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C
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What C are we talking about? 

 A key component in the analysis of 
real-time systems 

 You have seen it in formulas such as: 

Ri = Ci + ∑ Ri / Tj Cj 
j∈hp(i)         

Worst-Case 
Response Time Period 

Where do these C values come from? 

Worst-Case 
Execution Time 

Program timing is not trivial! 

Simpler questions 

  What is the program 
doing? 

  Will it always do the 
same thing? 

  How important is  
the result? 
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int f(int x) { 

   return 2 * x; 

} 

Harder questions 

  What is the execution 
time of the program?  

  Will it always take the 
same time to execute? 

  How important is 
execution time?  
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Program timing basics 
 Most computer programs have varying 

execution time 
  Due to input values  
  Due to software characteristics 
  Due to hardware characteristics 

 Example: some timed program runs 
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0 execution time 

pr
og
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 ru
ns

 

Most runs have 
similar execution time  

Some take much 
longer time (why?)  

Is this the longest 
execution time... 

... or can we get 
even longer ones?  

safe  
upper 
timing 

bounds 

possible 
execution times 

WCET and WCET analysis 
 Worst-Case Execution Time = WCET 

  The longest calculation time possible 
  For one program/task when run in isolation 
  Other interesting measures: BCET, ACET 

 The goal of a WCET analysis is to derive  
a safe upper bound on a program’s WCET  

time 

safe  
lower 
timing 

bounds 

0 

 BCET  WCET 

Presentation outline 
 Embedded system fundamentals 
 WCET analysis 

  Measurements  
  Static analysis  
  Flow analysis, low-level analysis, and calculation 
  Hybrid approaches 

 WCET analysis tools 
 The SWEET approach to WCET analysis 

 Multi-core + WCET analysis? 
 WCET analysis assignment 

Embedded 
systems 

fundamentals 
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Embedded computers 
  An integrated part of a larger system 

  Example: A microwave oven contain at  
least one embedded processor  

  Example: A modern car can contain more  
than 100 embedded processors 

  Interacts with the user,  
the environment, and  
with other computers  
  Often limited or  

no user interface 
  Often with  

timing constraints 

Embedded systems everywhere 

 Today, all advanced 
products contain  
embedded computers! 
  Our society is dependant on  

that they function correctly 
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Embedded systems software 

 Amount of software can vary from  
extremely small to very large 
  Gives characteristics to the product 

 Often developed with target  
hardware in mind 
  Often limited resources (memory / speed) 
  Often direct accesses to different HW devices 
  Not always easily portable to other HW 

 Many different programming languages 
  C still dominates, but often special purpose languages  

 Many different software development tools  
  Not just GCC and/or Microsoft Visual Studio 

Embedded system hardware 
 Huge variety of embedded  

system processors 
  Not just one main processor type as for PCs  
  Additionally, same CPU can be used with various  

hardware configurations (memories, devices, …)  

 The hardware is often tailored  
specifically to the application  
  E.g., using a DSP processor for signal  

processing in a mobile telephone 

 Cross-platform development 
  E.g., develop on PC and download  

final application to target HW  
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Timely Software - a Challenge 13 

Some interesting figures 
  4 billion embedded processors sold in 2008 

  Global market worth €60 billion 
  Predicted annual growth rate of 14%  
  Forecasts predict more than 40 billion embedded devices in 2020 

  Embedded processors clearly dominate yearly 
production  

Source: http://www.artemis-ju.eu/embedded_systems 

Real-time systems 
 Computer systems where the timely 

behavior is a central part of the function 
 Containing one or more embedded computers 
 Both soft- and hard real-time, or a mixture… 

Timing of radio 
communication, 

speech 
recognition,… 

Timing of music 
playing from MP3 file 

Timing of radio 
communication, motor 

control, rudder and 
flaps control,… 

Timing of network 
communication, motor 
control, ABS brakes, 

anti-slip control,… 

Uses of reliable WCET bounds 

 Hard real-time systems  
  WCET needed to guarantee behavior 

 Real-time scheduling 
  Creating and verifying schedules 
  Large part of RT research assume  

the existence of reliable WCET bounds 

 Soft real-time systems 
  WCET useful for system understanding 

 Program tuning 
  Critical loops and paths 

 Interrupt latency checking 

WCET 
analysis 
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Obtaining WCET bounds 

 Measurement 
 Industrial practice 

 Static analysis  
 Research front 

Measuring for the WCET 

 Methodology: 
 Determine potential 

”worst-case input” 
 Run and measure 
 Add a safety margin 

18 
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Measurement issues 
 Large number of potential worst-case inputs 

  Program state might be part of input 

 Has the worst-case path really been taken? 
  Often many possible paths through a program 
  Hardware features may interact in unexpected ways 

 How to monitor the execution?  
  The instrumentation   

may affect the timing 
  How much instrumention 

output can be handled?  
LEDs 

Buzzer 
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SW measurement methods 
 Operating system facilities 

  Commands such as time,  date and clock 
  Note that all OS-based solutions require  

precise HW timing facilities (and an OS) 
 Cycle-level simulators 

  Software simulating CPU 
  Correctness vs. hardware? 

 High-water marking 
  Keep system running 
  Record maximum time  

observed for task 
  Keep in shipping systems,  

read at service intervals 
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Using an oscilloscope 
 Common equipment for HW debugging  

  Used to examine electrical output  
signals of HW  

 Observes the voltage or signal 
waveform on a particular pin 

  Usually only two to four inputs 

 To measure time spent in a routine:  
1.  Set I/O pin high when entering routine  
2.  Set the same I/O pin low before exiting  
3.  Oscilloscope measures the amount of  

time that the I/O pin is high  
4.  This is the time spent in the routine 
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Using a logic analyzer 
 Equipment designed for 

troubleshooting digital 
hardware 

 Have dozens or even 
hundreds of inputs 
  Each one keeping track on 

whether the electrical signal 
it is attached to is currently 
at logic level 1 or 0 

  Result can be displayed 
against a timeline   

  Can be programmed to start 
capturing data at particular 
input patterns 

Target  
board 

HW Debugger  

23 

HW measurement tools 
  In-circuit emulators (ICE) 

 Special CPU version revealing internals 
 High visibility & bandwidth 
 High cost + supportive HW required 

 Processors with debug support 
 Designed into processor 

 Use a few dedicated processor pins 
 Using standardized interfaces 

 Nexus debug interfaces, JTAG,   
Embedded Trace Macrocell, …  

 Supportive SW & HW required 
 Common on modern chip 

Problem of using measurement 

 Measured time never exceeds WCET 

How do we know that we catched 
the WCET? 
 A safety margin must be added, but how 

much is enough? 

safe  
upper 
timing 

bounds 

possible 
execution times 

time 

safe  
lower 
timing 

bounds 

0 

 BCET  WCET 

Only this measurement 
is safe (= WCET)! 

Measurement will result 
in a value ≤ WCET 
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Static 
WCET 

analysis 

Static WCET analysis 
 Do not run the program – analyze it! 

  Using models based on the static properties of the 
software and the hardware 

 Guaranteed safe WCET bounds 
  Provided all models, input data and analysis  

methods are correct 
 Trying to be as tight as possible 

safe  
upper 
timing 

bounds 

possible 
execution times 

time 

safe  
lower 
timing 

bounds 

0 

 BCET  WCET 

All derived 
bounds will 
be ≥ WCET 

foo(x,i):  

  while(i < 100)     

     if (x > 5) then 

       x = x*2; 

     else 

       x = x+2; 

     end 

     if (x < 0) then 

       b[i] = a[i]; 

     end 

     i = i+1; 

  end 

Again: Causes of  
Execution Time Variation 

 Execution characteristics  
of the software  
 A program can often execute  

in many different ways 
  Input data dependencies 
 Application characteristics 

 Timing characteristics  
of the hardware  
 Clock frequency 
 CPU characteristics 
 Memories used 
 … Analysis

WCET analysis phases 

Reality

Compiler

Object 
Code

Target 
Hardware

program

Low level
analysis

Calculation

Flow 
analysis

1. Flow analysis  
 Bound the number of times 

different program parts may 
be executed (mostly SW analysis) 

2. Low-level analysis 
 Bound the execution time  

of different program parts 
(combined SW & HW analysis) 

3. Calculation 
 Combine flow- and low-level 

analysis results to derive an 
upper WCET bound 

Actual 
WCET WCET 

bound
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Flow 
analysis 

30 

Flow Analysis 
 Provides bounds on the number 

of times different program parts 
may be executed 
 Valid for all possible executions 

 Examples of provided info: 
 Bounds of loop iterations 
 Bounds on recursion depth 
  Infeasible paths 

  Info provided by:  
 Static program analysis 
 Manual annotations 

Flow  
analysis 

Low level 
analysis 

Calculation 

Program 

WCET 
Estimate 

The control-flow graph 
    foo(x,i):  

A:   while(i < 100)     

B:     if (x > 5) then 

C:       x = x*2; 

       else 

D:       x = x+2; 

       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 

       end 

G:     i = i+1; 

     end 

Flows as 
edges 

foo()

C

A

B

D

E

F

G

end

Each block 
will run as a 

unit 

Flow info characteristics 

Statically allowed 

Actual feasible 
paths 

               #F < 10 

Structurally possible 
 executions (infinite) 

WCET found here =  
desired result

    foo(x,i):  

A:   while(i < 100)     

B:     if (x > 5) then 
C:       x = x*2; 

       else 

D:       x = x+2; 

       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 

       end 

G:     i = i+1; 

     end 

foo()

C

B

D

E

F

G

end

A

WCET found here = 
 overestimation 
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Example: Loop bounds 
 Loop bound:  

  Depends on possible values 
of input variable i 
 E.g. if 1 ≤ i ≤ 10 holds for input 

value i then loop bound is 100 

  In general, a very difficult 
problem 

  However, solvable for many 
types of loops 

 Requirement for basic 
finiteness 
  All loops must be  

upper bound 

    foo(x,i):  

A:   while(i < 100)     

B:     if (x > 5) then 

C:       x = x*2; 

       else 

D:       x = x+2; 

       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 

       end 

G:     i = i+1; 

     end 

Example: Infeasible path 

 Infeasible path: 
 Path A-B-C-E-F-G  

can not be executed 
 Since C implies ¬F 
  If (x > 5) then it is not 

possible that (x*2) < 0 
 Limits statically 

allowed executions 
 Might tighten the 

WCET estimate 

    foo(x,i):  

A:   while(i < 100)     

B:     if (x > 5) then 

C:       x = x*2; 

       else 

D:       x = x+2; 

       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 

       end 

G:     i=i+1; 

     end 

35 

Example: Triangular Loop 

 Two loops: 
 Loop A bound: 100  
 Local B bound: 100 

 Block C:  
 By loop bounds: 

100 * 100 = 10 000 
 But actually: 

100+...+1 = 5 050 
 Limits statically 

allowed executions 
 Might tighten the 

WCET estimate 

   triangle(a,b):  
A:   loop(i=1..100) 
B:    loop(j=i..100) 
C:       a[i,j]=...  
       end loop 
     end loop 

int i=0; 
...  
while(i<100) 
{ 
  ...  
  i++; 
} 
...  

The mapping problem 
  Flow analysis easier on source code level  

  Semantics of code clearer 
  Easier for programmer/tool to derive flow info 

  Low-level analysis requires binary code 
  The code executed by the processor 

  Question: How to safely map flow source code level 
flow information to binary code? 

... 
0111111010010111 
0110010100101001 
1001010100111010 
1001010011111110 
1010010101010100 
1001010101010101 
... 

Loop bound 
(header): 101 

Where is 
the loop?  

Source code Executable  
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The mapping problem (cont) 
  Embedded compilers often do a lot of code optimizations 

  Important to fit code and data into limited memory resources 
  Optimizations may significantly change code (and data) layout 

  After optimizations flow info may no longer be valid 
  Solutions:  

  Use special compiler also mapping flow info (not common)  
  Use compiler debug info for mapping (only works with little/no optimizations) 
  Perform flow analysis on binaries (most common) 

37 

 int i=0; 
 ...  
 while(i<100) { 
   ...  
   i++; 
 } 
 ...  

 int i=0; 
 ...  
 do { 
   ...  
   i++; 
 } while(i<100) 
 ...  

Flow analysis:  
Loop condition  
taken 101 times 

Compiler: i=0  
always holds at  
first execution  

of loop condition  

Loop condition  
taken 100 times 

Before optimization After optimization 

Executable 

1000110000011110 
1000110000100000 
1010110000100000 
1010110000011110 
1010110000100011 
1010111100011001 

Linker 

Object File 

Object File 

Object File 

twice: 
   mov    ip, sp 
   stmfd  sp!, {fp,ip,lr,pc} 
   sub    fp, ip, #4 
   sub    sp, sp, #8 
   str    r0, [fp, #-16] 
   ldr    r3, [fp, #-16] 
   mov    r3, r3, asl #1 
   str    r3, [fp, #-20] 
   ldr    r3, [fp, #-20] 
   mov    r0, r3 
   ldmea  fp, {fp,sp,pc} 

Compiler 

Embedded SW Tool Chain 

C Source 

C Source 

C Library 

C Runtime 

Start-up 

OS 
C Source 

WCET 

int twice(int a) { 
  int temp; 
  temp = 2 * a; 
  return temp; 
} 

Affects  
timing 

Affects  
timing Affects  

timing Affects  
timing Affects  

timing 

Affects  
timing 

Affects  
timing 
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The SW building tools 
 The compiler: 

  Translates an source code file to an object code file 
 Only translates one source code file at the time 

  Often makes some type of code optimizations  
 Increase execution speed, reduce memory size, … 
 Different optimizations give different object code layouts 

 The linker: 
  Combines several object code files into one executable 

 Places code, global data, stack, etc in different memory parts 
 Resolves function calls and jumps between object files 

  Can also perform some code transformations 

 Both tools may affect the program timing! 
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Example: compiling & linking 
/****************** 
 * File: main.c 
 *****************/  
int foo();  

int main() { 
  return 1 + foo(); 
} 

/****************** 
 * File: foo.c 
 *****************/  

int foo() { 
 return 1; 

} 

Contains object  
code for main.c 

Object code contains an 
unresolved call to foo  

Compiler main.o 

Contains object  
code for foo.c 

Compiler foo.o 

The main.o and 
foo.o object code 
files are combined 

The call to foo 
in main has 

been resolved 

Linker a.exe 
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Common additional files 
 C Runtime code: 

  Whatever needed but not supported by the HW 
 32-bit arithmetic on a 16-bit machine 
 Floating-point arithmetic  
 Complex operations (e.g., modulo, variable-length shifts) 

  Comes with the compiler  
  May have a large footprint 

 Bigger for simpler machines 
 Tens of bytes of data and tens of kilobytes of code   

 OS code:  
  In many ES the OS code is linked together with the rest  

of the object code files to form a single binary image  

42 

Common additional files 

  Startup code:  
  A small piece of assembly code that prepares the way for 

the execution of software written in a high-level language 
 For example, setting up the system stack 

  Many ES compilers provide a file named  
startup.asm,  crt0.s,  … holding startup code 

  C Library code: 
  A full ANSI-C compiler must provide code that implements  

all ANSI-C functionality  
 E.g., functions such as printf, memmove, strcpy 

  Many ES compilers only support subset of ANSI-C 
  Comes with the compiler (often non-standard) 

Low-level 
analysis 

Low-Level Analysis 
 Determine execution time bounds 

for program parts 
 Focus of most WCET-related research 

 Using a model of the target HW 
 The model does not need to model all 

HW details 
 However, it should safely account for 

all possible HW timing effects 

 Works on the binary, linked code 
 The executable program 

Flow  
analysis 

Program 

Low level 
analysis 

Calculation 

WCET 
Estimate 
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Some HW model details 
  Much effort required to safely model CPU internals 

  Pipelines, branch predictors, superscalar, out-of-order, … 
  Much effort to safely model memories 

  Cache memories must be modelled in detail 
  Other types of memories may also affect timing 

  For complex CPUs many features must be  
analyzed together 
  Timing of instructions get very history dependant 

  Developing a safe HW timing model troublesome 
  May take many months (or even years) 
  All things affecting timing must be accounted for  

Hardware time variability   
  Simpler 4-, 8- & 16-bit processors (H8300, 8051, …): 

  Instructions might have varying execution time due to 
argument values 

  Varying data access time due to different memory areas 
  Analysis rather simple, timing fetched from HW manual  

  Simpler 16- & 32-bit processors, with a (scalar) pipe-
line and maybe a cache (ARM7, ARM9, V850E, …): 
  Instruction timing dependent on previously 

executed instructions and accessed data:  
 State of pipeline and cache  

  Varying access times due to cache hits and misses 
  Varying pipeline overlap between instructions 
  Hardware features can be analyzed in isolation 

Hardware time variability 
  Advanced 32- & 64-bit processors (PowerPC 7xx, 

Pentium, UltraSPARC, ARM11, …): 
  Many performance enhancing features affect timing 

 Pipelines, out-of-order exec, branch pred., caches, 
speculative exec.   

 Instruction timing gets very history dependent     
  Some processors suffer from timing anomalies 

 E.g., a cache miss might give shorter overall  
program execution time than a cache hit 

  Features and their timing interact  
 Most features must be analyzed together  

  Hard to create a correct and safe  
hardware timing model! 

  Multi-cores - discussed later 
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Example: CPU pipelines 
 Observation: Most instructions go through 

same stages in the CPU 
 Example: Classic RISC 5-stage pipeline 

IF ID EX MEM WB 

Instruction fetch (IF) 
 Get the next instruction 
from memory to process 

(its address is held by PC)  

Instruction decode 
Determine operation to be 

performed (i.e., extract 
opcode and arguments) 

Execute 
Perform the actual 

operation (e.g, an add)  

Memory access 
Load/store values 
from/to memory if 

needed  

Write back 
Write the result into 
the target register   
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CPU pipelines 
  Idea: Overlap the CPU stages of the  instruct-

ions to achieve speed-up 
 No pipelining: 

  Next instruction  
cannot start before  
previous one has  
finished all its stages 

 Pipelining: 
  In principle: speedup = pipeline length 
  However, often dependencies 

between instructions 

IF 
ID 
EX 

MEM 
WB 

1 2 3 5 6 4 

IF 
ID 
EX 

MEM 
WB 

1 2 3 5 6 7 4 8 9 10 

I1. add $r0, $r1, $r2 
I2. sub $r3, $r0, $r4 

Example: RAW 
dependency 

I2 depends on 
completion of 
data write of I1 

May cause  
pipeline stall 
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Pipeline Variants 
 None: Simple CPUs (68HC11, 8051, …) 
 Scalar: Single pipeline (ARM7,ARM9,V850, …) 
 VLIW: Multiple pipelines, static, compiler 

scheduled (DSPs, Itanium, Crusoe, …) 
 Superscalar: Multiple pipelines, out-of-order  

(PowerPC 7xx, Pentium, UltraSPARC, ...) 

IF 
ID 
EX 

MEM 
WB 

1 2 3 5 6 7 4 8 9 10 11 Blue instruction 
occupies EX stage 
for 2 extra cycles 

This stalls both 
subsequent 
instructions 

Example: No Pipeline 
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    foo(x,i):  

A:   while(i < 100)     

B:     if (x > 5) then 

C:       x = x*2; 

       else 

D:       x = x+2; 

       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 

       end 

G:     i = i+1; 

     end 

 Constant time 
for each block  
in the code 

 Object code  
not shown 

Example: No pipeline 
foo()

C

A

B

D

E

F

G

end

    foo(x,i):  

A:   while(i < 100)     

B:     if (x > 5) then 

C:       x = x*2; 

       else 

D:       x = x+2; 

       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 

       end 

G:     i = i+1; 

     end 
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    foo(x,i):  

A:   while(i < 100)     

B:     if (x > 5) then 

C:       x = x*2; 

       else 

D:       x = x+2; 

       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 

       end 

G:     i = i+1; 

     end 

A

B

Example: Simple Pipeline 

B
IF
EXEX
M
F

1 2 3 4 5

IF
EXEX
M
F

1 2 3 4 5 6 7
A IF

EXEX
M
F

1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 9
IF
EXEX
M
F

10
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Example: Pipeline result 
foo()

C

A

B

D

E

F

G

end

    foo(x,i):  

A:   while(i < 100)     

B:     if (x > 5) then 

C:       x = x*2; 

       else 

D:       x = x+2; 

       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 

       end 

G:     i = i+1; 

     end 
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IF
EX
M
F

IF
EX
M
F

Pipeline Interactions 

IF
EX
M
F

IF
EX
M
FIF

EX
M
F

IF
EX
M
F

IF
EX
M
F

IF
EX
M
F

Pairwise overlap: speed-up 

Interaction across more than 
two blocks also possible! 
Can be both speed-up or slow-down  

Larger  
storage  
capacity 

The memory hierarchy 

Main memory

 Cache 
memory

Caches store 
frequently used 

instructions and data 
(for faster access) 

Main memory has larger 
storage capacity but 
much longer access  

time than caches 

Faster 
access  

time 

CPU
Caches increase 

average speed, but 
give more variable 

execution time 

Many variants exists:  
instruction caches, 

data caches,  
unified caches,  

cache hierarchies, …  

The CPU executes 
instructions. It also need 
to access data to perform 

operations upon 
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Example: Cache analysis 
fib: 
  mov  #1, r5 
  mov  #0, r6 
  mov  #2, r7 
  br  fib_0 

fib_1: 
  mov  r5,r8 
  add  r6,r5 
  mov  r8,r6 
  add  #1,r7 

fib_0: 
  cmp  r7,r1 
  bge  fib_1 

fib_2: 
  mov  r5,r1 
  jmp  [r31] 

 Performed on the 
object code 

 Only direct-mapped 
instruction cache in 
this example 

What instructions will 
cause cache misses? 

Cache misses takes 
much more time 
than cache hits! 

Main memory

 Cache 
memory

 CPU
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Example: Cache analysis 

fib: 
  mov  #1, r5  2  1000 
  mov  #0, r6  2  1002 
  mov  #2, r7  2  1004 
  br  fib_0   2  1006 

fib_1: 
  mov  r5,r8   2  1008 
  add  r6,r5   2  1010 
  mov  r8,r6   2  1012 
  add  #1,r7   2  1014 

fib_0: 
  cmp  r7,r1   2  1016 
  bge  fib_1   2  1018 

fib_2:  
  mov  r5,r1   2  1020 
  jmp  [r31]   2  1022 

Starting 
address 

Size of 
instruction 

 Information 
needed for 
instruction 
cache 
analysis 
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Example: Cache analysis 
fib: 
  mov  #1, r5  2  1000 
  mov  #0, r6  2  1002 
  mov  #2, r7  2  1004 
  br  fib_0   2  1006 

fib_1: 
  mov  r5,r8   2  1008 
  add  r6,r5   2  1010 
  mov  r8,r6   2  1012 
  add  #1,r7   2  1014 

fib_0: 
  cmp  r7,r1   2  1016 
  bge  fib_1   2  1018 

fib_2:  
  mov  r5,r1   2  1020 
  jmp  [r31]   2  1022 

 Mapping to 
instruction 
cache 
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Example: Cache analysis 
fib: 
  mov  #1, r5 
  mov  #0, r6 
  mov  #2, r7 
  br  fib_0 

fib_1: 
  mov  r5,r8 
  add  r6,r5 
  mov  r8,r6 
  add  #1,r7 

fib_0: 
  cmp  r7,r1 
  bge  fib_1 

fib_2:  
  mov  r5,r1 
  jmp  [r31] 

miss 
hit 
hit 
hit 

miss 
hit 

miss 
hit 
hit 
hit 
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Example: Cache analysis 
fib: 
  mov  #1, r5 
  mov  #0, r6 
  mov  #2, r7 
  br  fib_0 

fib_1: 
  mov  r5,r8 
  add  r6,r5 
  mov  r8,r6 
  add  #1,r7 

fib_0: 
  cmp  r7,r1 
  bge  fib_1 

fib_2:  
  mov  r5,r1 
  jmp  [r31] 

miss 
hit 
hit 
hit 

miss 
hit 

miss 
hit 
hit 
hit 

hit 
hit 

hit 
hit 
hit 
hit 

Remaining 
iterations 

First 
iteration of 

the loop 

hit 
hit 
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1032: cmp r6,r1  

1034: blt foo_5 

Cache & Pipeline analysis 

 foo_0:  

foo_1:  

foo_2:  

foo_3:  

foo_5:  

 foo: 

foo_4:  

info 

info 

info 

info 

info 

info 

info 

 Pipeline analysis might  
take cache analysis  
results as input 
 Instructions gets annotated  

with cache hit/miss 
 These misses/hits  

affect pipeline timing 
 Complex HW require  

integrated cache &  
pipeline analysis 

1020:icache miss 

1022:icache hit 

Analysis of complex CPUs 
  Example: Out-of-order processor 

  Instructions may executes in  
parallel in functional units 

  Functional units often replicated 
  Dynamic scheduling of  

instructions 
  Do not need to follow  

issuing order  

  Very difficult analysis  
  Track all possible pipeline  

states, iterate until fixed point 
  Require integrated pipeline/icache 

/dcache/branch-prediction analysis 

  Been done for PowerPC 755 
  Up to 1000 states per instruction! 

RS holds pending 
instructions 

If all operands  
and the FU are  
ready instr. in 
RS is put in FU 

FUs and CU 
forward results 
back to RSs 

64 

Low-level analysis correctness? 

 Abstract model of the hardware is used 
 Modern hardware often very complex 

 Combines many features  
 Pipelining, caches, branch prediction,  

out-of-order... 
 Have all effects been  

accounted for? 
 Manufactures keep hardware  

internals secret 
 Bugs in hardware manuals  
 Bugs relative hardware specifications 

?
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Calculation 

Calculation 
 Derive an upper bound on the 

program’s WCET 
 Given flow and timing information 

 Several approaches used: 
 Tree-based 
 Path-based 
 Constraint-based (IPET) 

 Properties of approaches: 
 Flow information handled 
 Object code structure allowed 
 Modeling of hardware timing 
 Solution complexity 

Flow 
analysis

Program

Low level
analysis

Estimate 
calculation

WCET 
Estimate

Example: Combined flow analysis 
and low-level analysis result 

    foo(x,i):  

A:   while(i < 100)     

B:     if (x > 5) then 

C:       x = x*2; 
       else 

D:       x = x+2; 

       end 

E:     if (x < 0) then 

F:       b[i] = a[i]; 
       end 

G:     i = i+1; 

     end 

foo()

C

A

B

D

E

F

G

end

   ”Loop bound: 100” 

”C and F can’t be 
taken together” 
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Tree-Based Calculation 

loop  

foo 

header if(x>5) 

x=x/2 x=x+2 

if(x<0) 

b[i]=a[i] 

bar(i) 

 Use syntax-tree 
of program 

 Traverse tree 
bottom-up 

    foo(x):  

A:   loop(i=1..100)     

B:     if (x > 5) then 
C:       x = x*2 

       else 
D:       x = x+2 

       end 

E:     if (x < 0) then 
F:       b[i] = a[i]; 

       end 
G:     bar (i) 

     end loop 
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Tree-Based Calculation 

loop : 100 

()  

foo 

() 

header 

(7)  if(x>5) 

(5)  
x=x/2 

(12)  x=x+2 

(2)  

if(x<0) 

(4)  
b[i]=a[i] 

(8)  

bar(i) 

(20)  

 Use constant 
time for nodes 

 Leaf nodes have 
definite time 

 Rules for 
internals 

    foo(x):  

A:   loop(i=1..100)     

B:     if (x > 5) then 
C:       x = x*2 

       else 
D:       x = x+2 

       end 

E:     if (x < 0) then 
F:       b[i] = a[i]; 

       end 
G:     bar (i) 

     end loop 

(7 c) 
(5 c) 
(12 c) 

(2 c) 

(4 c) 
(8 c) 

(20 c) 
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 For a decision 
statement: max 
of children 

 Add time for 
decision 
itself 

Tree-Based: IF statement 

loop : 100 

()  

foo 

() 

header 

(7)  if(x>5) 

(5) ∑ 17 

x=x/2 

(12)  x=x+2 

(2)  

if(x<0) 

(4)  ∑ 12 

b[i]=a[i] 

(8)  

bar(i) 

(20)  

    foo(x):  

A:   loop(i=1..100)     

B:     if (x > 5) then 
C:       x = x*2 

       else 
D:       x = x+2 

       end 

E:     if (x < 0) then 
F:       b[i] = a[i]; 

       end 
G:     bar (i) 

     end loop 
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Tree-Based: LOOP 
 Loop: sum the 

children 
 Multiply by loop 

bound 
loop : 100 

∑ 56 * 100  

foo 

() 

header 

(7)  if(x>5) 

(5) ∑ 17 

x=x/2 

(12)  x=x+2 

(2)  

if(x<0) 

(4) ∑ 12 

b[i]=a[i] 

(8)  

bar(i) 

(20)  

    foo(x):  

A:   loop(i=1..100)     

B:     if (x > 5) then 
C:       x = x*2 

       else 
D:       x = x+2 

       end 

E:     if (x < 0) then 
F:       b[i] = a[i]; 

       end 
G:     bar (i) 

     end loop 
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Tree-Based: Final result 
 The function 

foo() will take 
5600 cycles in 
the worst case 

loop : 100 

∑ 56 * 100  

foo 

∑ 5600 

header 

(7)  if(x>5) 

(5) ∑ 17 

x=x/2 

(12)  x=x+2 

(2)  

if(x<0) 

(4) ∑ 12 

b[i]=a[i] 

(8)  

bar(i) 

(20)  

    foo(x):  

A:   loop(i=1..100)     

B:     if (x > 5) then 
C:       x = x*2 

       else 
D:       x = x+2 

       end 

E:     if (x < 0) then 
F:       b[i] = a[i]; 

       end 
G:     bar (i) 

     end loop 
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Path-Based Calc 
foo()

C

B

D

E

F

end

tA=7 

tB=5 

tC=12 

tG=2 

 Find longest path 
 One loop at a time 

 Prepare the loop 
 Remove back edges 
 Redirect to special 

continue nodes 

A

continue

G

tD=2 

tF=8 

    foo(x,i):  

A:   while(i < 100)     

B:     if (x > 5) then 
C:       x = x*2; 

       else 
D:       x = x+2; 

       end 

E:     if (x < 0) then 
F:       b[i] = a[i]; 

       end 
G:     i = i+1; 

     end 

tE=4 

Path-Based Calculation 
foo()

C

B

D

E

F

end

tA=7 

tB=5 

tC=12 

tE=4 

tG=2 

 Longest path: 
 A-B-C-E-F-G 
 7+5+12+4+8+2=  

38 cycles 

 Total time: 
 100 iterations 
 38 cycles per iteration 
 Total: 3800 cycles 

A

continue

G

tD=2 

tF=8 

Path-Based Calc 

  Infeasible path: 
  A-B-C-E-F-G 
  Ignore, look for next 

    foo(x,i):  

A:   while(i < 100)     

B:     if (x > 5) then 
C:       x = x*2; 

       else 
D:       x = x+2; 

       end 

E:     if (x < 0) then 
F:       b[i] = a[i]; 

       end 
G:     i = i+1; 

     end 

C and F can 
never execute 

together 

foo()

C

B

D

E

F

end

tA=7 

tB=5 

tC=12 

tE=4 

tG=2 

A

continue

G

tD=2 

tF=8 

Path-Based Calc 
foo()

C

B

D

E

F

end

tA=7 

tB=5 

tC=12 

tE=4 

tG=2 

  Infeasible path: 
  A-B-C-E-F-G 
  Ignore, look for next 

 New longest path: 
  A-B-C-E-G 
  30 cycles 

 Total time: 
  Total: 3000 cycles 

A

continue

G

tD=2 

tF=8 

    foo(x,i):  

A:   while(i < 100)     

B:     if (x > 5) then 
C:       x = x*2; 

       else 
D:       x = x+2; 

       end 

E:     if (x < 0) then 
F:       b[i] = a[i]; 

       end 
G:     i = i+1; 

     end 

C and F can 
never execute 

together 
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foo()

C

A

B

D

E

F

G

end

Example: IPET Calculation 
foo()

C

A

B

D

E

F

G

end

IPET Calculation 

 Solution methods: 
 Integer linear programming 
 Constraint satisfaction 

 Solution: 
 Counts for  

nodes and edges 
 A WCET bound 

foo()

C

A

B

D

E

F

G

end

IPET Calculation 

Hybrid 
methods 
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Hybrid methods 
 Combines measurement and static analysis 
 Methodology: 

  Partition code into smaller parts  
  Identify & generate instrumentation  

points (ipoints) for code parts  
  Run program and generate ipoint traces 
  Derive time interval/distribution and flow info for 

code parts based on ipoint traces 
  Use code part’s time interval/distribution and flow 

info to create a program WCET estimate 

 Basis for RapiTime WCET analysis tool! 

int foo(int x) { 

   write_to_port(’A’); 

   int i = 0; 

   while(i < x) { 
      write_to_port(’B’); 

      i++; 

   } 

} 

Example: loop bound derivation 

 3 example traces:  
 Run1: ABBBABBBBA 
 Run2: ABBAAABBA 
 Run3: ABBBBBBA 

82 

Instrumentation code 

Instrumentation code 

 Result (based on  
provided traces):  
 Lower loop bound: 0 
 Upper loop bound: 6 Valid for an  

entry of foo()  

int foo(int x) { 

   write_to_port(’A’,TIME); 

   int i = 0; 

   while(i < x) { 
      i++; 

   } 

   write_to_port(’B’,TIME); 

} 

Example: function time derivation 

 Example trace:  
 <A,72>,<B,156>, 

 <A,2001>,<B,2191>, 
 <A,2555>,<B,2661> 

83 

Instrumentation 
code extended 

with TIME macro 

 Result (based on  
provided trace):  
 Min time foo: 84 

(156-72=84) 
 Max time foo: 190 

(2191-2001=190) 
Realized as a short 
assembler snippet 

84 

Notes: Hybrid methods 
  Testing and instrumentation already used in industry! 

  Known testing coverage criteria can be used  
  No hardware timing model needed! 

  Relatively easy to adapt analysis to new hardware targets 

–  Is the resulting WCET estimate safe? 
  Have all costly software paths been executed? 
  Have all hardware effects been provoked/captured? 

–  How much do instrumentation affect execution time? 
  Will timing behavior differ if they are removed? 
  Often constraints on where instrumentation points can be placed 
  Often limits on the amount of instrumentation points possible 
  Often limits on the bandwidth available for traces extraction   

–  Are task switches/interrupts detected? 
  If not, derived timings may include them! 
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WCET  
analysis  

tools 

86 

WCET Analysis Tools 
 Several more or less complete tools 
 Commercial tools: 

  aiT from AbsInt 
  Bound-T from TidoRum 
  RapiTime from 

Rapita Systems 
 Research tools: 

  SWEET – Swedish  
Execution Time tool  

  Heptane from Irisa 
  Florida state university 
  SymTA/P from  

    TU Braunschweig 

The Bound-T WCET tool 
 A commercial WCET analysis tool 

 Provided by Tidorum Ltd, www.tidorum.fi 
 Decodes instructions, construct CFGs,  

call-graphs, and calculates WCET from  
the executable 

 A variety of  
CPUs supported: 
 Including the  

Renesas H8/3297 
 Porting made as MSc  

thesis project at MDH 

88 

WCET tool differences 
 Used static and/or hybrid methods 
 User interface 

  Graphical and/or textual 
 Flow analysis performed  

  Manual annotations supported 
 How the mapping problem is solved 

  Decoding binaries 
  Integrated with compiler 

 Supported processors and compilers  
 Low-level analysis performed 

  Type of hardware features handled 
 Calculation method used 
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Supported CPUs (2008) 
Tool Hardware platforms 
aiT Motorola PowerPC MPC 555, 565, and 755, Motorola ColdFire MCF 

5307, ARM7 TDMI, HCS12/STAR12, TMS320C33, C166/ST10,  
Renesas M32C/85, Infineon TriCore 1.3 

Bound-T Intel-8051, ADSP-21020, ATMEL ERC32, Renesas H8/300,  
ATMEL AVR and ATmega, ARM7 

RapiTime Motorola PowerPC family, HCS12 family, ARM, NECV850, MIPS3000 
SWEET ARM9, NECV850E 
Heptane Pentium1, StrongARM 1110, Renesas H8/300 
Vienna  M68000, M68360, Infineon C167, PowerPC, Pentium 

Florida MicroSPARC I, Intel Pentium, StarCore SC100, Atmel Atmega, PISA/
MIPS 

Chalmers PowerPC 
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Industrial usage 
 Static/hybrid WCET analysis are today used in 

real industrial settings 
 Examples of industrial usage: 

 Avionics – Airbus, aiT 
 Automotive – Ford, aiT 
 Avionics – BAE Systems, RapiTime 
 Automotive – BMW, RapiTime 
 Space systems – SSF, Bound-T 

 However, most companies are still highly 
unaware of the concepts of “WCET analysis” 
and/or “schedulability analysis” 

The SWEET 
approach to 

WCET analysis 

The MDH WCET project 
 Researching on static WCET analysis 

 Developing the SWEET (SWEdish  
Execution Time) analysis tool 

 Research focus:  
 Flow analysis 
 Technology transfer to industry 
  International collaboration 
 Parametrical WCET analysis 
 Early-stage WCET analysis* 
 WCET analysis for multi-core* 

 Previous research focus: 
 Low-level analysis 
 Calculation 

* = new project activities 
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Technology transfer to 
industry (and academia)  

 Evaluation of WCET analysis in industrial settings  
  Targeting both WCET tool providers and industrial users 
  Using state-of-the-art WCET analysis tools  

 Applied as MSc thesis works:  
  Enea OSE, using SWEET & aiT  
  Volcano Communications, using aiT 
  Bound-T adaption to Lego Mindstorms and  

Renesas H8/300. Used in MDH RT courses  
  CC-Systems, using aiT & measurement tools 
  Volvo CE using aiT & SWEET  
  …. 

 Articles and MSc thesis reports  
available on the MRTC web  
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Flow analysis 
  Main focus of the MDH WCET analysis group 

  Motivated by our industrial case studies 
  We perform many types of advanced  

program analyses:  
  Program slicing (dependency analysis) 
  Value analysis (abstract interpretation) 
  Abstract execution 

 ... 
  Both loop bounds and  

infeasible paths are derived 
  Analysis made on  

ALF intermediate code 
  ~ “high level assembler” 

A  

C  

x > 5  

B  

x < 3  

D  

 E Path A-C is 
infeasible! 

x = 1..10 

x = 6..10 

x = 1..4 

x = 1..2 
x = 3..8 

Hardware 

Where SWEET comes in… 

C Source 

WCET Low-level 
analysis Calculation 

SWEET 

C Source 

Object File 

Object File 

WCET 
Estimate 

Compiler 

C Source 

Flow  
analysis 

Input value 
constraints 

ALF 

Compiler 

Linker 

Executable 

Object File C Library 

C Runtime 

Other Lib 

OS 

LOW-SWEET 

ALF 

Object File 

Executable Binary  
reader 

Slicing for flow analysis 
  Observation: some variables and statements  

do not affect the execution flow of the program 
= they will never be used to determine the outcome of conditions   

  Idea: remove variables and statements which are 
guaranteed to not affect execution flow 
  Subsequent flow analyses should provide same result 

but with shorter analysis time 
  Based on well-known program slicing techniques 

  Reduces up to 94%  
of total program  
size for some of  
our benchmarks 

1.   a[0] = 42; 
2.   i = 1; 
3.   j = 5; 
4.   n = 2 * j; 
5.   while (i <= n) {  
6.       a[i] = i * i; 
7.       i = i + 2; 
8.   } 

1. 
2.   i = 1; 
3.   j = 5; 
4.   n = 2 * j; 
5.   while (i <= n) {  
6. 
7.       i = i + 2; 
8.   } 
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Value analysis 
 Based on abstract interpretation (AI) 

  Calculates safe approximations of possible values  
for variables at different program points 

  E.g. interval analysis gives i = [5..100] at p 
  E.g. congruence analysis gives i = 5 + 2* at p 

 Builds upon well known  
program analysis techniques   
  Used e.g. for checking array bound violations 

 Requires abstract versions of all  
ALF instructions 
  These abstract instructions work on abstract values  

(representing set of concrete values) instead of normal ones 

 i=5; 
 max=100; 
 while(i<=max) { 
     // point p 
     i=i+2; 
 } 

98 

Loop bound analysis by AI 
  Observation: the number of possible program  

states within a loop provides a loop bound 
  Assuming that the loop terminates 

  Loop bound = product of possible  
values of variables within the loop 

  Example:  
  Interval analysis gives  

i = [5..100] and max=[100..100] at p  
  Congruence analysis gives 

 i = 5 + 2* and max=100+0* at p 
  The produce of possible values become:  

size(i) * size(max) = ((100-5)/2) * (100-100)/1) = 45 * 1 = 45  
which is an upper loop bound  

  Analysis bounds some but not all loops 

 i=5; 
 max=99; 
 while(i<=max) { 
     // point p 
     i=i+2; 
 } 

Abstract Execution (AE) 
 Derives loop bounds and infeasible paths 
 Based on Abstract Interpretation (AI) 

 AI gives safe (over)approximation of possible values  
of each variable at different program points 

 Each variable can hold a set of values 

 “Executes” program using abstract values  
 Not using traditional AI fixpoint calculation 

 Result: an (over)approximation of the 
possible execution paths 

 All feasible paths will be included in the result 
 Might potentially include some infeasible paths 
  Infeasible paths found are guaranteed to be infeasible 

i = [1..4] 

Loop bound analysis by AE 

 Result includes all possible loop executions  
 Three new abstract states generated at q 

 Could be merged to one single abstract state:   
          i=[10..11]  

i = INPUT;  

// i = [1..4] 
while(i < 10) { 
   // point p 
   ... 
   i = i + 2; 
} 
// point q 

Loop  
iteration 

Abstract 
state at p 

Abstract 
state at q 

1 

Loop  
iteration 

Abstract 
state at p 

Abstract 
state at q 

1 i = [1..4] ┴ 

Loop  
iteration 

Abstract 
state at p 

Abstract 
state at q 

1 i = [1..4] ┴ 
2 i = [3..6] ┴ 

Loop  
iteration 

Abstract 
state at p 

Abstract 
state at q 

1 i = [1..4] ┴ 
2 i = [3..6] ┴ 
3 i = [5..8] ┴ 

Loop  
iteration 

Abstract 
state at p 

Abstract 
state at q 

1 i = [1..4] ┴ 
2 i = [3..6] ┴ 
3 i = [5..8] ┴ 
4 i = [7..9] i = [10..10] 

Loop  
iteration 

Abstract 
state at p 

Abstract 
state at q 

1 i = [1..4] ┴ 
2 i = [3..6] ┴ 
3 i = [5..8] ┴ 
4 i = [7..9] i = [10..10] 
5 i = [9..9] i = [10..11] 

Loop  
iteration 

Abstract 
state at p 

Abstract 
state at q 

1 i = [1..4] ┴ 
2 i = [3..6] ┴ 
3 i = [5..8] ┴ 
4 i = [7..9] i = [10..10] 
5 i = [9..9] i = [10..11] 
6 ┴ i = [11..11] 

Loop  
iteration 

Abstract 
state at p 

Abstract 
state at q 

1 i = [1..4] ┴ 
2 i = [3..6] ┴ 
3 i = [5..8] ┴ 
4 i = [7..9] i = [10..10] 
5 i = [9..9] i = [10..11] 
6 ┴ i = [11..11] 

Result 
Min iterations: 3 
Max iterations: 5 

[5..8] 
[7..9] 
[9..9] 

[10..10] 
[10..11] 
[11..11] 

[1..4] 
[3..6] 
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Multi-core  
+ WCET 
analysis? 

Trends in Embedded HW 
 Trend: Large variety of ES HW platforms 

  Not just one main processor type as for PCs  
  Many different HW configurations (memories, devices, …)  
  Challenge: How to make WCET analysis portable between 

platforms? 

 Trend: Increasingly complex HW  
features to boost performance 
  Taken from the high-performance CPUs 
  Pipelines, caches, branch predictors,  

superscalar, out-of-order, … 
  Challenge: How to create safe and tight HW timing models?  

 Trend: Multi-core architectures 

Multi-core architectures 
  Several (simple) CPUs on one chip 

  Increased performance & lower power  
  “SoC”: System-on-a-Chip possible 

  Explicit parallelism 
  Not hidden as in superscalar architectures 

  Likely that CPUs will be less complex  
than current high-end processors  
  Good for WCET analysis! 

  However, risk for more shared  
resources: buses, memories, … 
  Bad for WCET analysis! 
  Unrelated threads on other cores  

might use shared resources 
  Multi-core might be ok if predictable sharing  

of common resources is somehow enforced 

Multicore chip 

core 

L1 cache 

core 

L1 cache 

core 

L1 cache 

L2 cache 

RAM 

Devices 

etc. Network 

Timer Serial 

Example: shared bus 
  Example, dual core processor with private L1 

caches and shared memory bus for all cores 
  Each core runs its own code and task 

  Problem:  
  Whenever t1 needs something from  

memory it may or may not collide with  
t2’s accesses on the memory bus 

  Depends on what t1 and t2 accesses  
and when they accesses it 

  Large parallel state space to explore  

  Possible solution:  
  Use deterministic (but potentially pessi- 

mistic) bus schedule, like TDMA  
  Worst-case memory bus delay can then  

be bounded  

int t1_code { 
  if(...) { 
   ... 
  } 
  ...  
} 

int t2_code { 
  ... 
  while(...) { 
    ... 
  } 
} 

TDMA  bus  
schedule 
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Example: shared memory 
  ES often programmed using shared memory model 

  t1 and t2 may communicate/synchronize using shared variables 
  Problem: 

  When t1 writes g, memory block of g is loaded into core1’s d-cache 
  Similarly, when t2’s writes g, memory  

block of g moved to t2’s d-cache (and  
t1’s block is invalidated) 

  May give a large overhead 
  Much time can be spent moving memory  

blocks in between caches (ping-pong) 
  Hidden from programmer - HW makes  

sure that cache/memory content is ok  
  False sharing – when tasks accesses  

different variables, but variables are  
located in same memory block  

  Possible solutions: 
  Constrain task’s accesses to shared  

memory (e.g. single-shot task model)  

105 

int t1_code { 
  if(...) { 
   ... 
   g=5; 
  } 
  ...;  
} 

int t2_code { 
  ... 
  while(...) { 
    ... 
    g++; 
  } 
} 

Example: multithreading 
  Common on high-order multi-cores and GPUs 
  Core run multiple threads of execution in parallel 

  Parts of core that store state of threads (registers, PC, ..) replicated  
  Core’s execution units and caches shared between threads 

  Benefits 
  Hides latency – when one thread 

stalls another may execute instead 
  Better utilization of core’s computing 

resources – one thread usually only  
use a few of them at the same time 

  Problems  
  Hard to get timing predictability 
  Instructions executing and cache  

content depends dynamically on  
state of threads, scheduler, etc. 
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int t1_code { 
...;  
} 

int t3_code { 
...;  
} int t2_code { 

...;  
} 

Trends in Embedded SW 

 Traditionally: embedded SW written in C  
and assembler, close to hardware  

 Trend: size of embedded SW increases 
 SW now clearly dominates ES development cost 
 Hardware used to dominate 

 Trend: more ES development by high-level 
programming languages and tools 
 Object-oriented programming languages 
 Model-based tools 
 Component-based tools 

Increase in embedded SW size 
 More and more functionality required 

  Most easily realized in software 

 Software gets more and more complex 
  Harder to identify the timing critical part of the code 
  Source code not always available for all parts of the 

system, e.g. for SW developed by subcontractors  

 Challenges for WCET analysis: 
  Scaling of WCET analysis methods to larger code sizes 

 Better visualization of results (where is the time spent?) 
  Better adaptation to the SW development process  

 Today’s WCET analysis works on the final executable  
 Challenge: how to provide reasonable precise WCET 

estimates at early development stages  
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Higher-level prog. languages 
 Typically object-oriented: C++, Java, C#, … 
 Challenges for WCET analysis: 

 Higher use of dynamic data structures 
 In traditional ES programming all data is statically 

allocated during compile time  
 Dynamic code, e.g., calls to virtual methods  

 Hard to analyze statically (actual method called  
may not be known until run-time) 

 Dynamic middleware:  
 Run-time system with GC 
 Virtual machines with JIT compilation 

Model-based design 
  More embedded system code generated by 

higher-level modeling and design tools 
  RT-UML, Ascet, Targetlink, Scade, ... 

  The resulting code structure  
depends on the code generator 
  Often simpler than handwritten code 

  Possible to integrate such tools 
with WCET analysis tools 
  The analysis can be automated 
  E.g., loop bounds can be provided  

directly by the modeling tool 

  Hard to provide reliable timing on  
modeling level 

model 

...
label rerun: 
if(flag1 || flag2) ...
else
   goto rerun;
... 

generated 
code 

….´
10010101001110101100101001 
10010101001110101100101001
10100101010101001010010100
10010101010101010100101010
....

executable 

Component-based design 
 Very trendy within software engineering 
 General idea:  

 Package software into reusable  
components   

 Build systems out of prefabricated  
components, which are “glued together” 

 WCET analysis challenges: 
 How to reuse WCET analysis results  

when some settings have changed?  
 How to analyze SW components  

when not all information is available?  
 Are WCET analysis results composable? 

Compiler interaction 
  Today – commercial WCET analysis tools  

analyses binaries 
  Another possibility – interaction with the compiler 

  Easier to identify data objects and to understand  
what the program is intended to do 

  There exists many compilers for  
embedded systems 
  Very fragmented market  
  Each specialized on a few particular targets 
  Targeting code size and execution speed 

  Integration with WCET analysis tools  
opens new possibilities:  
  Compile for timing predictability 
  Compile for small WCET  
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The End! 
For more information: 

www.mrtc.mdh.se/projects/wcet 


