
EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #9
Updated November 15, 2011

1

Architecture

Target
environment

Static (periodic) tasks

Hardware platform

Run-time system
S

S

S

A

A

Operator
panel

Operator
display

Aperiodic task

distributed arrival

centralized arrival

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #9
Updated November 15, 2011

2

0 t

V ζ (t) = τ i ai ≤ t ≤ ai + Di{ }

Uζ (t) =
Ci

Diτ i ∈Vζ (t)

∑

for n < 3

for n ≥ 3

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #9
Updated November 15, 2011

3

•  A conservative lower bound on the utilization can be
derived by letting

•  Time-independent global multiprocessor scheduling
•  Deadline monotonic scheduling is also optimal among

time-independent multiprocessor scheduling policies
•  Synthetic utilization bound is identical to the uniprocessor

case, and is independent of the number of processors
•  Synthetic utilization is redefined as:

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #9
Updated November 15, 2011

4

•  Time-independent uniprocessor scheduling

•  Presents a generalized synthetic utilization bound that is a
function of parameters that depend on the scheduling
policy used:

–  Preemptable deadline ratio
–  Resource blocking ratio

•  For deadline monotonic scheduling, the synthetic utilization
bound reduces to the optimal bound for liquid tasks

α = min
∀k

Dk

Dmax
k

A sufficient condition for time-independent uniprocessor
scheduling of aperiodic tasks is thus:

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #9
Updated November 15, 2011

5

For deadline-monotonic scheduling () of independent
tasks (), the utilization bound evaluates to

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #9
Updated November 15, 2011

6

Vp
ζ (t) = τ i ai ≤ t ≤ ai + Di ∧ (τ i is assigned to processor p){ }

Up
ζ (t) =

Ci

Diτ i ∈Vp
ζ (t)

∑

Uζ (t) = 1
m Ci Diτ i ∈Vζ (t)∑

transitionp (t) ≤ t

transitionp (t) = −∞

transitionp (ai)

Up
ζ (t) =

Ck

Dk

≤ 1
τ k ∈Vp

ζ (t)∪τ i

∑

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #9
Updated November 15, 2011

7

•  Each processor maintains a table of currently-guaranteed
tasks. It also maintains a table of the surplus computational
capacity at every other processor. The surplus capacity is
expressed as fractions of a (future) time window of a
common size.

•  If a processor cannot guarantee an aperiodic task locally, it
consults its surplus table and selects the processor
(focused processor) that is most likely to successfully
schedule the task.

•  Because of possible out-of-date entries in the surplus
table, the processor might also send out requests-for-bids
to other lightly-loaded processors. These bids are then
sent to the focused processor.

•  The focused processor determines whether to schedule
locally or pass the task on to the highest bidder. Tasks
that cannot be guaranteed locally, or through focused
addressing and bidding, are rejected.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #9
Updated November 15, 2011

8

•  To update processor state, the load is compared against
a set of load thresholds corresponding to the loading
states.

•  When a processor makes a transition into and out of the
underloaded state, it broadcasts an announcement to its
buddy set which is a limited subset of the processors
chosen mainly based on the nature of the
interconnection network.

•  Each processor is aware of whether any members in its
buddy set are in the underloaded state. An overloaded
processor chooses an underloaded member (if any) in
its buddy set on which to offload a task.

•  Each processor has an ordered list of preferred
processors. Careful design of the lists will reduce the
risk of “flooding” underloaded processors.

