
Compiler construction 2011

Lecture 5

Introduction to LLVM.

LLVM language and tools.

Introduction to LLVM

Register machines

Fast but scarce
Registers are places for data inside the CPU.

+ up to 10 times faster access than to main memory.

- expensive; typically just 32 of them in a 32-bit CPU.

Typically, arithmetic operations, conditional jumps etc operate on values
stored in registers.

Most modern assembly languages use registers, which correspond closely
to the machine registers.

LLVM (the Low Level Virtual Machine)

LLVM is a virtual machine:
it has an unbounded number of registers.

A later step does register allocation, mapping virtual registers to real
machine registers.

Introduction to LLVM

The LLVM project

The LLVM Infrastructure
A collection of (C++) software libraries and tools to help in building
compilers, debuggers, program analysers, etc.

Tools available on Studat Linux machines.
Can also be downloaded to your own computer. Visit llvm.org .

History

Started as academic project at University of Illinois at Urbana-Champaign
2002.

Current development mainly at Apple. Growing user base.

Related projects

Clang. C/C++ front end; aims to replace gcc.

VMKit. Implements JVM and CLI by translating to LLVM.

Introduction to LLVM

The LLVM language

Characteristic features
Three adress-code: two source registers and one destination register:

%t2 = add i32 %t0, %t1

One source can be a value:

%t5 = add i32 %t3, 7

Instructions are typed:

%t8 = fadd double %t6, %t7
store i32 %t5 , i32* %r

New register for each result (Static Single Assignment form).

Introduction to LLVM

Hello world in LLVM

@hw = internal constant [13 x i8] c"hello world\0A\00"
declare i32 @puts(i8*)

define i32 @main () {
entry: %t1 = bitcast [13 x i8]* @hw to i8*

%t2 = call i32 @puts(i8* %t1)
ret i32 %t2

}

Comments
String is named @hw, a global constant (global names start with @).
Note escape sequences!

Library function @puts is declared, giving type signature.

@hw is cast to type of argument to puts.
Note: Better (type-safe) solution later!

Introduction to LLVM

An illegal LLVM program

declare void @printInt(i32 %n)
define i32 @main() {
entry: %t1 = call i32 @sum(i32 100)

call void @printInt(i32 %t1)
ret i32 0

}
define i32 @sum (i32 %n) {
entry: %sum = i32 0

%i = i32 0
br label %lab1

lab1: %i = add i32 %i, 1
%sum = add i32 %sum, %i
%t = icmp eq i32 %i, %n
br i1 %t, label %end, label %lab1

end: ret i32 %sum
}

Reasons
Important reason:
Not SSA form:
Two assignments
to %i and %sum.

Trivial reason:
There is no
reg = val
instruction.

Introduction to LLVM

Corrected program

define i32 @sum (i32 %n) {
entry: %sum = alloca i32

store i32 0, i32* %sum
%i = alloca i32
store i32 0, i32* %i
br label %lab1

lab1: %t1 = load i32* %i
%t2 = add i32 %t1, 1
%t3 = load i32* %sum
%t4 = add i32 %t2, %t3
store i32 %t2, i32* %i
store i32 %t4, i32* %sum
%t5 = icmp eq i32 %t2, %n
br i1 %t5, label %end, label %lab1

end: ret i32 %t4
}

Comments
%i and %sum are
now pointers to
memory locations.

Only one
assignment to any
register.

Problem
This program has a lot
more memory traffic!

What can LLVM’s
optimizer do about that?

Introduction to LLVM

Optimizing @sum

> opt -mem2reg sum.bc > sumreg.bc
> llvm-dis sumreg.bc
> more sumreg.ll
define i32 @sum(i32 %n) {
entry:

br label %lab1
lab1:

%i.0 = phi i32 [0, %entry], [%t2, %lab1]
%sum.0 = phi i32 [0, %entry], [%t4, %lab1]
%t2 = add i32 %i.0, 1
%t4 = add i32 %t2, %sum.0
%t5 = icmp eq i32 %t2, %n
br i1 %t5, label %end, label %lab1

end:
ret i32 %t4

}

Introduction to LLVM

Φ “functions”

SSA form
Only one assignment in the program text to each variable.
(But dynamically, this assignment can be executed many times).

Many (static) stores to a memory location are allowed.

Also, Φ (phi) instructions can be used, in the beginning of a basic
block.
Value is one of the arguments, depending on from which block control
came to this block.

Register allocation tries to keep these variables in same real register.

Why SSA form?

Many code optimizations can be done more efficiently (later).

Introduction to LLVM

Optimizing the program further

Many optimization passes

opt implements many code analysis and improvement methods. To get a
default selection, give command line arg -std-compile-opts.

Result, part 1
; ModuleID = ’<stdin>’
target datalayout = "e- most of line skipped

declare void @printInt(i32)

define i32 @main() {
entry:
tail call void @printInt(i32 5050)
ret i32 0

}

Introduction to LLVM

Optimizing sum further

Result after opt -std-compile-opts

define i32 @sum(i32 %n) nounwind readnone {
entry:
%tmp3 = add i32 %n, -2
%tmp1 = add i32 %n, -1
%tmp4 = zext i32 %tmp3 to i33
%tmp2 = zext i32 %tmp1 to i33
%tmp5 = mul i33 %tmp2, %tmp4
%tmp6 = lshr i33 %tmp5, 1
%tmp7 = trunc i33 %tmp6 to i32
%tmp = shl i32 %n, 1
%tmp8 = add i32 %tmp, %tmp7
%tmp9 = add i32 %tmp8, -1
ret i32 %tmp9

}

Introduction to LLVM

Analysis of optimized code for @sum

Previous loop with execution time O(n) has been optimized to code
without loop, running in constant time.

Recall 1 + 2 + . . . + n = n(n + 1)/2.
Check that optimized code computes this.

Why extensions/truncations to and from 33 bits?

What happens when n is negative?

opt -std-compile-opts includes many optimization passes.
Use -time-passes for an overview.
We will discuss some of these algorithms later.

Introduction to LLVM

printInt and other IO functions

Part of runtime.ll

@dnl = internal constant [4 x i8] c"%d\0A\00"

declare i32 @printf(i8*, ...)

define void @printInt(i32 %x) {
entry: %t0 = getelementptr [4 x i8]* @dnl, i32 0, i32 0

call i32 (i8*, ...)* @printf(i8* %t0, i32 %x)
ret void

}

We provide this file on the course web site; you just have to make sure that
it is available for linking.

Introduction to LLVM

Linking and running the program

Linker is llvm-ld

> llvm-ld sumopt.bc runtime.bc
> ./a.out
5050
> more a.out
#!/bin/sh
exec lli a.out.bc ${1+"$@"}

So, linking produces two files:

The short shellscript a.out.

The linked bitcode program a.out.bc.

lli is the LLVM interpreter/JIT compiler.

Introduction to LLVM

What is in a.out.bc

Disassemble it!
>cat a.out.bc | llvm-dis -
; ModuleID = ’a.out.bc’
target datalayout = "e- most of line skipped

@dnl = internal constant [4 x i8] c"%d\0A\00"

define i32 @main() {
entry:
%t0 = getelementptr [4 x i8]* @dnl, i32 0, i32 0
call i32 (i8*, ...)* @printf(i8* %t0, i32 5050)
ret i32 0

}

declare i32 @printf(i8*, ...)

LLVM language and tools

Types in LLVM

An incomplete list

Below t and ti are types and n an integer literal.

n bit integers: in .

float and double.

Labels: label.

The void type: void.

Functions: t(t1, t2, . . . , tn).

Pointer types: t *.

Structures: { t1, t2, . . . , tn }.

Arrays : [n x t].

LLVM language and tools

Named types and type equality

Named types

One can give names to types. Examples:

%length = type i32
%list = type { i32, %list } *

%node = type { %tree, i32, %tree }
%tree = type %node *

%matrix = type [100 x [100 x double]]

Type equality

LLVM uses structural equality for types.
When disassembling bitcode files that contain several structurally equal
types with different names, this may give confusing results.

LLVM language and tools

Identifiers

Local identifiers
Registers and named types have local names, starting with %.

Global identifiers
Functions and global variables have global names, starting with @.

Javalette does not have global variables, but you will need to define global
names for string literals, as in

@hw = internal constant [13 x i8] c"hello world\0A\00"

After this definition, @hw has type [13 x i8]*.

LLVM language and tools

Constants

Literals
Integer and floating-point literals are as expected.

true and false are literals of type i1.

null is a literal of any pointer type.

Aggregates

Constant expressions of structure and array types can be formed; not
needed by Javalette.

LLVM language and tools

Function definitions

Simplest form

define t gname (t1 x1, t2 x2, . . . , tn xn) {
block1

block2

. . .
blockn

}
where gname is a global name (the name of the function), the xi are local
names (the parameters) and the blocki are basic blocks.

Basic blocks
A basic block is a label followed by a colon and a sequence of LLVM
instructions, each on a separate line. The last instruction must be a
terminator instruction.

LLVM language and tools

Function declarations

Type-checking

The LLVM assembler does type-checking. Hence it must know the types of
all external functions, i.e. functions used but not defined in the compiled
unit.

Simple function declaration

The basic form is declare t gname (t1, t2, . . . tn)

For Javalette, this is necessary for IO functions. The compiler would
typically insert in each file

declare void @printInt(i32)
declare void @printDouble(double)
declare void @printString(i8*)
declare i32 @readInt()
declare double @readDouble()

LLVM language and tools

Data layout

Layout specifications

An LLVM module may specify how data is laid out in memory on the target
architecture (endianness, size of pointers, alignment, etc.)
We will generate 32 bit code, and your compiler should generate a target
layout description as the first line of every generated file.

This is one very long line; broken here to fit on the slide.

target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-
i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-
v64:64:64-v128:128:128-a0:0:64-f80:32:32-n8:16:32"

LLVM language and tools

LLVM tools

The assembler llvm-as. Translates to bitcode (prog.ll to prog.bc).

The disassembler llvm-dis. Translates in the opposite direction.

The interpreter/JIT compiler lli. Executes bitcode file containing a
main function.

The linker llvm-ld. Links together several bitcode files and produces
a.out.bc and a small script a.out, which calls lli on a.out.bc.

The compiler llc. Translates to native assembler.

The optimizer opt. Optimizes bitcode; many options to decide on
which optimizations to run. Use -std-compile-opts to get a default
selection.

Drop-in replacement for gcc: clang.

LLVM language and tools

Input/output functions for Javalette

We provide runtime.ll with a simple implementation of the IO functions
(based on functions in C’s stdio).

You only need to assemble to runtime.bc.

Sample part of runtime.ll

@dnl = internal constant [4 x i8] c"%d\0A\00"

declare i32 @printf(i8*, ...)

define void @printInt(i32 %x) {
entry: %t0 = getelementptr [4 x i8]* @dnl, i32 0, i32 0

call i32 (i8*, ...)* @printf(i8* %t0, i32 %x)
ret void

}

LLVM language and tools

Use of LLVM in your compiler

Default mode
Your code generator produces assembler file (.ll). Then your main
program uses system calls to first assemble this with llvm-as and then
link together with runtime.bc.

Other modes
More advanced; we do not recommended these for this project.

C++ programmers can use the LLVM libraries to build in-memory
representation and then output bitcode file.

Haskell programmers can access C++ libraries via Hackage package
LLVM.

LLVM language and tools

LLVM instructions

Basic collection
Basic Javalette will only need the following instructions:

Terminator instructions: ret and br.
Arithmetic operations:

For integers add, sub, mul, sdiv and srem.
For doubles fadd, fsub, fmul and fdiv.

Memory access: alloca, load, getelementptr and store.

Other: icmp, fcmp and call.

Some of the extensions will need more.

