
Worst-Case Execution Time analysis 11-12-04

1

Worst-Case
Execution Time

Analysis
Jan Gustafsson, docent

Mälardalen Real-Time Research Center (MRTC)
Västerås, Sweden

jan.gustafsson@mdh.se

2

C

3

What C are we talking about?

 A key component in the analysis of
real-time systems

 You have seen it in formulas such as:

Ri = Ci + ∑ Ri / Tj Cj
j∈hp(i)

Worst-Case
Response Time Period

Where do these C values come from?

Worst-Case
Execution Time

Program timing is not trivial!

Simpler questions

  What is the program
doing?

  Will it always do the
same thing?

  How important is
the result?

4

int f(int x) {

 return 2 * x;

}

Harder questions

  What is the execution
time of the program?

  Will it always take the
same time to execute?

  How important is
execution time?

Worst-Case Execution Time analysis 11-12-04

2

Program timing basics
 Most computer programs have varying

execution time
  Due to input values
  Due to software characteristics
  Due to hardware characteristics

 Example: some timed program runs

5

0 execution time

pr
og

ra
m

 ru
ns

Most runs have
similar execution time

Some take much
longer time (why?)

Is this the longest
execution time...

... or can we get
even longer ones?

safe
upper
timing

bounds

possible
execution times

WCET and WCET analysis
 Worst-Case Execution Time = WCET

  The longest calculation time possible
  For one program/task when run in isolation
  Other interesting measures: BCET, ACET

 The goal of a WCET analysis is to derive
a safe upper bound on a program’s WCET

time

safe
lower
timing

bounds

0

 BCET WCET

Presentation outline
 Embedded system fundamentals
 WCET analysis

  Measurements
  Static analysis
  Flow analysis, low-level analysis, and calculation
  Hybrid approaches

 WCET analysis tools
 The SWEET approach to WCET analysis

 Multi-core + WCET analysis?
 WCET analysis assignment

Embedded
systems

fundamentals

Worst-Case Execution Time analysis 11-12-04

3

Embedded computers
  An integrated part of a larger system

  Example: A microwave oven contain at
least one embedded processor

  Example: A modern car can contain more
than 100 embedded processors

  Interacts with the user,
the environment, and
with other computers
  Often limited or

no user interface
  Often with

timing constraints

Embedded systems everywhere

 Today, all advanced
products contain
embedded computers!
  Our society is dependant on

that they function correctly

11

Embedded systems software

 Amount of software can vary from
extremely small to very large
  Gives characteristics to the product

 Often developed with target
hardware in mind
  Often limited resources (memory / speed)
  Often direct accesses to different HW devices
  Not always easily portable to other HW

 Many different programming languages
  C still dominates, but often special purpose languages

 Many different software development tools
  Not just GCC and/or Microsoft Visual Studio

Embedded system hardware
 Huge variety of embedded

system processors
  Not just one main processor type as for PCs
  Additionally, same CPU can be used with various

hardware configurations (memories, devices, …)

 The hardware is often tailored
specifically to the application
  E.g., using a DSP processor for signal

processing in a mobile telephone

 Cross-platform development
  E.g., develop on PC and download

final application to target HW

Worst-Case Execution Time analysis 11-12-04

4

Timely Software - a Challenge 13

Some interesting figures
  4 billion embedded processors sold in 2008

  Global market worth €60 billion
  Predicted annual growth rate of 14%
  Forecasts predict more than 40 billion embedded devices in 2020

  Embedded processors clearly dominate yearly
production

Source: http://www.artemis-ju.eu/embedded_systems

Real-time systems
 Computer systems where the timely

behavior is a central part of the function
 Containing one or more embedded computers
 Both soft- and hard real-time, or a mixture…

Timing of radio
communication,

speech
recognition,…

Timing of music
playing from MP3 file

Timing of radio
communication, motor

control, rudder and
flaps control,…

Timing of network
communication, motor
control, ABS brakes,

anti-slip control,…

Uses of reliable WCET bounds

 Hard real-time systems
  WCET needed to guarantee behavior

 Real-time scheduling
  Creating and verifying schedules
  Large part of RT research assume

the existence of reliable WCET bounds

 Soft real-time systems
  WCET useful for system understanding

 Program tuning
  Critical loops and paths

 Interrupt latency checking

WCET
analysis

Worst-Case Execution Time analysis 11-12-04

5

Obtaining WCET bounds

 Measurement
 Industrial practice

 Static analysis
 Research front

Measuring for the WCET

 Methodology:
 Determine potential

”worst-case input”
 Run and measure
 Add a safety margin

18

19

Measurement issues
 Large number of potential worst-case inputs

  Program state might be part of input

 Has the worst-case path really been taken?
  Often many possible paths through a program
  Hardware features may interact in unexpected ways

 How to monitor the execution?
  The instrumentation

may affect the timing
  How much instrumention

output can be handled?
LEDs

Buzzer

20

SW measurement methods
 Operating system facilities

  Commands such as time, date and clock
  Note that all OS-based solutions require

precise HW timing facilities (and an OS)
 Cycle-level simulators

  Software simulating CPU
  Correctness vs. hardware?

 High-water marking
  Keep system running
  Record maximum time

observed for task
  Keep in shipping systems,

read at service intervals

Worst-Case Execution Time analysis 11-12-04

6

21

Using an oscilloscope
 Common equipment for HW debugging

  Used to examine electrical output
signals of HW

 Observes the voltage or signal
waveform on a particular pin

  Usually only two to four inputs

 To measure time spent in a routine:
1.  Set I/O pin high when entering routine
2.  Set the same I/O pin low before exiting
3.  Oscilloscope measures the amount of

time that the I/O pin is high
4.  This is the time spent in the routine

22

Using a logic analyzer
 Equipment designed for

troubleshooting digital
hardware

 Have dozens or even
hundreds of inputs
  Each one keeping track on

whether the electrical signal
it is attached to is currently
at logic level 1 or 0

  Result can be displayed
against a timeline

  Can be programmed to start
capturing data at particular
input patterns

Target
board

HW Debugger

23

HW measurement tools
  In-circuit emulators (ICE)

 Special CPU version revealing internals
 High visibility & bandwidth
 High cost + supportive HW required

 Processors with debug support
 Designed into processor

 Use a few dedicated processor pins
 Using standardized interfaces

 Nexus debug interfaces, JTAG,
Embedded Trace Macrocell, …

 Supportive SW & HW required
 Common on modern chip

Problem of using measurement

 Measured time never exceeds WCET

How do we know that we catched
the WCET?
 A safety margin must be added, but how

much is enough?

safe
upper
timing

bounds

possible
execution times

time

safe
lower
timing

bounds

0

 BCET WCET

Only this measurement
is safe (= WCET)!

Measurement will result
in a value ≤ WCET

Worst-Case Execution Time analysis 11-12-04

7

Static
WCET

analysis

Static WCET analysis
 Do not run the program – analyze it!

  Using models based on the static properties of the
software and the hardware

 Guaranteed safe WCET bounds
  Provided all models, input data and analysis

methods are correct
 Trying to be as tight as possible

safe
upper
timing

bounds

possible
execution times

time

safe
lower
timing

bounds

0

 BCET WCET

All derived
bounds will
be ≥ WCET

foo(x,i):

 while(i < 100)

 if (x > 5) then

 x = x*2;

 else

 x = x+2;

 end

 if (x < 0) then

 b[i] = a[i];

 end

 i = i+1;

 end

Again: Causes of
Execution Time Variation

 Execution characteristics
of the software
 A program can often execute

in many different ways
  Input data dependencies
 Application characteristics

 Timing characteristics
of the hardware
 Clock frequency
 CPU characteristics
 Memories used
 … Analysis

WCET analysis phases

Reality

Compiler

Object 
Code

Target
Hardware

program

Low level
analysis

Calculation

Flow
analysis

1. Flow analysis
 Bound the number of times

different program parts may
be executed (mostly SW analysis)

2. Low-level analysis
 Bound the execution time

of different program parts
(combined SW & HW analysis)

3. Calculation
 Combine flow- and low-level

analysis results to derive an
upper WCET bound

Actual 
WCET WCET 

bound

Worst-Case Execution Time analysis 11-12-04

8

29

Flow
analysis

30

Flow Analysis
 Provides bounds on the number

of times different program parts
may be executed
 Valid for all possible executions

 Examples of provided info:
 Bounds of loop iterations
 Bounds on recursion depth
  Infeasible paths

  Info provided by:
 Static program analysis
 Manual annotations

Flow
analysis

Low level
analysis

Calculation

Program

WCET
Estimate

The control-flow graph
 foo(x,i):

A: while(i < 100)

B: if (x > 5) then

C: x = x*2;

 else

D: x = x+2;

 end

E: if (x < 0) then

F: b[i] = a[i];

 end

G: i = i+1;

 end

Flows as
edges

foo()

C

A

B

D

E

F

G

end

Each block
will run as a

unit

Flow info characteristics

Statically allowed

Actual feasible
paths

 #F < 10

Structurally possible
 executions (infinite)

WCET found here =
desired result

 foo(x,i):

A: while(i < 100)

B: if (x > 5) then
C: x = x*2;

 else

D: x = x+2;

 end

E: if (x < 0) then

F: b[i] = a[i];

 end

G: i = i+1;

 end

foo()

C

B

D

E

F

G

end

A

WCET found here =
 overestimation

Worst-Case Execution Time analysis 11-12-04

9

Example: Loop bounds
 Loop bound:

  Depends on possible values
of input variable i
 E.g. if 1 ≤ i ≤ 10 holds for input

value i then loop bound is 100

  In general, a very difficult
problem

  However, solvable for many
types of loops

 Requirement for basic
finiteness
  All loops must be

upper bound

 foo(x,i):

A: while(i < 100)

B: if (x > 5) then

C: x = x*2;

 else

D: x = x+2;

 end

E: if (x < 0) then

F: b[i] = a[i];

 end

G: i = i+1;

 end

Example: Infeasible path

 Infeasible path:
 Path A-B-C-E-F-G

can not be executed
 Since C implies ¬F
  If (x > 5) then it is not

possible that (x*2) < 0
 Limits statically

allowed executions
 Might tighten the

WCET estimate

 foo(x,i):

A: while(i < 100)

B: if (x > 5) then

C: x = x*2;

 else

D: x = x+2;

 end

E: if (x < 0) then

F: b[i] = a[i];

 end

G: i=i+1;

 end

35

Example: Triangular Loop

 Two loops:
 Loop A bound: 100
 Local B bound: 100

 Block C:
 By loop bounds:

100 * 100 = 10 000
 But actually:

100+...+1 = 5 050
 Limits statically

allowed executions
 Might tighten the

WCET estimate

 triangle(a,b):
A: loop(i=1..100)
B: loop(j=i..100)
C: a[i,j]=...
 end loop
 end loop

int i=0; 
...  
while(i<100) 
{ 
  ...  
  i++; 
} 
... 

The mapping problem
  Flow analysis easier on source code level

  Semantics of code clearer
  Easier for programmer/tool to derive flow info

  Low-level analysis requires binary code
  The code executed by the processor

  Question: How to safely map flow source code level
flow information to binary code?

... 
0111111010010111 
0110010100101001 
1001010100111010 
1001010011111110 
1010010101010100 
1001010101010101 
... 

Loop bound
(header): 101

Where is
the loop?

Source code Executable

Worst-Case Execution Time analysis 11-12-04

10

The mapping problem (cont)
  Embedded compilers often do a lot of code optimizations

  Important to fit code and data into limited memory resources
  Optimizations may significantly change code (and data) layout

  After optimizations flow info may no longer be valid
  Solutions:

  Use special compiler also mapping flow info (not common)
  Use compiler debug info for mapping (only works with little/no optimizations)
  Perform flow analysis on binaries (most common)

37

 int i=0; 
 ...  
 while(i<100) { 
   ...  
   i++; 
 } 
 ... 

 int i=0; 
 ...  
 do { 
   ...  
   i++; 
 } while(i<100) 
 ... 

Flow analysis:
Loop condition
taken 101 times

Compiler: i=0
always holds at
first execution

of loop condition

Loop condition
taken 100 times

Before optimization After optimization

Executable

1000110000011110
1000110000100000
1010110000100000
1010110000011110
1010110000100011
1010111100011001

Linker

Object File

Object File

Object File

twice:
 mov ip, sp
 stmfd sp!, {fp,ip,lr,pc}
 sub fp, ip, #4
 sub sp, sp, #8
 str r0, [fp, #-16]
 ldr r3, [fp, #-16]
 mov r3, r3, asl #1
 str r3, [fp, #-20]
 ldr r3, [fp, #-20]
 mov r0, r3
 ldmea fp, {fp,sp,pc}

Compiler

Embedded SW Tool Chain

C Source

C Source

C Library

C Runtime

Start-up

OS
C Source

WCET

int twice(int a) {
 int temp;
 temp = 2 * a;
 return temp;
}

Affects
timing

Affects
timing Affects

timing Affects
timing Affects

timing

Affects
timing

Affects
timing

39

The SW building tools
 The compiler:

  Translates an source code file to an object code file
 Only translates one source code file at the time

  Often makes some type of code optimizations
 Increase execution speed, reduce memory size, …
 Different optimizations give different object code layouts

 The linker:
  Combines several object code files into one executable

 Places code, global data, stack, etc in different memory parts
 Resolves function calls and jumps between object files

  Can also perform some code transformations

 Both tools may affect the program timing!

40

Example: compiling & linking
/******************
 * File: main.c
 *****************/
int foo();

int main() {
 return 1 + foo();
}

/******************
 * File: foo.c
 *****************/

int foo() {
 return 1;

}

Contains object
code for main.c

Object code contains an
unresolved call to foo

Compiler main.o

Contains object
code for foo.c

Compiler foo.o

The main.o and
foo.o object code
files are combined

The call to foo
in main has

been resolved

Linker a.exe

Worst-Case Execution Time analysis 11-12-04

11

41

Common additional files
 C Runtime code:

  Whatever needed but not supported by the HW
 32-bit arithmetic on a 16-bit machine
 Floating-point arithmetic
 Complex operations (e.g., modulo, variable-length shifts)

  Comes with the compiler
  May have a large footprint

 Bigger for simpler machines
 Tens of bytes of data and tens of kilobytes of code

 OS code:
  In many ES the OS code is linked together with the rest

of the object code files to form a single binary image

42

Common additional files

  Startup code:
  A small piece of assembly code that prepares the way for

the execution of software written in a high-level language
 For example, setting up the system stack

  Many ES compilers provide a file named
startup.asm, crt0.s, … holding startup code

  C Library code:
  A full ANSI-C compiler must provide code that implements

all ANSI-C functionality
 E.g., functions such as printf, memmove, strcpy

  Many ES compilers only support subset of ANSI-C
  Comes with the compiler (often non-standard)

Low-level
analysis

Low-Level Analysis
 Determine execution time bounds

for program parts
 Focus of most WCET-related research

 Using a model of the target HW
 The model does not need to model all

HW details
 However, it should safely account for

all possible HW timing effects

 Works on the binary, linked code
 The executable program

Flow
analysis

Program

Low level
analysis

Calculation

WCET
Estimate

Worst-Case Execution Time analysis 11-12-04

12

Some HW model details
  Much effort required to safely model CPU internals

  Pipelines, branch predictors, superscalar, out-of-order, …
  Much effort to safely model memories

  Cache memories must be modelled in detail
  Other types of memories may also affect timing

  For complex CPUs many features must be
analyzed together
  Timing of instructions get very history dependant

  Developing a safe HW timing model troublesome
  May take many months (or even years)
  All things affecting timing must be accounted for

Hardware time variability
  Simpler 4-, 8- & 16-bit processors (H8300, 8051, …):

  Instructions might have varying execution time due to
argument values

  Varying data access time due to different memory areas
  Analysis rather simple, timing fetched from HW manual

  Simpler 16- & 32-bit processors, with a (scalar) pipe-
line and maybe a cache (ARM7, ARM9, V850E, …):
  Instruction timing dependent on previously

executed instructions and accessed data:
 State of pipeline and cache

  Varying access times due to cache hits and misses
  Varying pipeline overlap between instructions
  Hardware features can be analyzed in isolation

Hardware time variability
  Advanced 32- & 64-bit processors (PowerPC 7xx,

Pentium, UltraSPARC, ARM11, …):
  Many performance enhancing features affect timing

 Pipelines, out-of-order exec, branch pred., caches,
speculative exec.

 Instruction timing gets very history dependent
  Some processors suffer from timing anomalies

 E.g., a cache miss might give shorter overall
program execution time than a cache hit

  Features and their timing interact
 Most features must be analyzed together

  Hard to create a correct and safe
hardware timing model!

  Multi-cores - discussed later

48

Example: CPU pipelines
 Observation: Most instructions go through

same stages in the CPU
 Example: Classic RISC 5-stage pipeline

IF ID EX MEM WB

Instruction fetch (IF)
 Get the next instruction
from memory to process

(its address is held by PC)

Instruction decode
Determine operation to be

performed (i.e., extract
opcode and arguments)

Execute
Perform the actual

operation (e.g, an add)

Memory access
Load/store values
from/to memory if

needed

Write back
Write the result into
the target register

Worst-Case Execution Time analysis 11-12-04

13

49

CPU pipelines
  Idea: Overlap the CPU stages of the instruct-

ions to achieve speed-up
 No pipelining:

  Next instruction
cannot start before
previous one has
finished all its stages

 Pipelining:
  In principle: speedup = pipeline length
  However, often dependencies

between instructions

IF
ID
EX

MEM
WB

1 2 3 5 6 4

IF
ID
EX

MEM
WB

1 2 3 5 6 7 4 8 9 10

I1. add $r0, $r1, $r2
I2. sub $r3, $r0, $r4

Example: RAW
dependency

I2 depends on
completion of
data write of I1

May cause
pipeline stall

50

Pipeline Variants
 None: Simple CPUs (68HC11, 8051, …)
 Scalar: Single pipeline (ARM7,ARM9,V850, …)
 VLIW: Multiple pipelines, static, compiler

scheduled (DSPs, Itanium, Crusoe, …)
 Superscalar: Multiple pipelines, out-of-order

(PowerPC 7xx, Pentium, UltraSPARC, ...)

IF
ID
EX

MEM
WB

1 2 3 5 6 7 4 8 9 10 11 Blue instruction
occupies EX stage
for 2 extra cycles

This stalls both
subsequent
instructions

Example: No Pipeline

51

 foo(x,i):

A: while(i < 100)

B: if (x > 5) then

C: x = x*2;

 else

D: x = x+2;

 end

E: if (x < 0) then

F: b[i] = a[i];

 end

G: i = i+1;

 end

 Constant time
for each block
in the code

 Object code
not shown

Example: No pipeline
foo()

C

A

B

D

E

F

G

end

 foo(x,i):

A: while(i < 100)

B: if (x > 5) then

C: x = x*2;

 else

D: x = x+2;

 end

E: if (x < 0) then

F: b[i] = a[i];

 end

G: i = i+1;

 end

Worst-Case Execution Time analysis 11-12-04

14

 foo(x,i):

A: while(i < 100)

B: if (x > 5) then

C: x = x*2;

 else

D: x = x+2;

 end

E: if (x < 0) then

F: b[i] = a[i];

 end

G: i = i+1;

 end

A

B

Example: Simple Pipeline

B
IF
EXEX
M
F

1 2 3 4 5

IF
EXEX
M
F

1 2 3 4 5 6 7
A IF

EXEX
M
F

1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 9
IF
EXEX
M
F

10

54

Example: Pipeline result
foo()

C

A

B

D

E

F

G

end

 foo(x,i):

A: while(i < 100)

B: if (x > 5) then

C: x = x*2;

 else

D: x = x+2;

 end

E: if (x < 0) then

F: b[i] = a[i];

 end

G: i = i+1;

 end

55

IF
EX
M
F

IF
EX
M
F

Pipeline Interactions

IF
EX
M
F

IF
EX
M
FIF

EX
M
F

IF
EX
M
F

IF
EX
M
F

IF
EX
M
F

Pairwise overlap: speed-up

Interaction across more than
two blocks also possible!
Can be both speed-up or slow-down

Larger
storage
capacity

The memory hierarchy

Main memory

 Cache
memory

Caches store
frequently used

instructions and data
(for faster access)

Main memory has larger
storage capacity but
much longer access

time than caches

Faster
access

time

CPU
Caches increase

average speed, but
give more variable

execution time

Many variants exists:
instruction caches,

data caches,
unified caches,

cache hierarchies, …

The CPU executes
instructions. It also need
to access data to perform

operations upon

Worst-Case Execution Time analysis 11-12-04

15

57

Example: Cache analysis
fib:
 mov #1, r5
 mov #0, r6
 mov #2, r7
 br fib_0

fib_1:
 mov r5,r8
 add r6,r5
 mov r8,r6
 add #1,r7

fib_0:
 cmp r7,r1
 bge fib_1

fib_2:
 mov r5,r1
 jmp [r31]

 Performed on the
object code

 Only direct-mapped
instruction cache in
this example

What instructions will
cause cache misses?

Cache misses takes
much more time
than cache hits!

Main memory

 Cache
memory

 CPU

58

Example: Cache analysis

fib:
 mov #1, r5 2 1000
 mov #0, r6 2 1002
 mov #2, r7 2 1004
 br fib_0 2 1006

fib_1:
 mov r5,r8 2 1008
 add r6,r5 2 1010
 mov r8,r6 2 1012
 add #1,r7 2 1014

fib_0:
 cmp r7,r1 2 1016
 bge fib_1 2 1018

fib_2:
 mov r5,r1 2 1020
 jmp [r31] 2 1022

Starting
address

Size of
instruction

 Information
needed for
instruction
cache
analysis

59

Example: Cache analysis
fib:
 mov #1, r5 2 1000
 mov #0, r6 2 1002
 mov #2, r7 2 1004
 br fib_0 2 1006

fib_1:
 mov r5,r8 2 1008
 add r6,r5 2 1010
 mov r8,r6 2 1012
 add #1,r7 2 1014

fib_0:
 cmp r7,r1 2 1016
 bge fib_1 2 1018

fib_2:
 mov r5,r1 2 1020
 jmp [r31] 2 1022

 Mapping to
instruction
cache

60

Example: Cache analysis
fib:
 mov #1, r5
 mov #0, r6
 mov #2, r7
 br fib_0

fib_1:
 mov r5,r8
 add r6,r5
 mov r8,r6
 add #1,r7

fib_0:
 cmp r7,r1
 bge fib_1

fib_2:
 mov r5,r1
 jmp [r31]

miss
hit
hit
hit

miss
hit

miss
hit
hit
hit

Worst-Case Execution Time analysis 11-12-04

16

61

Example: Cache analysis
fib:
 mov #1, r5
 mov #0, r6
 mov #2, r7
 br fib_0

fib_1:
 mov r5,r8
 add r6,r5
 mov r8,r6
 add #1,r7

fib_0:
 cmp r7,r1
 bge fib_1

fib_2:
 mov r5,r1
 jmp [r31]

miss
hit
hit
hit

miss
hit

miss
hit
hit
hit

hit
hit

hit
hit
hit
hit

Remaining
iterations

First
iteration of

the loop

hit
hit

62

1032: cmp r6,r1

1034: blt foo_5

Cache & Pipeline analysis

 foo_0:

foo_1:

foo_2:

foo_3:

foo_5:

 foo:

foo_4:

info

info

info

info

info

info

info

 Pipeline analysis might
take cache analysis
results as input
 Instructions gets annotated

with cache hit/miss
 These misses/hits

affect pipeline timing
 Complex HW require

integrated cache &
pipeline analysis

1020:icache miss

1022:icache hit

Analysis of complex CPUs
  Example: Out-of-order processor

  Instructions may executes in
parallel in functional units

  Functional units often replicated
  Dynamic scheduling of

instructions
  Do not need to follow

issuing order

  Very difficult analysis
  Track all possible pipeline

states, iterate until fixed point
  Require integrated pipeline/icache

/dcache/branch-prediction analysis

  Been done for PowerPC 755
  Up to 1000 states per instruction!

RS holds pending
instructions

If all operands
and the FU are
ready instr. in
RS is put in FU

FUs and CU
forward results
back to RSs

64

Low-level analysis correctness?

 Abstract model of the hardware is used
 Modern hardware often very complex

 Combines many features
 Pipelining, caches, branch prediction,

out-of-order...
 Have all effects been

accounted for?
 Manufactures keep hardware

internals secret
 Bugs in hardware manuals
 Bugs relative hardware specifications

?

Worst-Case Execution Time analysis 11-12-04

17

Calculation

Calculation
 Derive an upper bound on the

program’s WCET
 Given flow and timing information

 Several approaches used:
 Tree-based
 Path-based
 Constraint-based (IPET)

 Properties of approaches:
 Flow information handled
 Object code structure allowed
 Modeling of hardware timing
 Solution complexity

Flow
analysis

Program

Low level
analysis

Estimate 
calculation

WCET 
Estimate

Example: Combined flow analysis
and low-level analysis result

 foo(x,i):

A: while(i < 100)

B: if (x > 5) then

C: x = x*2;
 else

D: x = x+2;

 end

E: if (x < 0) then

F: b[i] = a[i];
 end

G: i = i+1;

 end

foo()

C

A

B

D

E

F

G

end

 ”Loop bound: 100”

”C and F can’t be
taken together”

4 december 11 Worst-Case Execution Time Analysis 68

Tree-Based Calculation

loop

foo

header if(x>5)

x=x/2 x=x+2

if(x<0)

b[i]=a[i]

bar(i)

 Use syntax-tree
of program

 Traverse tree
bottom-up

 foo(x):

A: loop(i=1..100)

B: if (x > 5) then
C: x = x*2

 else
D: x = x+2

 end

E: if (x < 0) then
F: b[i] = a[i];

 end
G: bar (i)

 end loop

Worst-Case Execution Time analysis 11-12-04

18

4 december 11 Worst-Case Execution Time Analysis 69

Tree-Based Calculation

loop : 100

()

foo

()

header

(7) if(x>5)

(5)
x=x/2

(12) x=x+2

(2)

if(x<0)

(4)
b[i]=a[i]

(8)

bar(i)

(20)

 Use constant
time for nodes

 Leaf nodes have
definite time

 Rules for
internals

 foo(x):

A: loop(i=1..100)

B: if (x > 5) then
C: x = x*2

 else
D: x = x+2

 end

E: if (x < 0) then
F: b[i] = a[i];

 end
G: bar (i)

 end loop

(7 c)
(5 c)
(12 c)

(2 c)

(4 c)
(8 c)

(20 c)

4 december 11 Worst-Case Execution Time Analysis 70

 For a decision
statement: max
of children

 Add time for
decision
itself

Tree-Based: IF statement

loop : 100

()

foo

()

header

(7) if(x>5)

(5) ∑ 17

x=x/2

(12) x=x+2

(2)

if(x<0)

(4) ∑ 12

b[i]=a[i]

(8)

bar(i)

(20)

 foo(x):

A: loop(i=1..100)

B: if (x > 5) then
C: x = x*2

 else
D: x = x+2

 end

E: if (x < 0) then
F: b[i] = a[i];

 end
G: bar (i)

 end loop

4 december 11 Worst-Case Execution Time Analysis 71

Tree-Based: LOOP
 Loop: sum the

children
 Multiply by loop

bound
loop : 100

∑ 56 * 100

foo

()

header

(7) if(x>5)

(5) ∑ 17

x=x/2

(12) x=x+2

(2)

if(x<0)

(4) ∑ 12

b[i]=a[i]

(8)

bar(i)

(20)

 foo(x):

A: loop(i=1..100)

B: if (x > 5) then
C: x = x*2

 else
D: x = x+2

 end

E: if (x < 0) then
F: b[i] = a[i];

 end
G: bar (i)

 end loop

4 december 11 Worst-Case Execution Time Analysis 72

Tree-Based: Final result
 The function

foo() will take
5600 cycles in
the worst case

loop : 100

∑ 56 * 100

foo

∑ 5600

header

(7) if(x>5)

(5) ∑ 17

x=x/2

(12) x=x+2

(2)

if(x<0)

(4) ∑ 12

b[i]=a[i]

(8)

bar(i)

(20)

 foo(x):

A: loop(i=1..100)

B: if (x > 5) then
C: x = x*2

 else
D: x = x+2

 end

E: if (x < 0) then
F: b[i] = a[i];

 end
G: bar (i)

 end loop

Worst-Case Execution Time analysis 11-12-04

19

Path-Based Calc
foo()

C

B

D

E

F

end

tA=7

tB=5

tC=12

tG=2

 Find longest path
 One loop at a time

 Prepare the loop
 Remove back edges
 Redirect to special

continue nodes

A

continue

G

tD=2

tF=8

 foo(x,i):

A: while(i < 100)

B: if (x > 5) then
C: x = x*2;

 else
D: x = x+2;

 end

E: if (x < 0) then
F: b[i] = a[i];

 end
G: i = i+1;

 end

tE=4

Path-Based Calculation
foo()

C

B

D

E

F

end

tA=7

tB=5

tC=12

tE=4

tG=2

 Longest path:
 A-B-C-E-F-G
 7+5+12+4+8+2=

38 cycles

 Total time:
 100 iterations
 38 cycles per iteration
 Total: 3800 cycles

A

continue

G

tD=2

tF=8

Path-Based Calc

  Infeasible path:
  A-B-C-E-F-G
  Ignore, look for next

 foo(x,i):

A: while(i < 100)

B: if (x > 5) then
C: x = x*2;

 else
D: x = x+2;

 end

E: if (x < 0) then
F: b[i] = a[i];

 end
G: i = i+1;

 end

C and F can
never execute

together

foo()

C

B

D

E

F

end

tA=7

tB=5

tC=12

tE=4

tG=2

A

continue

G

tD=2

tF=8

Path-Based Calc
foo()

C

B

D

E

F

end

tA=7

tB=5

tC=12

tE=4

tG=2

  Infeasible path:
  A-B-C-E-F-G
  Ignore, look for next

 New longest path:
  A-B-C-E-G
  30 cycles

 Total time:
  Total: 3000 cycles

A

continue

G

tD=2

tF=8

 foo(x,i):

A: while(i < 100)

B: if (x > 5) then
C: x = x*2;

 else
D: x = x+2;

 end

E: if (x < 0) then
F: b[i] = a[i];

 end
G: i = i+1;

 end

C and F can
never execute

together

Worst-Case Execution Time analysis 11-12-04

20

foo()

C

A

B

D

E

F

G

end

Example: IPET Calculation
foo()

C

A

B

D

E

F

G

end

IPET Calculation

 Solution methods:
 Integer linear programming
 Constraint satisfaction

 Solution:
 Counts for

nodes and edges
 A WCET bound

foo()

C

A

B

D

E

F

G

end

IPET Calculation

Hybrid
methods

Worst-Case Execution Time analysis 11-12-04

21

Hybrid methods
 Combines measurement and static analysis
 Methodology:

  Partition code into smaller parts
  Identify & generate instrumentation

points (ipoints) for code parts
  Run program and generate ipoint traces
  Derive time interval/distribution and flow info for

code parts based on ipoint traces
  Use code part’s time interval/distribution and flow

info to create a program WCET estimate

 Basis for RapiTime WCET analysis tool!

int foo(int x) {

 write_to_port(’A’);

 int i = 0;

 while(i < x) {
 write_to_port(’B’);

 i++;

 }

}

Example: loop bound derivation

 3 example traces:
 Run1: ABBBABBBBA
 Run2: ABBAAABBA
 Run3: ABBBBBBA

82

Instrumentation code

Instrumentation code

 Result (based on
provided traces):
 Lower loop bound: 0
 Upper loop bound: 6 Valid for an

entry of foo()

int foo(int x) {

 write_to_port(’A’,TIME);

 int i = 0;

 while(i < x) {
 i++;

 }

 write_to_port(’B’,TIME);

}

Example: function time derivation

 Example trace:
 <A,72>,<B,156>,

 <A,2001>,<B,2191>,
 <A,2555>,<B,2661>

83

Instrumentation
code extended

with TIME macro

 Result (based on
provided trace):
 Min time foo: 84

(156-72=84)
 Max time foo: 190

(2191-2001=190)
Realized as a short
assembler snippet

84

Notes: Hybrid methods
  Testing and instrumentation already used in industry!

  Known testing coverage criteria can be used
  No hardware timing model needed!

  Relatively easy to adapt analysis to new hardware targets

–  Is the resulting WCET estimate safe?
  Have all costly software paths been executed?
  Have all hardware effects been provoked/captured?

–  How much do instrumentation affect execution time?
  Will timing behavior differ if they are removed?
  Often constraints on where instrumentation points can be placed
  Often limits on the amount of instrumentation points possible
  Often limits on the bandwidth available for traces extraction

–  Are task switches/interrupts detected?
  If not, derived timings may include them!

Worst-Case Execution Time analysis 11-12-04

22

WCET
analysis

tools

86

WCET Analysis Tools
 Several more or less complete tools
 Commercial tools:

  aiT from AbsInt
  Bound-T from TidoRum
  RapiTime from

Rapita Systems
 Research tools:

  SWEET – Swedish
Execution Time tool

  Heptane from Irisa
  Florida state university
  SymTA/P from

 TU Braunschweig

The Bound-T WCET tool
 A commercial WCET analysis tool

 Provided by Tidorum Ltd, www.tidorum.fi
 Decodes instructions, construct CFGs,

call-graphs, and calculates WCET from
the executable

 A variety of
CPUs supported:
 Including the

Renesas H8/3297
 Porting made as MSc

thesis project at MDH

88

WCET tool differences
 Used static and/or hybrid methods
 User interface

  Graphical and/or textual
 Flow analysis performed

  Manual annotations supported
 How the mapping problem is solved

  Decoding binaries
  Integrated with compiler

 Supported processors and compilers
 Low-level analysis performed

  Type of hardware features handled
 Calculation method used

Worst-Case Execution Time analysis 11-12-04

23

89

Supported CPUs (2008)
Tool Hardware platforms
aiT Motorola PowerPC MPC 555, 565, and 755, Motorola ColdFire MCF

5307, ARM7 TDMI, HCS12/STAR12, TMS320C33, C166/ST10,
Renesas M32C/85, Infineon TriCore 1.3

Bound-T Intel-8051, ADSP-21020, ATMEL ERC32, Renesas H8/300,
ATMEL AVR and ATmega, ARM7

RapiTime Motorola PowerPC family, HCS12 family, ARM, NECV850, MIPS3000
SWEET ARM9, NECV850E
Heptane Pentium1, StrongARM 1110, Renesas H8/300
Vienna M68000, M68360, Infineon C167, PowerPC, Pentium

Florida MicroSPARC I, Intel Pentium, StarCore SC100, Atmel Atmega, PISA/
MIPS

Chalmers PowerPC

90

Industrial usage
 Static/hybrid WCET analysis are today used in

real industrial settings
 Examples of industrial usage:

 Avionics – Airbus, aiT
 Automotive – Ford, aiT
 Avionics – BAE Systems, RapiTime
 Automotive – BMW, RapiTime
 Space systems – SSF, Bound-T

 However, most companies are still highly
unaware of the concepts of “WCET analysis”
and/or “schedulability analysis”

The SWEET
approach to

WCET analysis

The MDH WCET project
 Researching on static WCET analysis

 Developing the SWEET (SWEdish
Execution Time) analysis tool

 Research focus:
 Flow analysis
 Technology transfer to industry
  International collaboration
 Parametrical WCET analysis
 Early-stage WCET analysis*
 WCET analysis for multi-core*

 Previous research focus:
 Low-level analysis
 Calculation

* = new project activities

Worst-Case Execution Time analysis 11-12-04

24

Technology transfer to
industry (and academia)

 Evaluation of WCET analysis in industrial settings
  Targeting both WCET tool providers and industrial users
  Using state-of-the-art WCET analysis tools

 Applied as MSc thesis works:
  Enea OSE, using SWEET & aiT
  Volcano Communications, using aiT
  Bound-T adaption to Lego Mindstorms and

Renesas H8/300. Used in MDH RT courses
  CC-Systems, using aiT & measurement tools
  Volvo CE using aiT & SWEET
  ….

 Articles and MSc thesis reports
available on the MRTC web

94

Flow analysis
  Main focus of the MDH WCET analysis group

  Motivated by our industrial case studies
  We perform many types of advanced

program analyses:
  Program slicing (dependency analysis)
  Value analysis (abstract interpretation)
  Abstract execution

 ...
  Both loop bounds and

infeasible paths are derived
  Analysis made on

ALF intermediate code
  ~ “high level assembler”

A

C

x > 5

B

x < 3

D

 E Path A-C is
infeasible!

x = 1..10

x = 6..10

x = 1..4

x = 1..2
x = 3..8

Hardware

Where SWEET comes in…

C Source

WCET Low-level
analysis Calculation

SWEET

C Source

Object File

Object File

WCET
Estimate

Compiler

C Source

Flow
analysis

Input value
constraints

ALF

Compiler

Linker

Executable

Object File C Library

C Runtime

Other Lib

OS

LOW-SWEET

ALF

Object File

Executable Binary
reader

Slicing for flow analysis
  Observation: some variables and statements

do not affect the execution flow of the program
= they will never be used to determine the outcome of conditions

  Idea: remove variables and statements which are
guaranteed to not affect execution flow
  Subsequent flow analyses should provide same result

but with shorter analysis time
  Based on well-known program slicing techniques

  Reduces up to 94%
of total program
size for some of
our benchmarks

1. a[0] = 42;
2. i = 1;
3. j = 5;
4. n = 2 * j;
5. while (i <= n) {
6. a[i] = i * i;
7. i = i + 2;
8. }

1.
2. i = 1;
3. j = 5;
4. n = 2 * j;
5. while (i <= n) {
6.
7. i = i + 2;
8. }

Worst-Case Execution Time analysis 11-12-04

25

Value analysis
 Based on abstract interpretation (AI)

  Calculates safe approximations of possible values
for variables at different program points

  E.g. interval analysis gives i = [5..100] at p
  E.g. congruence analysis gives i = 5 + 2* at p

 Builds upon well known
program analysis techniques
  Used e.g. for checking array bound violations

 Requires abstract versions of all
ALF instructions
  These abstract instructions work on abstract values

(representing set of concrete values) instead of normal ones

 i=5;
 max=100;
 while(i<=max) {
 // point p
 i=i+2;
 }

98

Loop bound analysis by AI
  Observation: the number of possible program

states within a loop provides a loop bound
  Assuming that the loop terminates

  Loop bound = product of possible
values of variables within the loop

  Example:
  Interval analysis gives

i = [5..100] and max=[100..100] at p
  Congruence analysis gives

 i = 5 + 2* and max=100+0* at p
  The produce of possible values become:

size(i) * size(max) = ((100-5)/2) * (100-100)/1) = 45 * 1 = 45
which is an upper loop bound

  Analysis bounds some but not all loops

 i=5;
 max=99;
 while(i<=max) {
 // point p
 i=i+2;
 }

Abstract Execution (AE)
 Derives loop bounds and infeasible paths
 Based on Abstract Interpretation (AI)

 AI gives safe (over)approximation of possible values
of each variable at different program points

 Each variable can hold a set of values

 “Executes” program using abstract values
 Not using traditional AI fixpoint calculation

 Result: an (over)approximation of the
possible execution paths

 All feasible paths will be included in the result
 Might potentially include some infeasible paths
  Infeasible paths found are guaranteed to be infeasible

i = [1..4]

Loop bound analysis by AE

 Result includes all possible loop executions
 Three new abstract states generated at q

 Could be merged to one single abstract state:
 i=[10..11]

i = INPUT;

// i = [1..4]
while(i < 10) {
 // point p
 ...
 i = i + 2;
}
// point q

Loop
iteration

Abstract
state at p

Abstract
state at q

1

Loop
iteration

Abstract
state at p

Abstract
state at q

1 i = [1..4] ┴

Loop
iteration

Abstract
state at p

Abstract
state at q

1 i = [1..4] ┴
2 i = [3..6] ┴

Loop
iteration

Abstract
state at p

Abstract
state at q

1 i = [1..4] ┴
2 i = [3..6] ┴
3 i = [5..8] ┴

Loop
iteration

Abstract
state at p

Abstract
state at q

1 i = [1..4] ┴
2 i = [3..6] ┴
3 i = [5..8] ┴
4 i = [7..9] i = [10..10]

Loop
iteration

Abstract
state at p

Abstract
state at q

1 i = [1..4] ┴
2 i = [3..6] ┴
3 i = [5..8] ┴
4 i = [7..9] i = [10..10]
5 i = [9..9] i = [10..11]

Loop
iteration

Abstract
state at p

Abstract
state at q

1 i = [1..4] ┴
2 i = [3..6] ┴
3 i = [5..8] ┴
4 i = [7..9] i = [10..10]
5 i = [9..9] i = [10..11]
6 ┴ i = [11..11]

Loop
iteration

Abstract
state at p

Abstract
state at q

1 i = [1..4] ┴
2 i = [3..6] ┴
3 i = [5..8] ┴
4 i = [7..9] i = [10..10]
5 i = [9..9] i = [10..11]
6 ┴ i = [11..11]

Result
Min iterations: 3
Max iterations: 5

[5..8]
[7..9]
[9..9]

[10..10]
[10..11]
[11..11]

[1..4]
[3..6]

Worst-Case Execution Time analysis 11-12-04

26

Multi-core
+ WCET
analysis?

Trends in Embedded HW
 Trend: Large variety of ES HW platforms

  Not just one main processor type as for PCs
  Many different HW configurations (memories, devices, …)
  Challenge: How to make WCET analysis portable between

platforms?

 Trend: Increasingly complex HW
features to boost performance
  Taken from the high-performance CPUs
  Pipelines, caches, branch predictors,

superscalar, out-of-order, …
  Challenge: How to create safe and tight HW timing models?

 Trend: Multi-core architectures

Multi-core architectures
  Several (simple) CPUs on one chip

  Increased performance & lower power
  “SoC”: System-on-a-Chip possible

  Explicit parallelism
  Not hidden as in superscalar architectures

  Likely that CPUs will be less complex
than current high-end processors
  Good for WCET analysis!

  However, risk for more shared
resources: buses, memories, …
  Bad for WCET analysis!
  Unrelated threads on other cores

might use shared resources
  Multi-core might be ok if predictable sharing

of common resources is somehow enforced

Multicore chip

core

L1 cache

core

L1 cache

core

L1 cache

L2 cache

RAM

Devices

etc. Network

Timer Serial

Example: shared bus
  Example, dual core processor with private L1

caches and shared memory bus for all cores
  Each core runs its own code and task

  Problem:
  Whenever t1 needs something from

memory it may or may not collide with
t2’s accesses on the memory bus

  Depends on what t1 and t2 accesses
and when they accesses it

  Large parallel state space to explore

  Possible solution:
  Use deterministic (but potentially pessi-

mistic) bus schedule, like TDMA
  Worst-case memory bus delay can then

be bounded

int t1_code {
 if(...) {
 ...
 }
 ...
}

int t2_code {
 ...
 while(...) {
 ...
 }
}

TDMA bus
schedule

Worst-Case Execution Time analysis 11-12-04

27

Example: shared memory
  ES often programmed using shared memory model

  t1 and t2 may communicate/synchronize using shared variables
  Problem:

  When t1 writes g, memory block of g is loaded into core1’s d-cache
  Similarly, when t2’s writes g, memory

block of g moved to t2’s d-cache (and
t1’s block is invalidated)

  May give a large overhead
  Much time can be spent moving memory

blocks in between caches (ping-pong)
  Hidden from programmer - HW makes

sure that cache/memory content is ok
  False sharing – when tasks accesses

different variables, but variables are
located in same memory block

  Possible solutions:
  Constrain task’s accesses to shared

memory (e.g. single-shot task model)

105

int t1_code {
 if(...) {
 ...
 g=5;
 }
 ...;
}

int t2_code {
 ...
 while(...) {
 ...
 g++;
 }
}

Example: multithreading
  Common on high-order multi-cores and GPUs
  Core run multiple threads of execution in parallel

  Parts of core that store state of threads (registers, PC, ..) replicated
  Core’s execution units and caches shared between threads

  Benefits
  Hides latency – when one thread

stalls another may execute instead
  Better utilization of core’s computing

resources – one thread usually only
use a few of them at the same time

  Problems
  Hard to get timing predictability
  Instructions executing and cache

content depends dynamically on
state of threads, scheduler, etc.

106

int t1_code {
...;
}

int t3_code {
...;
} int t2_code {

...;
}

Trends in Embedded SW

 Traditionally: embedded SW written in C
and assembler, close to hardware

 Trend: size of embedded SW increases
 SW now clearly dominates ES development cost
 Hardware used to dominate

 Trend: more ES development by high-level
programming languages and tools
 Object-oriented programming languages
 Model-based tools
 Component-based tools

Increase in embedded SW size
 More and more functionality required

  Most easily realized in software

 Software gets more and more complex
  Harder to identify the timing critical part of the code
  Source code not always available for all parts of the

system, e.g. for SW developed by subcontractors

 Challenges for WCET analysis:
  Scaling of WCET analysis methods to larger code sizes

 Better visualization of results (where is the time spent?)
  Better adaptation to the SW development process

 Today’s WCET analysis works on the final executable
 Challenge: how to provide reasonable precise WCET

estimates at early development stages

Worst-Case Execution Time analysis 11-12-04

28

Higher-level prog. languages
 Typically object-oriented: C++, Java, C#, …
 Challenges for WCET analysis:

 Higher use of dynamic data structures
 In traditional ES programming all data is statically

allocated during compile time
 Dynamic code, e.g., calls to virtual methods

 Hard to analyze statically (actual method called
may not be known until run-time)

 Dynamic middleware:
 Run-time system with GC
 Virtual machines with JIT compilation

Model-based design
  More embedded system code generated by

higher-level modeling and design tools
  RT-UML, Ascet, Targetlink, Scade, ...

  The resulting code structure
depends on the code generator
  Often simpler than handwritten code

  Possible to integrate such tools
with WCET analysis tools
  The analysis can be automated
  E.g., loop bounds can be provided

directly by the modeling tool

  Hard to provide reliable timing on
modeling level

model

...
label rerun:
if(flag1 || flag2) ...
else
 goto rerun;
...

generated
code

….´
10010101001110101100101001
10010101001110101100101001
10100101010101001010010100
10010101010101010100101010
....

executable

Component-based design
 Very trendy within software engineering
 General idea:

 Package software into reusable
components

 Build systems out of prefabricated
components, which are “glued together”

 WCET analysis challenges:
 How to reuse WCET analysis results

when some settings have changed?
 How to analyze SW components

when not all information is available?
 Are WCET analysis results composable?

Compiler interaction
  Today – commercial WCET analysis tools

analyses binaries
  Another possibility – interaction with the compiler

  Easier to identify data objects and to understand
what the program is intended to do

  There exists many compilers for
embedded systems
  Very fragmented market
  Each specialized on a few particular targets
  Targeting code size and execution speed

  Integration with WCET analysis tools
opens new possibilities:
  Compile for timing predictability
  Compile for small WCET

Worst-Case Execution Time analysis 11-12-04

29

113

The End!
For more information:

www.mrtc.mdh.se/projects/wcet

