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Abstract 

We discuss the use of semidefinite programming for combinatorial optimization problems. The 
main topics covered include (i) the Lovfisz theta function and its applications to stable sets, 
perfect graphs, and coding theory. (it) the automatic generation of strong valid inequalities, (iii) 
the maximum cut problem and related problems, and (iv) the embedding of finite metric spaces 
and its relationship to the sparsest cut problem. @ 1997 The Mathematical Programming Society, 
lnc. Published by Elsevier Science B.V. 
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1. Introduct ion 

Recently, there has been increasing interest in the use of convex optimization tech- 

niques and more specifically semidefinite programming in solving combinatorial opti- 

mization problems. This started with the seminal work of Lovzisz [41] on the so-called 

theta function, and this led Gr6tschel, Lovfisz and Schrijver [22,24.] to develop the only 

known (and non-combinatorial)  polynomial- t ime algorithm to solve the maximum stable 

set problem for perfect graphs. More recently, the development of  efficient interior-point 

algorithms for semidefinite programming, the results of Lovfisz and Schrijver [44,45] 

on stronger formulations using semidefinite programming, improved approximation al- 

gori thms for the maximum cut and related problems, and striking hardness of  approxi- 

mation results have spawned much focus on the power (and limitation) of  semidefinite 

programming for combinatorial  optimization problems. 
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In this paper, we give a brief tour d'hvrizon of  semidefinite programming in com- 

binatorial optimization. In addition to some of the classical results, we also present a 

few either very recent or less well known results and observations. In particular, we 

describe the relationship between the Lowisz theta function and the Delsarte linear pro- 

gramming approach in Section 3, discuss the use of  the dual for solving maximum cut 

instances in practice in Section 5, and elaborate on the connection between a classical 

eigenvalue bound and a semidefinite programming approach for the sparsest cut problem 

in Section 6. Because of  space limitations, we can barely scratch the surface, and there 

are many aspects (e.g. computational)  of  the area that we will not cover. We refer the 

reader to [1 ]. [43] and [58] for additional coverage of  the topic. 

2. Preliminaries 

In this section, we collect several basic results about (posit ive semidefinite) matrices 

and semidefinite programming. Further results will be mentioned as needed. Most of  the 

results on matrices quoted in this paper can be found in standard matrix theory books, 

such as [36] or [28].  

Let M,, denote the cone of  n x n matrices (over Ihe reals),  and let 5',, denote the 

subcone of symmetric n x n matrices. A matrix A E 5',, is said to be positive semidefinite 
if its associated quadratic form xTAx is nonnegative for all x C R". The positive 

semideliniteness of a matrix A will be denoted by A @ 0; similarly, we write A _'.X- B for 

A - B ~_ 0. The cone of  positive semidefinite matrices will be denoted by PSD,,. The 

following statements are equivalent for a symmetric matrix A (see e.g. [36] ) :  ( i )  A 

is positive semidefinite, ( i i )  all eigenvalues of  A are nonnegative, and ( i i i )  there exists 

a matrix B such that A = BTB (Cholesky decomposit ion).  ( i i i )  gives a representation 

of A = [aij ] as a Gram matrix: there exist vectors vi such that a i j  = uTiuj for all 

i , j .  A symmetric positive semidefinite matrix A can be expressed as LDL f in O(n  3) 

elementary operations (where L is lower triangular and D is diagonal) ,  and this leads 

to a Cholesky decomposit ion (provided square roots can be computed) .  

Given A , B  ~ M,,  we consider the (Frobenius) inner product A • B defined by 

A • B = Tr(ATB) = Ei Ej  A i j B i j .  The quadratic form xTAx can thus also be written as 

A • (xxT).  Since the extreme rays of  PSD, are of  the form xx T, we derive that A • B ~> 0 

whenever A, B ___ 0. We can also similarly derive Fejer 's  theorem which says that PSD,, 
is self-polar, i.e. PSD,*, := {A E S,, • A • B ~> 0 lbr all B ~_ 0} = PSD,,. 

Semidefinite programs are linear programs over the cone of  positive semidefinite 

matrices. They can be expressed in many equivalent forms, e.g. 

SDP = in fC • Y 

subject to: 

A i  o Y = bi 

Y ~ O .  

i = l , . ,  . , m  

( l )  
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In general a linem program over a pointed closed convex cone K is formulated as z = 
inf{c'rx l ax  = b,x  E K}, and its dual (see [53] )  is w = sup{bTy l ATy+s = c,s E K*} 

where K* := {a I aTb >~ 0 for all b E K}. Weak duality always holds: cTx - yTb = 
( A r y + s ) T x - y T A x  = sTx >~ 0 (since x E K and s E K*) for any primal feasible x and 

dual feasible y. If  we assume that A has full row rank, {x E intK I Ax = b} 4: ~, and 
{ (y, s) ] ATy + s = c, s E int K* } 4= (3, then z = w (strong duality) and both the primal 

and dual problems attain their optimum value. In the case of semidefinite programs, the 

dual to (1) is sup{~i'=, biYi I ZiYiai  M C}. 
Semidefinite programs can be solved (more precisely, approximated) in polynomial 

time within any specified accuracy either by the ellipsoid algorithm [22,24] or more effi- 

ciently through interior-point algorithms. For the latter, we refer the reader to [53,1,65] 

and to the recent article by Kojima [34] lbr the latest developments. To be precise, 

these algorithms are polynomial only for "well-behaved" instances (e.g., if we can give 
a priori estimates on the sizes of  primal and dual solutions that are polynomial in the 

size of  the input, see [ I ] ) .  The above algorithms produce a strictly feasible solution 

(or slightly infeasible for some versions of  the ellipsoid algorithm) and, in fact, the 

problem of  deciding whether a semidefinite program is feasible (exactly) is still open. 

However, we should point out that since 

X a 

is equivalent to Ixl ~ ,/~, a special case of semidefinite programming feasibility is 

the square-root sum problem: given positive integers al . . . . .  a,, and k, decide whether 

~i=i  ~ <~ k. The complexity of  this problem in the Turing machine model is still 

open (but the problem is easy in the "unit-cost algebrNc RAM", see [48] and [64]) .  

Many of  the semidefinite programs that arise in combinatorial optimization can also 
be viewed as eigenvalue bounds [ l ] .  The literature on such bounds is vast, and we 

refer the reader to a comprehensive survey by Mohar and Poljak [51].  In certain cases, 

the semidefmite programs can be strengthened by adding valid inequalities. We will see 

several examples in the forthcoming sections. We would also like to refer the reader to 

[39] for a discussion on eigenvalue optimization in general. 

3. Lovfisz's theta function 

Given a graph G = (V,E), a stable (or independent) set is a subset S of vertices 

such that no two vertices of  S are adjacent. The maximmn cardinality of a stable set 
is the stability number (or independence number) of  G and is denoted by oe(G). In 

a seminal paper [41],  Lov,-isz proposed an upper bound on ol(G) known as the theta 

function O(G).  The theta function can be expressed in many equivalent ways: as an 

eigenvalue bound, as a semidefinite program, or in terms of  orthogonal representations. 

In this section, we describe some of these formulations, the quality of the resulting 

approximation, and connections to perfect graphs and coding theory. For simplicity, we 
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restrict our attention to the unweighted case (as defined above),  although most results 

generalize to the weighted case. We refer the reader to the original paper [4] ], to 

Chapter 9 in [24],  or' to the survey by Knuth [33] for additional details. 

As an eigenvalue bound, O(G) can be derived as follows. Consider P = {A C S,, I 

aij = I if ( i , j )  ~ E (or  i = j ) } .  I f  there exists a stable set of  size k, the corresponding 

principal submatrix of any A E P will be Jk, the all ones matrix of  size k. By a 

classical result on interlacing of  eigenvalues for symmetric matrices (see [28 ] ) ,  we 

derive that k,,,a,~(A) ) a,,,,x(J~) = k for any A C P,  where A,,,ax(.) denotes the largest 

eigenvalue. As a result, minAEe h,,,,x(A) is an upper bound on o~(G), and this is one 

of the equivalent formulations of  Lovfi.sz's theta function. 

This naturally leads to a semidefinite program. Indeed, the largest eigenvalue o1' a 

matrix can easily be formulated as a semidefinite program: 2t ....... (A)  = min{t { t l  - A  >_ 
0}. This follows from the fact that the eigenvalues of tl - A are precisely t - ai where 

{hi} denote tbe eigenvalues of  A+ In order to express ,O(G) as a semidefinite program, 

we observe that A C P is equivalent to A - J being generated by E 0 for (i , .])  C E, 

where all entries of  Ei j are zero except for ( i , j )  and ( j , i ) .  Thus, we can write 

O(G) = rain t 

subject to: 

1I + ~ xLiEii ~ J. 
(i,,j)EE 

By strong duality, we can also write: 

O ( G )  = m a x J - Y  

subject to: 

Y~i = 0 

I * Y = I  

Y>-O. 

(2)  

( i , j )  c E (3)  

(i.e. Tr(Y) = 1) (4)  

(5)  

Lovzisz's first definition of  O ( G )  was in terms of orthonormal representations. An 

orthonormal representation of G is a system vl . . . . .  v,, of unit vectors in R" such that 

vi and vj are orthogonal (i.e. v~c,j = 0) whenever i and j are not adjacent. The value of 

the orthonormal representation is z = mincllldl=l maxiEv 1/(cTui) 2. This is easily seen 

to be an upper bound on a ( G )  (since Ilc}l 2 ) ~ics(cWui) 2 >~ [SI/z for any stable set 

S). Taking the minimum value over all orthonormal representations of  G, one derives 

another expression for O(G) as was shown by Lovfisz [41].  This result can be restated 

in a slightly different form, If  x denotes the incidence vector of  a stable set then we 

have that 

Z ( c T u i ) 2 X i  ~ I .  (6)  
i 
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In other words, the orthonormal representation constraints (6) are valid inequalities for 

STAB(G), the convex hull of  incidence vectors of  stable sets of  G. Gr6tschel et al. [23] 

show that if we let TH(G) = {x j x satisfies (6) and x ~> 0}, then O(G) = m a x { ~ x ~  I 
x ~ TH(G)}.  Yet more formulations of  0 are known (it seems all paths lead to "8!); 

we strongly urge the reader to read Lovfisz's original article or [23,24] for additional 

results. 
Schrijver [59] proposed a strengthening of  O(G) by adding simple inequalities. We 

describe this improved upper bound on offG) in terms of  the various formulations 

discussed above (other tbnnulations of  O(G) can also be similarly improved). The 

validity of  these formulations follow easily from the same arguments as before. 

Theorem 1 (Schrijver [59] ) .  ce(G) ~ .O'(G) <~ O(G) where O~(G) is equal to 

min{A,,a.,.(a) ]aLi >~ l for ( i , j )  ~ E,A = [aii] C- S,,} 

= m a x { J • g l y i j = 0 f f , ( i , j )  E E . y ~ j ) O f o r  ( i , j )  ~ E, Tr(Y) = 1, Y ~ 0 }  

{' } rain u)ruj ~ 0/'or i, j) ~ E, I["ill 1 fo," i C- V,, Ilcll 1 . = max ~ = = i~l,' (dHi)  2 

3. I. Pe@wt graphs 

A graph G is called perfect if, for every induced subgraph G', its chromatic number 

is equal to the size of  the largest clique in G ~ (see [21,42] for details). Even though 

perfect graphs have been the focus of intense study, there are some basic questions which 
are still open. The strong perfect graph conjecture of Berge is that a graph is perfect if 

and only if it does not contain an odd cycle of  length at least five or its complement. It 

is not even known if II~e recognition problem of deciding whether a graph is perfect is in 

P or is NP-complete. However, the theta ['unction gives some important ctaaracterizations 

(but not a "good" or NPDco-NP characterization) of  perfect graphs. 

Theorem 2 (Gr6tschel et al. [23] ). TheJbllowing are equivalent: 
• G is perfect, 
• TH(G) = {x ) 0 J ~i~c  xi ~ lfol" all cliques C}, 
• TH(G) is polyhedral. 

Moreover, even though recognizing perfect graphs is still open, one can find a largest 

stable set in a perfect graph in polynomial time by computing the theta function using 

sen-ddefinite programming [22,24];  similarly one can solve the weighted problem, or 

find the chromatic number or a largest clique. Observe that if we apply this algorithm 

to a graph which is not necessarily perfect, we would either find a largest stable set or 

have a proof that the graph is not perfect. 
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3.2. Quality of approximations based on .0 

For perfect graphs, we have seen that O(G) = c~(G). Unfortunately, for general 

graphs, 'O(G) can provide a fairly poor upper bound on ~ (G) ,  as was established 

recently. In this section, we discuss the quality of the approximation given by O(G). 
In [41],  Lovfisz showed that for any graph G on n vertices, we have that 

O(G)O((~)  ) n (with equality if G is vertex-transitive; see also [59]) .  Thus, for 

any G, m a x ( O ( G ) , O ( ( ~ ) )  >~ y/n, while, for a random graph (each edge being selected 

with probability 0.5 independently), max(o~(G),o~((~)) = O( logn)  with high proba- 

bility. In fact, O(G) = ®(v/~)  for random graphs [29].  Until quite recently, this was 

the largest gap known between o~ and O. However, Feige [ 17] has shown the existence 

of graphs tot which .O( G) /o~( G) >~ D.(n l -e)  for ally e > 0. His construction uses 

"randomized graph products". See also [30],  [63],  and [4] for related results. The fact 

that O(G)  does not provide a good approximation is not too surprising given the recent 

result of  Hhstad [25] showing that the stable set problem is hard to approximate within 
n j -~ for any e > 0 unless NP = co-R (co-R is the class of  languages L for which there 

exists a polynomial-time randomized algorithm which always accepts elements of L and 

rejects elements not in L with probability at least 0.5). 
Regarding the coraplementary problem of finding a vertex cover of minimum cardi- 

nality, Kleinberg and Goemans [32] have shown that n - O ( G )  (where n is the number 

of  vertices) can be arbitrarily close to half the size of the minimum vertex cover (i.e. 

n o:(G)), thus not improving in the worst-case the linear programming bound [27].  

Very recently, Lagergren and Russell [35] have also shown that the same holds for 

Schrij vet's n - O ~ (G).  

3.3. Coding theoo' 

Lovasz's theta function provides interesting results ['or several coding theory problems. 

We first discuss the Shannon capacity, and then relate the theta function to Delsarte's 

linear programming approach [ 15 ]. 
The strong product G. H of G = (V,E) and H = (W. F)  is the graph whose vertex set 

is the cartesian product of  V and W and (u, w) is adjacent to (v ~, w') if u is adjacent 

or equal to t, ~ and w is adjacent or equal to w ~. Given a graph G = (V,E) in which tile 

vertices represent symbols of  an alphabet and (a, b) E E if the symbols a and b cannot 

be distinguished, the maximum number of distinguishable words that call be written 
with k symbols is equal to a (Gk) ,  where G k = G .  G - . . G  (k times). The Shannon 
capaci O, (also called the zero-error capacity) [60] of a graph, denoted by ® ( G ) ,  is 
equal to supk o~(G k) i/~.. This quantity appears to be hard to compute even for very small 

graphs (although it is not known to be NP-hard). Lovfisz showed that O(G) provides 

an upper bound on ®(G) .  This for example implies that @(G) = c~(G) for perfect 
graphs, a result which follows directly from Shannon's early work. For most graphs 

(but not for all, see the discussion in [49]) ,  .O(G) provides the best known upper 

bound on @(G). In particular, for an odd cycle C, with n vertices, Lovfisz computed 
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O(C,,) = n/(  1 + 1 / c o s ( r r / n )  ), and this implies the celebrated result that (9(C5) = v~.  

However, the exact value for O(C7) is still unknown. 

In order to show that O(G) >>. O(G), Lovfisz first proved thal O(G.H) = O(G)O(H).  
This immediately implies that ce(G k) ~ O(G k) = ~9(G) k, which gives the desired 

inequality. We should point out that Lovgtsz's proof does not generalize to Schrijver's 

O ' ( G ) ,  i.e. "~9'(G) is not gum'anteed to be an upper bound on 6)(G). 

In certain cases when the graph G has a great deal of  symmetry (to be defined 

formally below), the theta function (as well as Schrijver's O')  reduces to a linear 

programming problem. Such situations arise in coding theory, and more precisely in 

association schemes (see [46,11]) .  Consider graphs whose adjacency matrix can be 

written a s  ~iCM Di where M C {1 . . . . .  1} and Do, DI . . . . .  Dt are n × n 0-1 symmetric 

matrices such that 

(i) Do = 1, 
/ D (ii) ~/=0 i = J ,  

(iii) there exist Pijk (0 <~ i , j ,k  <, l) such that DiDj = D/Di = ~=oPqkDk. 
For concreteness, we consider one such example. Given a, b C {0, 1 }", the Hamming 

distance H(a, b) between a and b is simply the number of  coordinates in which they 

differ. Let A (n, d) = max{ t SI[ H ( a ,  b) /> d for all distinct a, b E S}. A (n, d)  represents 
the maximum number of  codewords of  a binary code of  length n and minimum distance 

d. Such a (so-called error-correcting) code can correct any number of  errors less than 

d/2 introduced during transmission (see [ 46 ] for background material). A (n, d) can be 

viewed as the stability number of  the graph G,,,d with vertex set {0, I }" and two strings 

being adjacent if their Hamming distance is between l and d-l .  G,,.d arises from the 

Hamming association scheme, in which adjacency in Di corresponds to pairs of  strings 

having Hamming distance exactly i. 
In a seminal paper, Delsarte [ 15} introduced a beautiful and powerful linear program- 

ruing approach to upper bound ~ ( G )  for graphs arising from association schemes. In 

the case of  the Hamming scheme, given any binary code S of  length n with minimum 

distance d, consider the vector x with 2" components defined by x,, = ~ I { ( a , b )  c 
S × S I a - b = v ( m o d 2 ) ) l  lbr any v E {0, 1}". x is called the inner distribution of  S. 

Observe that x0 = 1, and ~ , .  x,, = IS[. Moreover, for any w E {0, 1} '~, we have that 

( - l  )'""'" x,, 1 = - -  l)d'w( b'~. ( - l ) ' " - " ) r  .... 1 

(a,b)cS×S 

' ( z  )- 
ISl > 0, 

aCS 

by definition of  &, and the fact that ( - l ) k  only depends on the parity of  k. (For any 

w C {0, 1}", the vector ( - 1 )  ''*w is actually an eigenvector of Gn.d (for any d).)  We 

carl thus obtain an upper bound on ce(G,,.a) by solving 
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max Z x~, 

subject to: 

( - l ) " ' 'x , , />  o 
,.~{o.l},, 
x 0 = l ,  x,,~>O u •  {0 ,1}"  
x < = o  0 < IL, I < d, 

w E {0, 1}" 

(7) 

where I c,] represents the weight of u (the number of  l 's  in t~). This is a huge linear 

program in which the constraint matrix has only -_~l coefficients. A more compact 

equivalent relaxation can be obtained by observing that, because of symmetry, we can 

assume that x,, depends only on the weighl of  z,. At the same lilne, this allows to 

write one constraint for each possible weight lbr w. This gives a linear program with 

n + 1 variables and n + 1 constraints, but with fairly nasty coefficients (depending on 

so-called Krawtchouk polynomials). For an explicit upper bound on A ( n , d )  based on 

this linear programnling approach, see [50,49]. In general, Ibr association schemes, the 

linear program obtained can be reduced to l + I variables and constraints, where l + I 

denotes the number of  matrices Di. 
Somewhat surprisingly, Schrijver [591 has shown that the above upper bound is 

precisely O'(G,,.u) and that if we were to relax the nonnegativity constraints on x,. we 

would obtain precisely Lov,'isz's thela function O(G,, m) (see also [49]) .  We will now 

sketch this equivalence. The fact that the Dj's commute imply that they share a system 
of eigenvectors (see e.g. [28] ) ,  i.e. Dj = V.4 ~j V T where /1 ~i) is a diagonal matrix 

with the eigenvalues of D.b and V is independent of  j.  This implies that the (so-called 

Bose-Mesner) algebra spanned by the Dj's consists of all matrices of the form VFV T 
where F is a linear combination o1: the A(J)'s. Furthermore, since the vector u of  all 

l 's  is the unique eigenvector of ,I (which is spanned by the D.i's ) corresponding to a 

nonzero eigenwllue, u nmst also be an eigenvector of  Dj and thus Dj has a constant 

row sum that we denote by di (which is the largest eigenvalue of  Dj).  Suppose that 

in [brmulation (2) of O, we restrict our attention to inatrices Y in this Bose-Mesner 

algebra: Y = (~./j~) xj Dj ) /n  (where we have normalized by n for simplicity). Observe 

that nTr(Y) = ~5---0 xj T r ( D  i) = xo Tr ( I )  = n.r0. Thus (4) reduces to x0 = 1, while (3) 

(v'/ x A ( i ) / n  redtices to x.i = 0 for j c_ M. Since the eigenvalues of Y are simply ,z_,i=o i i 

(i = I . . . . .  n), (5) reduces to ~li=o.rj/llJ) >~ 0 lbr all i. Finally, since J *  D i = nd~, we 

derive that 

O(G) ~> max Z dixj  
j ¢ M 

subject to: 

Z A -i) ~c. i " s  >~ 0 i= 1 . . . . .  n 
i ~t M 

. / :0= I. 

(8) 

(9) 
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So far, we have only used the commutativity of  the Dj'S, and not the fact that DiD/ 

is also in the Bose-Mesner  algebra (as is stipulated in the definition of association 
schemes).  In fact, if we do not assume this latter condition but only assume commuta- 
tivity of  the Dj'S, the value of this linear program may be strictly smaller than .O(G) 

(contradicting an informal claim of McEliece [49] ). For example, for any regular graph 
G, we can select Ej and E2 to be the adjacency matrices of G and its complement (and 

El and E9 commute  if G is regular), and the above linear program (with only one non- 
trivial variable) can easily be seen to have value 1 - Zma,~(E2)/Amin(E2) which can be 
strictly less than o~(G) (consider the (perfect) cycle C6 for example).  However, if G is 
edge-transitive (i.e. lbr every pair of edges of  O, there exists an automorphism mapping 
one to the other),  then one can easily argue that there exists an optimum solution Y to 

(2)  in the Bose-Mesner  algebra, and hence we will have equality in (8).  
Schrijver proved that we also have equality in (8) if G arises from an association 

scheme. This is based on additional properties of  eigenvalues of  association schemes. 
He similarly showed that, for association schemes, "Or(G) is equal to the value of the 
linear program (8)  in which one adds the constraints xj >~ 0 for j ~ M. 

Finally, the size of  the linear program (8) (or augmented with nonnegative con- 
straints) can be much reduced for association schemes. Indeed, one can show (see e.g. 
[46] ) that there are only l +  1 different eigenspaces lbr the Dj's, and thus there are only 
I + 1 distinct constraints (9).  (The constraint corresponding to the largest eigenvalue 
is actually redundant and can be removed; the number o1' constraints is thus only l.) 
Furthermore, the resulting LP alter adding the inequalities xj ~> 0 [or j ~ M takes pre- 
cisely the same form as Delsarte's LP (7) (once generalized to association schemes)! 

See [ 15,59,49] for details. 

4. Deriving valid inequalities 

Lovfisz and Schrijver [44,45] have proposed a technique for automatically generating 
stronger and stronger formulations lbr integer programs. Because of space limitation, 
we can only briefly describe their approach. We also refer the reader to [61 ], [7],  and 
[43] for additional results and related work. 

Let P = {x E JR" ] A x  >~ b,O ~ x <. I}, and let P0 = conv(P  (? {0, 1}") denote the 

convex hull of  O-I solutions. Suppose we multiply a valid inequality ~-~iCiYi- d >. 0 

for P by either 1 - xj ~> 0 or by x i ~> O. We obtain a quadratic inequality that we can 
linearize by replacing xix¢ by a new variable Yij. But we haven't used yet the fact that 
we are only interested in 0-1 solutions. Observing that x] = xi if xi ~ {0, 1}, we can 
also replace xi by yii, hence obtaining a linear ("matrix") inequality on the entries of  Y. 
Let M ( P )  denote the set of  all symmetric matrices satisfying all the matrix inequalities 
that can be derived in this way, and let N i P )  = { x l  Y E M ( P ) ,  x = diag(Y)}, where 
diag(Y) denotes the diagonal of  Y; thus N i P )  is a projection of M ( P )  and conversely 
M ( P )  can be viewed as an extended fbrmulation for N ( P ) .  By construction, we have 
that P0 C N(P) c- P. 
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Lovfisz and Schrijver study the operator Nk(.)  obtained by repeating N( . )  k times, 
and show that for any P C_ R" we have N " ( P )  = Po. They also prove numerous results 
on the stable set polytope STAB(G).  They introduce the N-index of a valid inequality 
for STAB(G) as the least k such that this inequality is valid for N k ( F R A C ( G ) ) ,  where 
FRAC(G)  = {x I x ~ + x i  ~ l if ( i , j )  E E, xi >~ 0 for all i E V}. To give a brief 
sample of  their results, they show that the N-index of a clique constraint on k vertices 
is k - 2, the N-index of  an odd hole constraint is I, and the N-index of  an odd antihole 

constraint on 2k + 1 vertices is k. 
They also consider a much stronger (and not so well understood) operator involving 

semidelinite constraints. Observe that, for any 0-1 solution x, the matrix Y defined 
above as xx r must satisfy Y - diag(Y) diag(Y) T = 0. This is again an (intractable) 

quadratic inequality but it can be relaxed to Y - diag(Y) diag(Y) T ~ 0. Viewing Y - 
diag(Y) diag(Y) T as a Schur complement (see e.g. [28] ), tiffs is equivalent to 

I 1 d iag(y)T  ] ~( ) .  (10) 

diag(Y) Y 

As a result, defining M + ( P )  as {Y C M ( P )  satisfying (10)} and N+(P)  = {x I Y E 
M ~ ( P ) ,  x = diag(Y)},  we have that Po C_ N+(P)  C_ N ( P )  C_ P and optimizing a 

linear objective function over N + ( P )  can be done via semidefinite programming. As 
for N( . ) ,  we can define N~+(P) and the N+-index of a valid inequality for P0. Lov,'isz 
and Schrijver show that the equivalence between (weak) optimization and (weak) sep- 
aration 1122,24] implies that one can optimize (up to arbitrary precision) in polynomial 
time over N~ for any fixed value of k given a separation oracle for P. For the stable set 
polytope, they show that all clique, odd hole, odd antihole, odd wheel, and orthonor- 
real representation constraints have N+-index equal to 1, implying the polynomial-t ime 
solvability of  the maximum stable set problem in any graph for which these inequalities 
are sufficient (including perfect graphs, t-perfect graphs, etc.). 

Since N+ is at least as strong as N, we know that N'+(P) = P0; however, it is not 
known if substantially fewer repetitions of  N+ would be sufficient to obtain P0. To the 
best of  our knowledge, no explicit valid inequality has been proved to have unbounded 
N+-index ibr any prob/em (even though they should exist, unless P = NP). Consider 
for example the following (simple looking) polytope considered by Laurent et al. [37]:  

P = {x E R n I xi + xj + xk ~< 2 for a l l i , j , k ,  0<~x<~ 1}. 

%t Correspondingly, P0 = {0 ~< x ~< 1 I ~ = l  x, ~< 2}. Using similar arguments as in [45] ,  
one can show that ~in=~ xi ~< 2 has an N-index no less than n - 3, but its N+-index 
is unknown. Could it be bounded'? Or logarithmic in n? A logarithmic bound would 
follow if one could show that it has bounded N+-index if we start from P = {x E R" ] 

~iEsX i  ~< 2 for all ISI = n / 2 ,  0 ~< x ~< 1}. 
Another very interesting open problem is related to the matching polytope (the convex 

hull of  incidence vectors of matchings, which can also be viewed as the stable set 

polytope of the line graph). Consider the Edmonds constraints: ~-]~iEs xi <~ (ISI - l ) / 2  
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for ISI odd. Their N-index is unbounded (as a function of  1SI) as was shown by Lovfisz 

and Schri jver  1145] (and an indirect consequence of a result of Yannakakis [66 ] ) .  

However, their N+-index is unknown and could possibly be bounded. 

5. The m a x i n m m  cut problem 

Given a graph G = (V,E), the cut 6(S)  induced by vertex set S consists of  tile set 

of  edges with exactly one endpoint in S. In tile NP-hard nlaximum cut problem (MAX 

CUT) ,  we would like to lind a cut of maximum total weight in a weighted undirected 

graph. The weight of  8 (S)  is w ( 6 ( S ) )  = ~, ,Ea(s)we.  Throughout this section, we 

assume that the weights are nonnegative. For a comprehensive survey of the MAX CUT 

problem, the reader is referred to [57].  

As with the stable set problem, sere/definite programming seems to provide a (senti)  

definite advantage over linear programming for MAX CUT. A classical linear program- 

ruing relaxation of  the problem (involving cycle constraints, and based on the filct that 

any cycle intersects a cut in an even number of edges) can be arbitrarily close to twice 

the optimuna value [55].  However, semidelinite programming leads to a much better 

bound in the worst-case, as was shown by the author and Williamson [20].  In this 

section, we discuss this approach. 

The maximum cut problem can be tormulated as an integer quadratic program. If we 

let 3', = 1 if i ~ S and 3'i = - 1 otherwise, the value of  the cut ,~(S) can be expressed as 

~ i.j)ce wij ½ ( I -Yi3')) .  Thus, in the spirit of  the previous section, suppose we consider 

the matrix Y = [YiY.i]- This is a positive semidefinite rank one matrix with all diagonal 

elements equal to I. Relaxing the rank one condition, we derive a sere/definite program 

giving an upper bound SDP on OPT: 

SDP = max 7 
( i , j jEE 

subject to: 

Vii = 1 i E V 
Y = [ y ~ / ]  ~ 0 .  

It is convenient to write the objective function in terms of the (weighted) Laplacian 

matrix L(G)  = [lij] of G: lii = -w i j  for all i 4: j and lii = ~ j w i j .  For any matrix 

Y, we have L(G)  • Y = ~(i,.i)Es Wi.l(Yii + Y.Z/ -- 2Y(i) ( i n  particular, if Y = yyr then 

we obtain the classical equality y T L ( G ) y  = ~ ( i , j ) ~ E W i j ( Y i -  ),/)2).  As a result, the 

objective function can also be expressed as ¼L(G) * Y. 

The dual of  this sere/definite program is SDP = ¼ m i n { ~ i d i  I Diag(d) ~_ L ( G ) } ,  

where D iag (d )  is the diagonal matrix having d as diagonal and all other entries zero. 

Manipulat ing this expression [56] ,  this can also be rewritten as 

I I rain Amax(L+Diag(u ) ) .  (12) SDP = ~ 
I t :Ei  lii=O 
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This eigenvaluc bound was proposed and analyzed by Delorme and Poljak [14,13]. In 
their study, they conjectured that the worst-case ratio OPT/SDP is 32 / (25  -F 5"v/5) 
0.88445 arid achieved by the 5-cycle. Even though the values of  the semidefinite program 
(11) and the corresponding eigenvalue bound (12) are the same, it appears that (11) 
provides more inforlnation (similar to the fact that a maximum llow provides more 
information than a minimum cut). By exploiting ( 11 ), Goemans and Williamson [20] 
derived a randomized algorithm that produces a cut whose expected value is at least 

0.87856 SDP, implying that OPT/SDP ) 0.87856. We describe their random hFpetplane 

technique and their elementary analysis below. 
Consider any feasible solution Y to ( 11 ). Since Y admits a Gram representation (see 

preliminaries), there exist vectors vi ~ !R a (for some d ~< n) for i ¢ V such that 
.vii = t4rci. The (act that Y5 = 1 implies that the vi's have unit norm. Let r be a vector 
uniformly generated from the unit sphere in R 'l, and consider the cut induced by the 
hyperplanc {x I r f x  = 0} normal to r, i.e. the cut 8(S)  where S = {i C V I rTvi >~ 0}. 
The motivation behind the uniform choice for r is that the set of lnatrices B such 
that BTB = Y is closed under orthogonal transformations (or informally rotations). 

Furthermore, observe thai: if the matrix Y is of  rank one (and thus corresponding to a 
cut), this random hyperplane technique would recover the cut with probability 1. 

By elementary arguments, one can show that the probability that I.~i and vj are separated 
is precisely 0/77", where 0 = arccos(t:ir~:j) is tile angle between vi and v i. By linearity 

of expectation, lhe expected weight of the cut is exactly given by: 

arccos ( ,]'v i ) 
E [ w ( 5 ( S ) ) l  = E wij (13) 

27 
(i.j)EE 

Conlparing this expression term by terln to the objective function of I I) and us- 
ing tile fact Ihat arccos(;c) /rr  ~> cr½(I - x )  where cr = 0 .87856. . . .  we derive that 
E[.,(a(S))] >. cr¼L(G) ,, Y. Hence if we apply tlae random hyperp[ane technique to 
a feasible sohllion Y ot" value > (1 - e )SDP (which can be obtained in polynomial 
time), we obtain a random C U t  Of expected wllue greater or equal to or( 1 - e ) S D P  >~ 

0.87856 SDP > 0.87856 OPT. Mahajan and Ramesh [47] have shown that this technique 
can be derandotnized, therefore giving a deterministic 0.87856-approximation algorithm 

15r MAX CUT. 
The worst-case value for OPT/SDP is thus somewhere between 0.87856 and 0.88446, 

and even though this gap is small, it would be very interesting to prove Delorme and 
Poljak's conjecture that the worst-case is given by the 5-cycle. This would, however, 
require a new technique. Indeed, Karloff [31] has shown that the analysis of the 

random hyperplane technique is tight, namely there exists a family of  graphs for which 
the expected weight E[ u.,(a(S) ] of  the cut produced is arbitrarily close to ++SDP. 

Instead of comparing (13) and (11) term by term, Nesterov 152l recently proposed 
a different analysis proving that E [ w ( 8 ( S ) ) ]  /> 2 (¼L(G)  • Y). Even though the re- 
suiting bound of 2 / r r  = 0 .63661- . .  is weaker than 0.87856, the analysis only assumes 
that L(G)  > 0 mad not the stronger requirement that the weights are nonnegative. Fur- 
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thermore, it has wider applicabiIily than the term-by-lerm analysis (see [52]) .  Letting 
I arcsin(Y) = [arcsin(Yij ) ], we can write 2El  w(8(S)  ) ] = ~ ~"(i,j)~E Wi) aFCCOS(UTUJ) = 

1 a ~ ( i , j ) e~  w i j ( r r - 2  arcsin(v] 'vj))  = ¼L(G) -arcsin(Y).  Therefore, to derive Nesterov's 
result, we need to prove that L(G)  • (arcs in (Y)  - Y) ~> 0. Assuming that L(G)  >-_ 0 

(which holds if the weights are nonnegative), this result follows from a claim that 

arcsin(Y) >2-_ Y. 
In order to show that arcsin(Y) "Z-_ Y, we need the following classical definitions 

and results. Given two matrices A, B E M,,, the Hadamard product (or Sclmr product) 
of A and B, denoted by A o B, is the entry-wise multiplication of  A and B, that is 

the matrix C = [cij] such that c~i = aijbij. The Schur product theorem says that if 

A , B  ~ 0 then A o B :2_ 0. In particular, this implies that [a~j] >_ 0 provided that 
9 

c , -  4 - . . .  is an analytic function A = [aij] :2_ 0. Furthermore, if f ( ~ )  = co + ClZ + "2" 
with nonnegative coefficients and convergence radius R > 0 then [f(a<j)  ] _>- 0 provided 

that A = [aij] >± 0 and laii[ < R. We now derive that arcsin(Y) >_ Y from f ( x )  = 

arcsin(x) - x = 9773.3 . -  + ~ x  5 + . . . .  
No better approximation algorithm is currently known for lVIAX CUT. On the negative 

side though. H~stad [26] has shown that it is NP-hard to approximate MAX CUT within 

16/17 + 8 = 0 .94117 . . .  for any e > 0. Ful'thernlore. I4'Jstad shows that if we replace 
I I the objective function by 5 ~(i . j }<f- i  w(j( 1 - yiYj) + 5 ~(i,.j}EE: wii ( I + yiyj), then the 

resulting problem is NP-hard to approximate within ]1/12 + e = (i).91666.-., while the 
random hyperplane technique still gives the same guarantee of o~ ,-.; 0.87856. 

Several aulhors have proposed to strengthen (11) by adding triangle inequalities, 
requiring that, for any' i , j ,  k c-_ V, ~- , 2_ ±± Y~k =-3u ~-Yit /> - I  whenever we have an even 

number of  minus signs. One of the motivating factor is that these (retalively simple 

looking, but still hard to analyze) inequalities are sulficient to describe the cut polytope 
for the 5-cycle (or any planar graph 18J) provided we consider all triplets ( i , j , k ) .  If 

we denote the resulting upper hound by SDP', no belter bound than 0.87856 is known 

for the worst-case ratio OPT/SDP'  in general (see [58] for special cases). The ratio 

OPT/SDP'  is known to be equal to (1.96 lot the complete graph Ks, and instances 

wilh a slightly worse gap ( ~  .957) were oblained by Andress and Cheriyan (private 
communication).  However, in light of HSstad's result and the polynomial solvahility of  

semidefinite programs, worse insta ices shoulct exist (unless P = NPI! 

We have implemented the approximation a~gorithm and have performed limited com- 

putational testing. The results wilt be published after more extensive computational tests. 

Wc would like nevertheless to gh, e a preview of some features of the implementation. 

First we have noliced that the fact that the algorithm is randomized is a plus; by gener- 

ating several hyperplanes, one typically gets cuts of weight significantly higher than the 

expected value; theoretically speaking, it is however difficult to e~'et an a priori estimate 

o1 the variance of  the weight of  the cut (which can be zero even if the dimension is 

not one, as for an odd cycle). Furthermore, the vectors {L.'i} typically lie in a very low- 

dimensional space (see [9,54,2] and [201 for theoretical explanations), and as a result, 

one can often enumerate all possible hyperplane cuts. Finally, and more importantly, the 
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dual semidefinite program can be exploited very nicely in a branch-and-bound scheme, 

and this often allows to prove optimality of  the cut produced for instances with up to 

100 vertices. The dual can be reinterpreted as follows: 

1 { ui 2 } SDP = ~ m i n  ~ uTuj = wij for all ( i , j )  E E , 
i 

and the vectors ui can be obtained by a Cholesky decomposition. The fact that this 

expression is an upper bound on OPT is obvious: given a cut 6 ( S ) ,  its weight is equal 

to S i c s ~ i ~ s W z j  = (~-'~.,EsUi)T(~j~sU.j) = ¼(b+ x ) r ( b -  x) = L(4 Ilbll 2 - Ilxlt:) < 
1 ~llbll '~, where b = ~iEV ui and x = ~ iES  u i -  ~ i c s u j .  Ohserve that we used a trivial 

bound on Ilxl] ~- - ~ ,  x~ > 0. If  we can prove that, no matter how V is partitioned into 

S and V - S, ]x,] is at least 8, ,  then we can refine our upper bound to SDP - ~ ,  ~ .  
In particular, if coordinate k of  ui is zero for all but one vector then we can trivially let 

8h. = Ixkl. This may seem trivial, but it leads to a powerful branch-and-bound scheme. 

First, since the t t i 'S a r e  obtained by a Cholesky decomposition, we can assume that 

only the first i components of  ui are nonzero, In our branch-and-bound procedure, any 

node at level n - I  corresponds to an assignment 7- ' { l +  1 , l + 2  . . . . .  n} ~ {0,1} 

whcre r ( t , )  indicates if L~ is constrained to be in S or in V - S. Therefore, for cuts 

corresponding to this node, we can let 8, = Iz*.l for k > I and 6k = 0 otherwise, 

where z = ~i>l:r(i)=l tti --~i>l:r(i)=O Ill" The main advantage of  this procedure is that 
the computation of these improved upper bounds is negligible (once we have solved the 

semidefinite program at the root node) ; we can therefore explore a very large number of  

nodes (easily a bi l l ion).  This branch-and-bound code often allows to prove optimality 

of  the best hyperplane cut generated, especially lbr problems wilh up to 100 vertices; in 

these cases, the branch-and-bound procedure typically takes less time than the solution 

of the initial semidefinite program. Details and extensive computational tests will be 

given in a forthcoming experimental paper. 

The results described in this section have been extended and generalized to other 

combinatorial  optimization problems: the maximum dicut problem and the maximum 

2-satisfiability problem [20,18],  the problem of coloring 3-colorable graphs [30],  the 

maximum k-cut and maximum bisection problems [19],  and the betweenness prob- 

lem [12].  

6. Embeddings of finite metric spaces 

We would like to conclude with some open problems related to the power of semidef- 

inite programming for the sparsest cut problem. This is a fascinating area but, unlbrtu- 

nately, we will be able to explore only the tip of the iceberg. 

We first collect some results on finite metric spaces; references for most results 

mentioned here can be found in the new book of Dcza and Laurent [ 16]. A (finite) 

( semi )-metric d : V x V ~ R on V satisfies d( i , i )  = 0 for all i ~ V, dij = dji for all 

i, j ~_ V, and do-I-djk >~ dik tbr all i,./, k E V. d is said to be lp-embeddable if  there exists 
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xi C R k ( i E V)  for some k such that d(  i, j )  = I l x i -  x iHt,; similarly, d is/p-embeddable 

with distortion c if there exists xi E R d such that d ( i , j )  < ]lxi - x.ieep <. c d ( i , j ) .  Any 

(finite) metric d i s /~-embeddable ,  and deciding if d is/ i-embeddable is NP-hard. Any 
/2-embeddable metric is in fact/t-embeddabie (a random projection onto a line similar to 
the random hyperplane technique can be seen to imply this result). It is also known that 
d is l?-embeddable i f f P  [Pi.i] 2 2 2 = = [ d l i + d l j - d i . i ]  ~ 0 (this is independent of the choice 
of  1 E V), and thus the 12-embeddability can be tested in polynomial time. Moreover, 

finding the (square of  the) smallest distortion for an /z-embedding of  d is therefore a 

semidefinite program [40]:  min{t ] d~i <~ -rJi <<- td~i for all i , j ,  [Xli + x U - x~j] ~_ 0}, 
Bourgain I10] has shown that any finite metric on n points can be embedded with 

distortion O ( l o g n )  into 12 (and thus also l i ) ;  it would be nice to prove this result 

from semidefinite programming duality. An interesting open problem in this area is 

whether any /l-embeddable metric on n points can be embedded into 12 with distortion 

O ( ~  n) (and this would be tight because of the d-dimensional hypercube). 

Let K = {X = [aij] E ~3 [ [x,i + x l j -  xij] ~- 0}, where ~ denotes symmetric n x ,1 

matrices with zero elements on the diagonal. Thus d is 12-embeddable if [d~j] E K. If  

D = [dLi] ~ K and d is a metric then d is called a negative O'pe metric; the requirement 
that d is a metric now translates into the fact that the angle between any three points 

of  the /2-embedding of  the metric ~ is either acute or right. Any /l-embeddable 

metric can be seen to be of negative type. Finding the best negative type metric subject 

to linear constraints can therefore be solved in polynomial time through semidefinite 
programming. (As an exercise, the reader can reinterpret the bounds on the maximum 

cut problem in terms of  negative type metrics.) One can show that K is a pointed closed 

convex cone, and its polar can be expressed nicely as 

K* = {Y ¢ 5~ I C(Y) ~ 0}, (14) 

where L(Y) is the Laplacian of Y. 

In the sparsest cut problem, we would like to find a cut minimizing w(~(S))/(ISIIV- 
S I ) in a (nonnegatively weighted) undirected graph G = (V, E). Since the cone generated 
by incidence vectors of  cuts (also called cut metrics) is precisely the h-embeddable 
metrics, the problem reduces to 

ctCIi ( " " 
( i , ] )EE i j 

If we relax the requirement that d is ll-embeddable to simply being a metric, we obtain 

a linear programming relaxation (whose dual is a multicommodity flow problem) of  the 

sparsest cut problem. Leighton and Rao [38] show that this relaxation is always within 

O( logn )  of  the optimun] sparsest cut, and recently Linial et al. [40] (see also [6] )  
used Bourgain's result [ 10] to generalize this result. Moreover, the logarithmic ratio is 

tight as is shown by constant degree expander graphs. 

If  instead we relax the /l-embeddability of  d to membership in K (and not even 

impose that d is a metric), we obtain the following linear program over the cone K: 
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(i,j)EE i j 

By duality over cones (see Section 2) and (14),  this is equivalent to 

z = m a x { a  I L(G)  AL(J  - 1) ~ 0). 

Using the facts that L ( J -  I)  = nl  - J  and that the vector of  all l 's  is an eigenvector of  

both L(G) and J, this dual can be shown to be equivalent to a well-known eigenvalue 
bound [3,5,62]" z = ~ , ~ 2 ( L ( G ) ) .  See these references for relations between z and the 

value of  the sparsest cut. 

Finally, we could impose that d is a negative type metric, therefore getting a lower 

bound on the sparsest cut which is slronger than both the LP relaxation and the eigen- 

value bound. Using duality and (14),  we can express this bound in many different ways, 

and we leave this as an exercise for the reader. The most interesting question thot, gh 

is the worst-case ratio between the sparsest cut and this lower bound, If one could 

show that negative type metrics can be embedded into I2 with O ( ~ n )  distortion 

(or possibly even into Ii within a constant), this would give a worst-case ratio that is 

O ( ~ )  (respectively constant This is a very intriguing question. 
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