
EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #5
Updated October 29, 2011

1

Schedulability analysis:
 The process of determining whether a task set can be
scheduled by a given run-time scheduler in such a manner
that all task instances will complete by their deadlines.

Schedulability analysis typically
involves a feasibility test that is
customized for the actual run-time
scheduler used.

The problem of deciding if a task set can be scheduled in
such a manner that all task instances will complete by their
deadlines is NP-complete for each fixed m ≥ 1 processors.

The problem of deciding if a task set can be scheduled on
m processors is NP-complete in the strong sense.

The problem of deciding whether or not the schedule
produced by a particular static or dynamic priority

assignment is valid is NP-complete for m ≥ 1 processors.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #5
Updated October 29, 2011

2

There is a pseudo-polynomial time algorithm to decide if a
task set can be scheduled on one processor in such a way

that all task instances will complete by their deadlines.

•  A feasibility test is sufficient if it with a positive answer
shows that a set of tasks is definitely schedulable.
–  A negative answer says nothing! A set of tasks can still be

schedulable despite a negative answer.

Task set

Schedulable

Not schedulable

Positive test

Negative test

?

•  A feasibility test is necessary if it with a negative answer
shows that a set of tasks is definitely not schedulable.
–  A positive answer says nothing! A set of tasks can still be

impossible to schedule despite a positive answer.

Task set

Schedulable

Not schedulable

Positive test

Negative test

?

•  An exact feasibility test is both sufficient and necessary. If
the answer is positive the task set is definitely schedulable,
and if the answer is negative the task set is definitely not
schedulable.

Task set

Schedulable

Not schedulable

Negative test

Positive test

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #5
Updated October 29, 2011

3

•  Since is the fraction of processor time that is used
for executing task the utilization for tasks is

•  A conservative lower bound on the utilization can be
derived by letting n →∞

lim
n→∞

n 21/n −1() = ln2 ≈ 0.693

•  The sufficient schedulability condition is only valid if:
1. All tasks are independent
2. All tasks are periodic or sporadic
3. Task deadline equals the period ()

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #5
Updated October 29, 2011

4

•  The proof of the condition uses the fact that the worst-
case response time for a task occurs at a critical instant
(where all tasks arrive at the same time)

•  The feasibility test is derived using an analysis of this
special case

•  The proof also shows that if the task set is schedulable for
the critical instant case, it is also schedulable for any other
case

•  The proof is given in Krishna and Shin (Section 3.2.1)
Highly recommended reading!

•  The exact feasibility condition is only valid if:
1. All tasks are independent
2. All tasks are periodic
3. Task deadline equals the period ()

•  The response time for a task consists of:
 The task’s uninterrupted execution time (WCET)

 Interference from higher-priority tasks

t 0 5 10

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #5
Updated October 29, 2011

5

t 0 5 10

If , task can be preempted at most one time by
If , task can be preempted at most two times by
If , task can be preempted at most three times by
...

•  The response time for a task is thus:
•  The iteration starts with a value that is guaranteed to be

less than or equal to the final value of (e.g.)
•  The iteration completes at convergence () or if

the response time exceeds some threshold (e.g.)

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #5
Updated October 29, 2011

6

•  The exact feasibility condition is only valid if:
1. All tasks are independent
2. All tasks are periodic or sporadic
3. Task deadline does not exceed the period ()

•  Let represent the number of instances of that must
complete execution before .

•  The total processor demand up to is

•  We can ignore instance of the task that has arrived during
the interval since for these instances.

t 0 L

•  The total processor demand is thus

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #5
Updated October 29, 2011

7

 where the set of control points K is

K = Di
k Di

k = kTi + Di , Di
k ≤ LCM T1,...,Tn{ }, 1 ≤ i ≤ n, k ≥ 0{ }

•  Note that the feasibility test is now only sufficient since the
worst-case blocking will not always occur at run-time.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #5
Updated October 29, 2011

8

•  This occurs if the lower-priority task is within a critical
region when arrives, and the critical region’s ceiling
priority is higher than or equal to the priority of .

•  When using priority ceiling protocols (such as PCP or
ICPP) a task can only be blocked once by a task with
lower priority than .

•  Blocking now means that the start time of is delayed
(= the blocking factor)

•  As soon as has started its execution, it cannot be
blocked by a lower-priority task.

1. Determine the ceiling priorities for all critical regions.

3. Consider the times that these tasks lock the actual critical
regions. The longest of those times constitutes the blocking
factor .

2. Identify the tasks that have a priority lower than and
that calls critical regions with a ceiling priority equal to or
higher than the priority of .

