for basic blocks it is easy to find the
set of live variables at each instruction.

How do the basic concepts need to be modified to apply to basic blocks?



Liveness analysis

Modified definitions for CFG of basic blocks

Def sets
The def set def(n) of a node n in a CFG is the set of variables that are
defined in an instruction in n.

Use sets
The use set use(n) of a node n is the set of variables that are used in an
instruction in n before a possible redefinition of the variable.

Live-out sets
The live-out set live-out(n) of a node n is the set of variables that are live
at an out-edge of n.

Live-in sets
The live-in set live-in(n) of a node n is the set of variables that are live at
an in-edge of n.

Liveness analysis

Another dataflow problem: dominators

Definition
In a CFG, node n dominates node m if every path from the start node to
m passes through n.
Particular case: we consider each node to dominate itself.

Concept has many uses in compilation.

Prime test CFG
B1

B6

B5B4

B3

B2

Questions
Write dataflow equations for
dominance.

How would you solve the
equations?

Register allocation

Register allocation

An important code transformation

When translating an IR with (infinitely many) virtual registers to code for a
real machine, we must

assign virtual registers to physical registers.

write register values to memory (spill), at program points when the
number of live virtual registers exceeds the number of available
registers.

Register allocation is very important; good allocation can make a program
run an order of magnitude faster (or more) as compared to poor allocation.

Register allocation

The interference graph
Live sets and register usage

If two variables are live at the same point in the CFG, they must be in
different registers.

Conversely, two variables that are never live at the same time can share a
register.

Interfering variables

We say that variables x and y interfere if they are both in live-in(n) or
live-out(n) for some node n.

The interference graph has variables as nodes and edges between
interfering variables.

Our example

Since live-out(4) ={i,n,s,t}, all four variables interfere pair-wise and we
need four registers for this code sequence.



Register allocation

An example

How many registers are needed?

a

fe

d

c

b
Answer: Two!
Use one register for a, c and d,
the other for b, e and f.

Reformulation
To assign K registers to variables
given an interference graph can
be seen as colouring the nodes of
the graph with K colours, with
adjacent nodes getting different
colours.

Register allocation

Register allocation by graph colouring

The algorithm (K colours available)
1 Find a node n with less than K edges. Remove n and its edges from

the graph and put on a stack.
2 Repeat with remaining graph until either

only K nodes remain or
all remaining nodes have at least K adjacent edges.

In the first case, give each remaining node a distinct colour and pop
nodes from the stack, inserting them back into the graph with their
edges and colouring them.

In the second case, we may need to spill a variable to memory.
Optimistic algorithm: Choose one variable and push on the stack.
Later, when popping the stack, we may be lucky and find that the
neighbours use at most K-1 colours.

Register allocation

Complexity

A hard problem

The problem to decide whether a graph can be K-coloured is NP-complete.

The simplify/select algorithm on the previous slide works well in practice;
its complexity is O(n2), where n is the number of virtual registers used.

When optimistic algorithm fails, memory store and fetch instructions must
be added and algorithm restarted.

Heuristics to choose variable to spill:

Little use+def within loop;

Interference with many variables.

Register allocation

Move instructions

An example
t := s
x := s + 1
y := t + 2
...

s and t interfere,
but if t is not later redefined, they
may share a register.

Coalescing

Move instructions t := s can
sometimes be removed and the
nodes s and t merged in the
interference graph.

Conditions:

No interference between s
and t for other reasons.

The graph must remain
colourable. Safe strategies
exist.



Register allocation

Linear scan register allocation

Compilation time vs code quality

Register allocation based on graph colouring produces good code, but
requires significant compilation time.
For e.g. JIT compiling, allocation time is a problem.
The Java HotSpot compiler uses a linear scan register allocator.

Much faster and in many cases only 10% slower code.

Register allocation

The linear scan algorithm

Preliminaries
Number all the instructions 1, 2, . . . in some way
(for now, think of numbering them from top to bottom).
(Other instruction orderings improves the algorithm; also here depth
first ordering is recommended.)

Do a simplified liveness analysis, assigning a live range to each
variable.
A live range is an interval of integers starting with the number of the
instruction where the variable is first defined and ending with the
number where it is last used.

Sort live ranges in order of increasing start points into list L.

Register allocation

The linear scan algorithm

The algorithm

Maintain a list, called active, of live ranges that have been assigned
registers. active is sorted by increasing end points and initially empty.
Traverse L and for each interval I:

Traverse active and remove intervals with end points before start point
of I.
If length of active is smaller than number of registers, add I to active;
otherwise spill either I or the last element of active.

In the latter case, the choice of interval to spill is usually to keep
interval with longest remaining range in active.

Register allocation

More algorithms

Still a hot topic

Register allocation is still an active research area, an indication of its
importance in practice.

Puzzle solving
Recent work by Pereira and
Palsberg views register
allocation as a puzzle solving
problem.

Board Kinds of Pieces

T
yp

e-
0

T
yp

e-
1

T
yp

e-
2

•••

0 K-1

•••

••• Y Y Y

X

Z

X

Z

X

Z

Y

X

Z

Y

X

Z

Y

X

Z

Figure 1. Three types of puzzles.

2. Puzzles
A puzzle consists of a board and a set of pieces. Pieces cannot
overlap on the board, and a subset of the pieces are already placed
on the board. The challenge is to fit the remaining pieces on the
board.

We will now explain how to map a register file to a puzzle board
and how to map program variables to puzzle pieces. Every resulting
puzzle will be of one of the three types illustrated in Figure 1 or a
hybrid.

2.1 From Register File to Puzzle Board
The bank of registers in the target architecture determines the shape
of the puzzle board. Every puzzle board has a number of separate
areas, where each area is divided into two rows of squares. We
will explain in Section 2.2 why an area has exactly two rows. The
register file may support aliasing, which determines the number of
columns in each area, the valid shapes of the pieces, and the rules
for placing the pieces on the board. We distinguish three types of
puzzles: type-0, type-1 and type-2, where each area of a type-n
puzzle has 2n columns.

Type-0 puzzles. The bank of registers used in PowerPC and the
bank of integer registers used in ARM are simple cases because
they do not support register aliasing. Figure 2(a) shows the puz-
zle board for PowerPC. Every area has just one column that corre-
sponds to one of the 32 registers. Both PowerPC and ARM give a
type-0 puzzle for which the pieces are of the three kinds shown in
Figure 1. We can place an X-piece on any square in the upper row,
we can place a Z-piece on any square in the lower row, and we can
place a Y-piece on any column. It is straightforward to see that we
can solve a type-0 puzzle in linear time in the number of areas by
first placing all the Y-pieces on the board and then placing all the
X-pieces and Z-pieces on the board.

Type-1 puzzles. Figure 2(b) shows the puzzle board for the
floating point registers used in the ARM architecture. This register
bank has 32 single precision registers that can be combined into 16
pairs of double precision registers. Thus, every area of this puzzle
board has two columns, which correspond to the two registers that
can be paired. For example, the 32-bit registers S0 and S1 are in
the same area because they can be combined into the 64-bit register
D0. Similarly, because S1 and S2 cannot be combined into a double
register, they denote columns in different areas. ARM gives a type-
1 puzzle for which the pieces are of the six kinds shown in Figure 1.
We define the size of a piece as the number of squares that it
occupies on the board. We can place a size-1 X-piece on any square
in the upper row, a size-2 X-piece on the two upper squares of any
area, a size-1 Z-piece on any square in the lower row, a size-2 Z-
piece on the two lower squares of any area, a size-2 Y-piece on any

Figure 2. Examples of register banks mapped into puzzle boards.

column, and a size-4 Y-piece on any area. Section 3 explains how
to solve a type-1 puzzle in linear time in the number of areas.

Type-2 puzzles. SPARC V8 [27, pp 33] supports two levels
of register aliasing: first, two 32-bit floating-point registers can
be combined to hold a single 64-bit value; then, two of these 64-
bit registers can be combined yet again to hold a 128-bit value.
Figure 2(c) shows the puzzle board for the floating point registers
of SPARC V8. Every area has four columns corresponding to four
registers that can be combined. This architecture gives a type-2
puzzle for which the pieces are of the nine kinds shown in Figure 1.
The rules for placing the pieces on the board are a straightforward
extension of the rules for type-1 puzzles. Importantly, we can place
a size-2 X-piece on either the first two squares in the upper row
of an area, or on the last two squares in the upper row of an area.
A similar rule applies to size-2 Z-pieces. Solving type-2 puzzles
remains an open problem.

Hybrid puzzles. The x86 gives a hybrid of type-0 and type-
1 puzzles. Figure 3 shows the integer-register file of the x86, and
Figure 2(d) shows the corresponding puzzle board. The registers
AX, BX, CX, DX give a type-1 puzzle, while the registers EBP, ESI,
EDI, ESP give a type-0 puzzle. We treat the EAX, EBX, ECX, EDX
registers as special cases of the AX, BX, CX, DX registers; values in
EAX, EBX, ECX, EDX take up to 32 bits rather than 16 bits. Notice that
x86 does not give a type-2 puzzle because even though we can fit
four 8-bit values into a 32-bit register, x86 does not provide register
names for the upper 16-bit portion of that register. For a hybrid of
type-1 and type-0 puzzles, we first solve the type-0 puzzles and
then the type-1 puzzles.

The floating point registers of SPARC V9 [45, pp 36-40] give
a hybrid of a type-2 and a type-1 puzzle because half the registers
can be combined into quad precision registers.

Chordal graphs

Hack, Grund and Goos exploit the fact that the interference graph is
chordal to get an O(n2) optimal algorithm.
Care is needed when destructing SSA form.



Register allocation

Next week

Last two lectures:

Monday: Optimizations in LLVM, SSA form.

Thursday: More code optimization (using data flow analysis).


