
Compiler construction 2011

Lecture 4

x86 architecture

Calling conventions

Some x86 instructions

x86: assembly for a real machine

First comparison with JVM

Not a stack machine; no correspondence to operand stacks.

Arithmetic etc are instead done with values in registers.

Much more limited support for function calls; you need to handle
return addresses, jumps, allocation of stack frames etc yourself.

Your code is assembled and run; no further optimization.

CISC architecture with few registers. Straightforward code will run
slowly.

x86 architecture

x86 assembler, a first example

Javalette (or C)
> more ex1.c
int f (int x, int y) {
int z = x + y;
return z;

}
>

This might be compiled to the
assembler code to the right.

NASM assembly code
segment .text

global f
f:

push dword ebp
mov ebp, esp
sub esp, 4
mov eax, [ebp+12]
add eax, [ebp+8]
mov [ebp-4], eax
mov eax, [ebp-4]
leave
ret

x86 architecture

Example explained

NASM code commented
segment .text ; code area

global f ; f has external scope
f: ; entry point for f

push dword ebp ; save caller’s fp
mov ebp, esp ; set our fp
sub esp, 4 ; allocate space for z
mov eax, [ebp+12] ; move y to eax
add eax, [ebp+8] ; add x to eax
mov [ebp-4], eax ; move eax to z
mov eax, [ebp-4] ; return value to eax
leave ; restore caller’s fp/sp
ret ; pop return addr, jump



x86 architecture

Intel x86 architectures

Long history

8086, 1978. First IBM PCs. 16 bit registers, real mode.

80286, 1982. AT, Windows. Protected mode.

80386, 1985. 32 bit registers, virtual memory.

80486, Pentium, Pentium II, III, IV. 1989 – 2003.
Math coprocessor, pipelining, caches, SSE . . .

Intel Core 2. 2006. Multi-core.

Core i3/i5/i7. 2009/10.

Backwards compatibility important; leading to a large set of opcodes.

Not only Intel offer x86 processors: also AMD is in the market.

x86 architecture

Which version should you target?

x86
When speaking of the x86 architecture, one generally means
register/instruction set for the 80386 (with floating-point ops).

You can compile code which would run on a 386
– or you may use SSE2 operations for a more recent version.

x86 architecture

x86 registers
General purpose registers (32-bits)

EAX, EBX, ECX, EDX, EBP, ESP, ESI, EDI.

Conventional use:
EBP and ESP for frame pointer and stack pointer.

Segment registers

Legacy from old segmented addressing architecture.
Can be ignored in Javalette compilers.

Floating-point registers

Eight 80–bit registers ST0 – ST7 organised as a stack.

Flag registers

Status registers with bits for results of comparisons, etc.
We discuss these later.

Calling convention

Data area for parameters and local variables

Runtime stack
Contiguous memory area.
Grows from high addresses
downwards.
AR layout illustrated.
EBP contains current base
pointer (= frame pointer).
ESP contains current stack
pointer.
Note: We need to store return
address (address of instruction to
jump to on return).

Illustration

Return address

Pn
P1

AR
Caller’s 

AR
Callee’s

Local vars

ESP

EBP

Parameters

Local vars

Caller’s base pointer
Return address

growth
Stack 

High address



Calling convention

Calling convention

Caller, before call
Push params (in reverse order).
Push return address.
Jump to callee entry.

Code pattern:
push dword paramn
...
push dword param1
call f

Caller, after call
Pop parameters.

Code pattern:
add esp parambytes

Callee, on entry

Push caller’s base pointer.
Update current base pointer.
Allocate space for locals.

Code pattern:
push dword ebp
mov ebp, esp
sub esp, localbytes

Callee, on exit
Restore base and stack pointer.
Pop return address and jump.

Code pattern:
leave
ret

Calling convention

Parameters, local variables and return values

Parameters
In the callee code, integer parameter 1 has address ebp+8,
parameter 2 ebp+12, etc.
Parameter values accessed with indirect addressing: [ebp+8], etc.
Double parameters require 8 bytes.

Here ebp+n means “(address stored in ebp) + n”.

Local variables
First local var is at address ebp-4, etc.
Parameters are conventionally addressed relative to ebp, not esp.

Return values
Integer and boolean values are returned in eax, doubles in st0.

Calling convention

Register usage

Scratch registers (caller save)

EAX, ECX and EDX must be saved by caller before call, if used; can be
freely used by callee.

Callee save register

EBX, ESI, EDI, EBP, ESP.
For EBP and ESP, this is handled in the code patterns.

Note
What we have described is one common calling convention for 32-bit x86,
called cdecl.

Other conventions exist, but we omit them.

Calling convention

Assemblers for x86

Several alternatives
Several assemblers for x86 exist, with different syntax.

We will use NASM, the Netwide Assembler, which is available for
several platforms.

We also recommend Paul Carter’s book and examples. Follow link
from course web site.
Some syntax differences to the GNU assembler:

GNU uses %eax etc, as register names.
For two-argument instructions, the operands have opposite order(!).
Different syntax for indirect addressing.

If you use gcc -S ex.c, you will get GNU syntax.



Calling convention

Example: GNU syntax

First example, revisited
> gcc -c ex1.c
> objdump -d ex1.o
ex1.o: file format elf32-i386
Disassembly of section .text:

00000000 <f>:
0: 55 push %ebp
1: 89 e5 mov %esp,%ebp
3: 8b 45 0c mov 0xc(%ebp),%eax
6: 03 45 08 add 0x8(%ebp),%eax
9: c9 leave
a: c3 ret

>

Assembler

Integer arithmetic; two-adress code

Addition, subtraction and multiplication

add dest, src ; dest := dest + src
sub dest, src ; dest := dest - src
imul dest, src ; dest := dest · src

Operands can be values in registers or in memory; src also a literal.

Division – one-address code
idiv denom
(eax,edx) := ((edx:eax)/denom,(edx:eax)%denom)

The numerator is the 64-bit value edx:eax (no other choices).

Both div and mod are performed; results in eax resp. edx.

edx must be zeroed before division.
Trick: xor edx, edx.

Assembler

Example

javalette program

int main () {
printString "Input a number: ";
int n = readInt();
printInt (2*n);
return 0;

}

The above code could be translated as
follows (slightly optimized to fit on slide).

Code for main
push dword ebp
mov ebp, esp
push str1
call printString
add esp, 4
call readInt
imul eax, 2
push eax
call printInt
add esp, 4
mov eax, 0
leave
ret

Assembler

Example, continued

Complete file
extern printString, printInt
extern readInt

segment .data
str1 db "Input a number: "

segment .text
global main

main:
code from previous slide

Comments
IO functions are external;
we come back to that.

The .data segment
contains constants such
as str1.

The .text segment
contains code.

The global declaration
gives main external scope
(can be called from code
outside this file).



Assembler

Floating-point arithmetic in x86

Moving numbers (selection)

fld src pushes value in src on fp stack.
fild src pushes integer value in src on fp stack.
fstp dest stores top of fp stack in dest and pops.

src and dest can be fp register or memory reference.

Arithmetic (selection)

fadd src src added to ST0.
fadd to dest ST0 added to dest.
faddp dest ST0 added to dest, then pop.

Similar variants for fsub, fmul and fdiv.

Assembler

Floating-point arithmetic in SSE2

New registers

128-bit registers XMM0–XMM7 (later also XMM8–XMM15).
Each can hold two double precision floats or four single-precision floats.
SIMD operations for arithmetic.

Arithmetic instructions
Two-address code, ADDSD, MULSD, etc.
SSE2 fp code similar to integer arithmetic.

Assembler

Control flow

Integer comparisons

cmp v1 v2
v1-v2 is computed and bits in the
flag registers are set:
ZF is set iff value is zero.
OF is set iff result overflows.
SF is set iff result is negative.

Branch instructions (selection)

JZ lab branches if ZF is set.
JL lab branches if SF is set.
Similarly for the other relations
between v1 and v2.

fcomi src compares st0 and src
and sets flags; can be followed by
branching as above.

Assembler

One more example

Javalette (or C)

int sum(int n) {
int res = 0;
int i = 0;
while (i < n) {
res = res + i;
i++;

}
return res;

}

Naive assembler
sum: push dword ebp

mov ebp, esp
sub esp, 8
mov [ebp-4], 0
mov [ebp-8], 0
jmp L2

L3: mov eax, [ebp-4]
add [ebp-8], eax
inc [ebp-4]

L2: mov eax, [ebp-4]
cmp eax, [ebp+8]
jl L3
mov eax, [ebp-8]
leave
ret



Assembler

How to do an x86 backend
Starting point

Two alternatives:

From LLVM code (requires your basic backend to generate LLVM
code as a data structure, not directly as strings).
Will generate many local vars.

From AST’s generated by frontend (means a lot of code common with
LLVM backend).

Variables
In either case, your code will contain a lot of variables/virtual registers.
Possible approaches:

Treat these as local vars, storing to and fetching from stack at each
access. Gives really slow code.

Do (linear scan) register allocation. Much better; you will want to do
this if you choose do do this backend.

Assembler

Input and output
A simple proposal

Define printInt, readInt etc in C. Then link this file together with your
object files using gcc.

Alternative: Compile runtime.ll with llvm-as and llc to get
runtime.s; this can be given to gcc as below.

Linux building

To assemble a NASM file to file.o:
nasm -f elf file.asm
To link:
gcc file.o runtime.c
Result is executable a.out.

More info
Paul Carter’s book (link on course web site) gives more info.
His driver and input routines could possibly be used, but the above seems
better.


