CHALMERS	
Schedul	ability analysis
Sebedule bility analys	sie:
The process of determ scheduled by a given run that all task instances wi	hining whether a task set can be n-time scheduler in such a manner ill complete by their deadlines.
	Schedulability analysis typically
Ň	involves a feasibility test that is customized for the actual run-time scheduler used.

CHALMERS

Schedulability analysis

Complexity of schedulability analysis: (Leung & Merrill, 1980)

The problem of deciding if a task set can be scheduled in such a manner that all task instances will complete by their deadlines is NP-complete for each <u>fixed</u> $m \ge 1$ processors.

Complexity of multiprocessor schedulability analysis: (Leung & Whitehead, 1982)

The problem of deciding if a task set can be scheduled on *m* processors is <u>NP-complete in the strong sense</u>.

CHALMERS

Schedulability analysis

Complexity of feasibility testing: (Leung, 1989)

The problem of deciding whether or not the schedule produced by a <u>particular</u> static or dynamic priority assignment is valid is NP-complete for m ≥ 1 processors.

Observation:

 If an optimal static priority assignment can be easily found, the priority-assignment problem reduces to the feasibility testing problem.

CHALMERS

CHALMERS

Feasibility tests

Processor utilization analysis for RM: (Liu & Layland, 1973)

- · The sufficient schedulability condition is only valid if:
 - 1. All tasks are independent
 - 2. All tasks are periodic or sporadic
 - 3. Task deadline equals the period ($D_i = T_i$)

Feasibility tests		
-------------------	--	--

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012

Processor utilization analysis for RM: (Liu & Layland, 1973)

Updated October 29, 2011

CHALMERS

- The proof of the condition uses the fact that the worstcase response time for a task occurs at a <u>critical instant</u> (where all tasks arrive at the same time)
- The feasibility test is derived using an analysis of this special case
- The proof also shows that if the task set is schedulable for the critical instant case, it is also schedulable for any other case
- The proof is given in Krishna and Shin (Section 3.2.1) Highly recommended reading!

Lecture #5

	Feasibility tests
Resp • The • Hov	onse-time analysis: e equation does not have a simple analytic solution. wever, an <u>iterative</u> procedure can be used:
	$R_i^{n+1} = C_i + \sum_{\forall j \in hp(i)} \left\lceil \frac{R_i^n}{T_j} \right\rceil C_j$
 The less The the second se	e iteration starts with a value that is guaranteed to be s than or equal to the final value of R_i (e.g. $R_i^0 = C_i$) e iteration completes at convergence $(R_i^{n+1} = R_i^n)$ or if response time exceeds some threshold $(R_i^{n+1} = R_i^n)$ or

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Updated October 29, 2011 Lecture #5

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Updated October 29, 2011

Lecture #5

Feasibility tests			
Response	-time analysis with blocking:		
 When us ICPP) a lower pri 	sing priority ceiling protocols (such as PCP or task τ_i can only be blocked once by a task with ority than τ_i .		
 This occ region w priority is 	urs if the lower-priority task is within a critical hen τ_i arrives, and the critical region's ceiling shigher than or equal to the priority of τ_i .		
 Blocking (= the bl 	now means that the start time of τ_i is delayed ocking factor B_i)		
 As soon blocked 	as τ_i has started its execution, it cannot be by a lower-priority task.		

Feasibility tests				
	Response-time analysis with blocking:			
	Determining the blocking factor for $ au_i$			
	1. Determine the ceiling priorities for all critical regions.			
	 Identify the tasks that have a priority lower than τ_i and that calls critical regions with a ceiling priority equal to or higher than the priority of τ_i. 			
	3. Consider the times that these tasks lock the actual critical regions. The longest of those times constitutes the blocking factor B_i .			