EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #7
Updated November 5, 2011

Global scheduling

General characteristics:

e All ready tasks are kept in a common (global) queue

e \When selected for execution, a task can be dispatched to
an arbitrary processor, even after being preempted

e Task execution is assumed to be "greedy”:

— If higher-priority tasks occupy all processors, a lower-priority
task cannot grab a processor until the execution of a higher-
priority task is complete.

Global scheduling

Advantages:

e Supported by most multiprocessor operating systems
— Windows NT, Solaris, Linux, ...

e Effective utilization of processing resources
— Unused processor time can easily be reclaimed

Disadvantages:

e \Weak theoretical framework

— Few results from the uniprocessor case can be used
e Poor resource utilization for hard timing constraints

— No more than 50% resource utilization can be guaranteed
e Suffers from several scheduling anomalies

— Sensitive to period adjustments

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #7
Updated November 5, 2011

Global scheduling

Complexity of schedulability analysis for global
scheduling:

The problem of deciding if a task set is schedulable on
m processors with respect to global scheduling is

NP-complete in the strong sense.

Consequence:

There can only exist a pseudo-polynomial time algorithm for
(i) finding an optimal static priority assignment, or

(i) feasibility testing
But not both at the same time!

Global scheduling

The "root of all evil” in global scheduling:

Few of the results obtained for a single processor
generalize directly to the multiple processor case; bringing
in additional processors adds a new dimension to the
scheduling problem. The simple fact that a task can use
only one processor even when several processors are
free at the same time adds a surprising amount of difficulty
to the scheduling of multiple processors.

Consequence:
We’re in deep trouble!

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #7
Updated November 5, 2011

CHALMERS

Weak theoretical framework

Underlying causes:

e Dhall’'s effect:
— With RM, DM and EDF, some low-utilization task sets can be
unschedulable regardless of how many processors are used.
® Dependence on relative priority ordering:
— Changing the relative priority ordering among higher-priority
tasks may affect schedulability for a lower-priority task.
e Hard-to-find critical instant:
— A critical instant does not always occur when a task arrives at
the same time as all its higher-priority tasks.

CHALMERS

(this page is intentionally blank)

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012
Updated November 5, 2011

CHALMERS

Weak theoretical framework

Dhall’s effect: 7,={C =2¢,T =1}
7,={C,=2¢,T, =1}
7, ={C,=2¢,T, =1}
(RM scheduling) 7,={C,=LT,=1+¢}

| Ty | 7, misses its deadline

})l Tl| Tl| ‘

%

B ,
0 2¢ 1 1+¢

CHALMERS

Weak theoretical framework

Dhall’'s effect:

* Applies for (greedy) RM, DM and EDF scheduling

* Least utilization of unschedulable task sets can be arbitrarily
close to 1 no matter how many processors are used.

2¢e 1
Uy =m—t—— 1
global 1 1+8

when € =0

Consequence:
New multiprocessor priority-assignment schemes are needed!

Lecture #7

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #7
Updated November 5, 2011

Weak theoretical framework

Impact of relative priority ordering:

* The response time of a task depends on the relative
priority ordering of the higher-priority tasks

* This property does not exist for a uniprocessor system

¢ This means that well-known uniprocessor methods for
finding optimal priority assignments (e.g., Audsley, 1991)
cannot be applied

Consequence:

New methods for constructing optimal multiprocessor priority
assignments are needed!

CHALMERS

Weak theoretical framework

Hard-to-find critical instant: 7,={C =1T,=2}
T, ={C2 =2,T, =3}
(RM scheduling) 7,={C,=2,T;=4}
a1 ! f f f ! f I
(72 1 ! 1 I 1
73 1 I ! ! I

response time of 7, is maximized for second instance

A [mufmana [T1,4[03,2]T15]T3.3]T16] [71,7]73,4] 7]
P To1 T3] T22 fl'3,2| T3 (733 T4 | | Ta5 (T34
T T T T T T T
4 8

0 12 16

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #7
Updated November 5, 2011

CHALMERS

Weak theoretical framework

Hard-to-find critical instant:

¢ A critical instant does not always occur when a task arrives
at the same time as all its higher-priority tasks.

¢ Finding the critical instant is a very (NP-?) hard problem

* Note: recall that knowledge about the critical instant is a
fundamental property in uniprocessor feasibility tests.

Consequence:

New methods for constructing effective multiprocessor
feasibility tests are needed!

CHALMERS

Weak theoretical framework

Underlying causes:
e Dhall’'s effect:

e Dependence on relative priority ordering:

e Hard-to-find critical instant:

New techniques for priority assignments and schedulability
tests are needed!

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012

Updated November 5,

CHALMERS

2011

Weak theoretical framework
Dhall’s effect: 7,={C =2¢,T =1}
7,={C,=2¢,T, =1}
7, ={C;=2¢T, =1}
(RM scheduling) 7,={C,=LT,=1+¢}
| | i
1'4 / 7, misses its deadline
A | N |
5
B
0 2¢ 1 l+¢ -

CHALMERS

New priority-assignment scheme

How to avoid Dhall’s effect:

Problem: RM, DM & EDF only account for task deadlines!
Actual computation demands are not accounted for.

Solution: Dhall’s effect can easily be avoided by letting
tasks with high utilization receive higher priority:

A T | | T |
/%) T | T T
P R

0 2¢ 1 1+e¢

Lecture #7

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #7
Updated November 5, 2011

CHALMERS

New priority-assignment scheme

Algorithm RM-US[m/(3m-2)]:

¢ RM-US[m/(3m-2)] assigns (static) priorities to tasks
according to the following rule:

If U, >m/(3m—2) then 7, has the highest priority
(ties broken arbitrarily)

If U, <m/(3m—2) thenT; has RM priority

* Clearly, tasks with higher utilization, U, = C, /Z,
get higher priority.

CHALMERS

New priority-assignment scheme

RM-US[m/(3m-2)] example:

e As an example of the priorities assigned by
RM-US[m/(3m-2)], consider the following task set to be
scheduled on a system with 3 identical processors:

n={G=15=7} n={G=2T=10}
t,={C,=9,T,=20} 7,={C,=11T,=22}
7, ={C,=2,T, =25}

e The utilizations of these tasks are: 0.143, 0.2, 0.45, 0.5
and 0.08, respectively.

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #7
Updated November 5, 2011

CHALMERS

New priority-assignment scheme

RM-US[m/(3m-2)] example:
e Form=3:
m/(3m—2)=3/7=0.4286
* Hence, tasks 7; and 7, will be assigned higher priorities,
and the remaining tasks will be assigned RM priorities.

* The possible priority assignments are therefore as follows
(highest-priority task listed first):
T3,T4,T,T,,Ts,
or
T4,75,7,,7T,,Ts,

CHALMERS

New feasibility tests

Processor utilization analysis for RM-US[m/(3m-2)]:

e A sufficient condition for RM-US[m/(3m-2)] scheduling on
m identical processors is

2

5 C. m
U=) —+<
Z‘Y} 3m—2

* Question: does RM-US[m/(3m-2)] avoid Dhall’s effect?

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #7
Updated November 5, 2011

CHALMERS

New feasibility tests

Processor utilization analysis for RM-US[m/(3m-2)]:

e \We observe that, regardless of the number of processors,
the task set will always meet its deadlines as long as no
more than one third of the processing capacity is used:

2

. m m
URM—US[m/(3m—2)] = ,!}Bl 3m—2 - ?

* RM-US[m/(3m-2)] thus avoids Dhall's effect since we can
always add more processors if deadlines were missed.

* Note that this remedy was not possible with traditional RM.

CHALMERS

New feasibility tests

Response-time analysis for multiprocessors:

e Uses the same principle as the uniprocessor case, where
the response time for a task 7; consists of:

C. The task’s uninterrupted execution time (WCET)
I. Interference from higher-priority tasks

R =C+1,

* The difference is that the calculation of interference now
has to account for the fact that higher-priority tasks can
execute in parallel on the processors.

10

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #7
Updated November 5, 2011

New feasibility tests

Response-time analysis for multiprocessors:

e For the multiprocessor case, with n tasks and m processors,
we observe two things:

1. Interference can only occur when n>m

2. Interference can only affect tasks {Tk k> m} since
the m highest-priority tasks will always execute in
parallel without contention on the m processors.

e Consequently, interference of a task is a function of the
execution overlap of its higher-priority tasks.

New feasibility tests

Response-time analysis for multiprocessors:

e The following two observations give us the secret to
analyzing the interference of a task:

With respect to the execution overlap it can be
shown that the interference is maximized when the
higher-priority tasks completely overlap their execution.

Compared to the uniprocessor case, one extra instance

of each higher-priority task must be accounted for in the
interference analysis.

11

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #7
Updated November 5, 2011

CHALMERS

New feasibility tests

Response-time analysis for multiprocessors:
e The worst-case interference term is
1 R.
L=— Y ||=|C+C,
M ienp(i) j ‘
where /p(i) is the set of tasks with higher priority than 7, .

* The worst-case response time for a task 7, is thus:

R-c+l ¥ M.Cﬁcj

M e hp(i) j

CHALMERS

New feasibility tests

Response-time analysis for multiprocessors:

e As before, an iterative approach can be used for finding
the worst-case response time:

nt | R’
R™ =C +— Z { w-cj+Cj

M vjenp(i)

J

* We now have a sufficient condition for static-priority
scheduling on multiprocessors:

Vi: R, <D,

12

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #7
Updated November 5, 2011

Poor resource utilization

A fundamental limit:

The utilization guarantee bound for any static-priority
multiprocessor scheduling algorithm cannot be higher
than 1/2 of the capacity of the processors.

* This applies for all types of static-priority scheduling. That
is, partitioned and global, greedy and p-fair scheduling.

* Hence, we can never expect to utilize more than half the
processing capacity if hard timing constraints exist.

The most resource-efficient multiprocessor real-time system
is therefore one with a mix of soft and hard constraints.

CHALMERS

Scheduling anomalies

Scheduling anomaly: A seemingly positive change in
the system (reducing load or adding resources) causes
a non-intuitive decrease in performance.

State-of-the-art :

® Uniprocessor systems:
— Anomalies only found for non-preemptive scheduling

® Multiprocessor systems:
— Richard’s anomalies for non-preemptive scheduling
— Execution-time-based anomalies for preemptive scheduling
— Period-based anomalies for preemptive scheduling

13

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #7
Updated November 5, 2011

CHALMERS

Scheduling anomalies

Richard’s anomalies:

Assumptions:

Non-preemptive scheduling

— Precedence constraints

Restricted migration (individual task instances cannot migrate)
Fixed execution times

Task completion times may increase as a result of:
Changing the task priorities A

Increasing the number of processors
Reducing task execution times
Weakening the precedence constraints

CHALMERS

Scheduling anomalies

Execution-time-based anomalies:

Assumptions:
— Preemptive scheduling
— Independent tasks
— Restricted migration (individual task instances cannot migrate)
— Fixed execution times

Task completion times may increase as a result of:
— Reducing task execution times 2

14

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #7
Updated November 5, 2011

Scheduling anomalies

Period-based anomalies:

Assumptions:
— Preemptive scheduling
— Independent tasks

— Full migration
— Fixed execution times

A task’s completion time may increase as a result of:
— Increasing the period of a higher-priority task 5
— Increasing the period of the task itself ')

Note: increasing the periods is commonly used
to reduce the load in feedback-control systems!

Global scheduling

State-of-the-art in global scheduling:
e Static priorities:
— The RM-US[m/(3m-2)] priority assignment scheme offers a way

to circumvent Dhall’s effect and a non-zero resource utilization
guarantee bound of m/(3m-2) = 33.3%.

— In 2003, Baker generalized the RM-US results to DM.
e Dynamic priorities:
— In 2002, Srinivasan & Baruah proposed the EDF-US[m/(2m-1)]

scheme with a corresponding non-zero resource utilization
guarantee bound of m/(2m-1) = 50%.

e Optimal multiprocessor scheduling:

— Using p-fair scheduling and dynamic priorities it is possible to
achieve 100% resource utilization on a multiprocessor.

15

