EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #7
Updated November 5, 2011

CHALMERS

Global scheduling

General characteristics:

e All ready tasks are kept in a common (global) queue

e When selected for execution, a task can be dispatched to
an arbitrary processor, even after being preempted

e Task execution is assumed to be "greedy”:
— If higher-priority tasks occupy all processors, a lower-priority

task cannot grab a processor until the execution of a higher-
priority task is complete.

CHALMERS

Global scheduling

Complexity of schedulability analysis for global
scheduling:

The problem of deciding if a task set is schedulable on
m processors with respect to global scheduling is
NP-complete in the strong sense.

Consequence:

There can only exist a pseudo-polynomial time algorithm for
(i) finding an optimal static priority assignment, or
(ii) feasibility testing

But not both at the same time!

CHALMERS

Global scheduling

Advantages:

e Supported by most multiprocessor operating systems
— Windows NT, Solaris, Linux, ...

e Effective utilization of processing resources
— Unused processor time can easily be reclaimed

Disadvantages:
e \Weak theoretical framework
— Few results from the uniprocessor case can be used
® Poor resource utilization for hard timing constraints
— No more than 50% resource utilization can be guaranteed
e Suffers from several scheduling anomalies
— Sensitive to period adjustments

CHALMERS

Global scheduling

The "root of all evil” in global scheduling:

Few of the results obtained for a single processor
generalize directly to the multiple processor case; bringing
in additional processors adds a new dimension to the
scheduling problem. The simple fact that a task can use
only one processor even when several processors are
free at the same time adds a surprising amount of difficulty
to the scheduling of multiple processors.

Consequence:
We’re in deep trouble!

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012
Updated November 5, 2011

Weak theoretical framework

Underlying causes:

e Dhall’s effect:
— With RM, DM and EDF, some low-utilization task sets can be
unschedulable regardless of how many processors are used.
e Dependence on relative priority ordering:
— Changing the relative priority ordering among higher-priority
tasks may affect schedulability for a lower-priority task.
e Hard-to-find critical instant:
— A critical instant does not always occur when a task arrives at
the same time as all its higher-priority tasks.

_ _

Lecture #7

(this page is intentionally blank)

Weak theoretical framework

Dhall's effect: 5={C=2¢7 =1}
7,={C,=2¢,T, =1}
T :{Cs =2¢e,T; =1}

(RM scheduling) 7,={C, =17, =1+£}
| !
Ty 7, misses its deadline
e
o |
%
0 2 1 1+e

Weak theoretical framework

Dhall's effect:

¢ Applies for (greedy) RM, DM and EDF scheduling

¢ Least utilization of unschedulable task sets can be arbitrarily
close to 1 no matter how many processors are used.

2¢e 1
U ppg =Mm—+———1
global 1 l+e

when € -0

Consequence:
New multiprocessor priority-assignment schemes are needed!

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #7
Updated November 5, 2011

_

Weak theoretical framework

Impact of relative priority ordering:

* The response time of a task depends on the relative
priority ordering of the higher-priority tasks
* This property does not exist for a uniprocessor system

* This means that well-known uniprocessor methods for
finding optimal priority assignments (e.g., Audsley, 1991)
cannot be applied

Consequence:

New methods for constructing optimal multiprocessor priority
assignments are needed!

_

Weak theoretical framework

Hard-to-find critical instant:

* Acritical instant does not always occur when a task arrives
at the same time as all its higher-priority tasks.

¢ Finding the critical instant is a very (NP-?) hard problem

* Note: recall that knowledge about the critical instant is a
fundamental property in uniprocessor feasibility tests.

Consequence:

New methods for constructing effective multiprocessor
feasibility tests are needed!

_

Weak theoretical framework

Hard-to-find critical instant: 7,={C=1%=2}
7, :{Cz =2T, =3}
(RM scheduling) n,={C=2T =4}
T f ! f ! ! ! !
(70 1 ! ! 1 !
2N 1 ! 1 !

response time of 7, is maximized for second instance

T1.1[T5.1]71.2] a3 2T5[ma0d [FLafT4 s

2 | [%21 !Ts,1l %22 ITs,zl T3 !"-'3,3] 24 | jfz,s !T3,4] ‘
0 4 8 12 16

CHALMERS

Weak theoretical framework

Underlying causes:
e Dhall’s effect:

e Dependence on relative priority ordering:

e Hard-to-find critical instant:

New techniques for priority assignments and schedulability
tests are needed!

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #7

Updated November 5, 2011

CHALMERS

Weak theoretical framework

Dhall's effect: 7,={C =21 =1}
7, :{Cz =2¢,T, :1}
7,={C, =2¢,T, =1}

(RM scheduling) 7,={C,=LT,=1+£}
| !
Ty 7, misses its deadline
e
5 |
73
0 2 1 1+e

CHALMERS

New priority-assignment scheme

Algorithm RM-US[m/(3m-2)]:

e RM-US[m/(3m-2)] assigns (static) priorities to tasks
according to the following rule:

IfU, >m/(3m—2) then T, has the highest priority
(ties broken arbitrarily)

If U, <m/(3m—2) thenT, has RM priority

* Clearly, tasks with higher utilization, U, =C, /T,
get higher priority.

CHALMERS

New priority-assignment scheme

How to avoid Dhall's effect:

e Problem: RM, DM & EDF only account for task deadlines!
Actual computation demands are not accounted for.
e Solution: Dhall’s effect can easily be avoided by letting

tasks with high utilization receive higher priority:
|

% | % |
)
(5}

0 2¢ 1 1+¢

CHALMERS

New priority-assignment scheme

RM-US[m/(3m-2)] example:
® As an example of the priorities assigned by
RM-US[m/(3m-2)], consider the following task set to be
scheduled on a system with 3 identical processors:
T|={C|=L7;:7} 12:{C2=2,7‘Z:IO}
1,={C,=9,7,=20} 7,={C,=11T,=22}
7, ={C,=2T,=25}
* The utilizations of these tasks are: 0.143, 0.2, 0.45, 0.5
and 0.08, respectively.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #7
Updated November 5, 2011

_ _

New priority-assignment scheme New feasibility tests
RM-US[m/(3m-2)] example: Processor utilization analysis for RM-US[m/(3m-2)):
e Form=3:
m/(3m—2)=3/7~0.4286 e A sufficient condition for RM-US[m/(3m-2)] scheduling on

m identical processors is

* Hence, tasks 7; and 7, will be assigned higher priorities,

and the remaining tasks will be assigned RM priorities. U= ig - m’
* The possible priority assignments are therefore as follows Pl " 3m-2
(highest-priority task listed first):
T3> T4 115735 Tss * Question: does RM-US[m/(3m-2)] avoid Dhall’s effect?

or
7,735,757, Ts,

CHALMERS CHALMERS

New feasibility tests New feasibility tests
Processor utilization analysis for RM-US[m/(3m-2)]: Response-time analysis for multiprocessors:
e We observe that, regardless of the number of processors, ® Uses the same principle as the uniprocessor case, where
the task set will always meet its deadlines as long as no the response time for a task 7; consists of:
more than one third of the processing capacity is used: C, The task’s uninterrupted execution time (WCET)
2 I, Interference from higher-priority tasks

. m
URM—US[m/(Sm—Z)] = 'lnlg}q 3m—2 =

m
3

R =C +1,

* RM-US[m/(3m-2)] thus avoids Dhall's effect since we can « The diff is that th lculati finterf
always add more processors if deadlines were missed. e difference Is that the calculation of interference now

has to account for the fact that higher-priority tasks can

* Note that this remedy was not possible with traditional RM. execute in parallel on the processors

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012
Updated November 5, 2011

_

New feasibility tests

Response-time analysis for multiprocessors:

e For the multiprocessor case, with n tasks and m processors,
we observe two things:

1. Interference can only occur when n>m.

2. Interference can only affect tasks {Tk k> m} since
the m highest-priority tasks will always execute in
parallel without contention on the m processors.

e Consequently, interference of a task is a function of the
execution overlap of its higher-priority tasks.

New feasibility tests

Response-time analysis for multiprocessors:
e The worst-case interference term is

1 R.

L=— Y ||=£|-C,+C,
M vjenp(iy j

where hip(i) is the set of tasks with higher priority than 7;.

* The worst-case response time for a task7; is thus:

R,.=C,.+l D {&lCﬁcj

M e pp (i))

Lecture #7

_

New feasibility tests

Response-time analysis for multiprocessors:

e The following two observations give us the secret to
analyzing the interference of a task:

With respect to the execution overlap it can be
shown that the interference is maximized when the
higher-priority tasks completely overlap their execution.

Compared to the uniprocessor case, one extra instance

of each higher-priority task must be accounted for in the
interference analysis.

New feasibility tests

Response-time analysis for multiprocessors:

® As before, an iterative approach can be used for finding
the worst-case response time:

M e np(i)

n+ 1 Rin
R =C+— Y, {—lcﬁcj

J

¢ We now have a sufficient condition for static-priority
scheduling on multiprocessors:

Vi: R, <D,

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #7
Updated November 5, 2011

Poor resource utilization Scheduling anomalies

A fundamental limit Scheduling anomaly: A seemingly positive change in

L . the system (reducing load or adding resources) causes
The utilization guarantee bound for any static-priority y (9 9)

multiprocessor scheduling algorithm cannot be higher ol Ceepall PR s
than 1/2 of the capacity of the processors.

State-of-the-art :
e Uniprocessor systems:
— Anomalies only found for non-preemptive scheduling

* This applies for all types of static-priority scheduling. That
is, partitioned and global, greedy and p-fair scheduling.

 Hence, we can never expect to utilize more than half the ° Mu:glprr]ocdeyssor sy?ter?s: ive schedui
processing capacity if hard timing constraints exist. — Richard's anomalies for non-preemptive scheduling

* The most resource-efficient multiprocessor real-time system B Exe_cuuon't'me'baseq anomalies for P reempt've.SChEdu“ng
is therefore one with a mix of soft and hard constraints. — Period-based anomalies for preemptive scheduling

Scheduling anomalies Scheduling anomalies
Richard’'s anomalies: Execution-time-based anomalies:
Assumptions: Assumptions:
— Non-preemptive scheduling — Preemptive scheduling
— Precedence constraints — Independent tasks
— Restricted migration (individual task instances cannot migrate) — Restricted migration (individual task instances cannot migrate)
— Fixed execution times — Fixed execution times
Task completion times may increase as a result of: Task completion times may increase as a result of:
— Changing the task priorities 2 — Reducing task execution times _'.:
— Increasing the number of processors
— Reducing task execution times
— Weakening the precedence constraints

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #7
Updated November 5, 2011

CHALMERS CHALMERS

Scheduling anomalies Global scheduling
Period-based anomalies: State-of-the-art in global scheduling:
Assumptions: e Static priorities:

— The RM-US[m/(3m-2)] priority assignment scheme offers a way
to circumvent Dhall’s effect and a non-zero resource utilization
guarantee bound of m/(3m-2) = 33.3%.

— In 2003, Baker generalized the RM-US results to DM.

e Dynamic priorities:

A task’s completion time may increase as a result of: — In 2002, Srinivasan & Baruah proposed the EDF-US[m/(2m-1)]
— Increasing the period of a higher-priority task . scheme with a corresponding non-zero resource utilization
— Increasing the period of the task itself e] guarantee bound of m/(2m-1) = 50%.

e Optimal multiprocessor scheduling:

— Using p-fair scheduling and dynamic priorities it is possible to
achieve 100% resource utilization on a multiprocessor.

— Preemptive scheduling
— Independent tasks

— Full migration
— Fixed execution times

Note: increasing the periods is commonly used
to reduce the load in feedback-control systems!

