EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #4
Updated October 29, 2011

CHALMERS

Scheduling

A schedule is a reservation of spatial (processor, RAM)
and temporal (time) resources for a given task set.

@@

processor I [[1] [|

shared
object

CHALMERS

Scheduling

* A scheduling algorithm generates a schedule for a given
set of tasks and a certain type of run-time system.

* The scheduling algorithm is implemented by a scheduler
that decides in which order the tasks should be executed.

¢ Observe that the scheduler selects which task should be

executed next, while the dispatcher starts the execution of
the selected task.

dispatching - task termination
-------- ——— (_ execution)>——

scheduling

task arrival

preemption

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #4
Updated October 29, 2011

Scheduling

A schedule is said to be feasible if it fulfills all application
constraints for a given set of tasks.

A set of tasks is said to be schedulable if there exists at
least one scheduling algorithm that can generate a
feasible schedule.

rl

A scheduling algorithm is said to be optimal with respect
to schedulability if it can always find a feasible schedule
whenever any other scheduling algorithm can do so.

CHALMERS

Scheduling constraints

Examples of scheduling constraints:

e Non-preemptive scheduling:

— Once started, a task cannot be preempted by another task
Greedy scheduling:

— Once started, a task cannot be preempted by a lower-priority task
e No processor sharing:

— A processor can only execute one task at a time

No dynamic task parallelism:

— A task can only execute on one processor at a time

No task migration:

— A task can only execute on one given processor, or cannot
change processor during its execution

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #4
Updated October 29, 2011

CHALMERS

Scheduling constraints

Non-preemptive scheduling:

e Advantages:
— Mutual exclusion is automatically guaranteed
— Existing methods for WCET analysis works well

e Disadvantages:
— Negative effect on schedulability
e Scheduling decision takes effect after a task has executed

e Once a task starts executing, all other tasks on the same
processor will be blocked until execution is complete

CHALMERS

Scheduling constraints

Preemptive scheduling:

e Advantages:
— Schedulability is not negatively affected

e Scheduling decisions can take effect as soon as the system state
changes (even in the middle of task execution)

e The capacities of task priorities can be used in full
e Disadvantages:

— Mutual exclusion has to be guaranteed by e.g. semaphores (or
similar constructs)

— WCET analysis is more complicated since cache and pipeline
contents will be affected by a task switch

— Program security may be compromised (through so-called
covert channels) if full preemption is allowed

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #4
Updated October 29, 2011

CHALMERS

Scheduling constraints

Greedy scheduling:

e Example: "traditional” static-priority scheduling (RM, DM)

— Once a task starts executing, lower-priority tasks cannot grab
the processor until execution is complete

e Advantages:
— Scheduler relatively simple to implement
— Supported by most real-time operating systems and kernels

e Disadvantages:

— Schedulability is negatively affected:
e Lower-priority tasks can starve and hence miss their deadlines

CHALMERS

Scheduling constraints

Fair scheduling:

e Example: p-fair scheduling
— Although a task has started executing, lower-priority tasks
receive a guaranteed time quantum per time unit for execution
— All tasks hence make some kind of progress per time unit

e Advantages:
— Schedulability maximized when task switch cost is negligible

e Disadvantages:
— Scheduler is relatively complicated to implement

— Poor schedulability when task switch cost is non-negligible
e Fairness implies significantly more task switches than greediness

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #4
Updated October 29, 2011

Scheduling algorithm

When are schedules generated?

e Static scheduling:
— Schedule generated "off-line” before the tasks becomes ready,
sometimes even before the system is in mission.
— Schedule consists of a "time table”, containing explicit start and

completion times for each task instance, that controls the order
of execution at run-time.

e Dynamic scheduling:

— Schedule generated "on-line” as a side effect of tasks being
executed, that is, when the system is in mission.

— Ready tasks are sorted in a queue and receive access to the
processor at run-time based on priorities and/or time quanta.

Scheduling algorithm

How much an oracle is the scheduling algorithm?

® Myopic scheduler:
— Scheduling algorithm only knows about currently ready tasks.

— Scheduling decisions are only taken whenever a new task
instance arrives or a running task instance terminates.

e Clairvoyant scheduler:

— Scheduling algorithm "knows the future”; that is, it knows in
advance the arrival times of the tasks.

— On-line clairvoyant scheduling is difficult to realize in practice.

"Predictions are always hard to make. In particular about the future.”
(Yogi Berra)

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #4
Updated October 29, 2011

CHALMERS

Static scheduling
1O
e Off-line schedule generation:

— Explicit start and finishing times for each task is derived

— Cyclic schedule with a meta period equal to the least common
multiple (LCM) of the task periods

General properties:

7 my N
(2 CRERREREE
(2
Ty
15*i+0 15*i+5 15*i+10 15*i+15 t

CHALMERS

Static scheduling

General properties:

e Automatic techniques for schedule generation

— Simulate a run-time system with dynamic scheduling and
record the executions (start and finish times), or

— Search for a feasible schedule using an intelligent heuristic,
such as branch-and-bound (A*) or simulated annealing

e Schedulability test obtained "for free”
— Generated schedule can easily be checked for feasibility

e Mutual exclusion and precedence is handled explicitly
— Heuristic algorithm can be constrained to never perform a
task switch in a critical region, and to obey execution order
requirements

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #4
Updated October 29, 2011

Static scheduling

Advantages:
® Predictable execution
— Monitoring, debugging and schedulability analysis are simplified

e Effective inter-task communication
— Time for data availability is well known
— Well suited for interfacing to TDMA networks

Disadvantages:
e | ow flexibility
— Schedule cannot adapt itself to changes in the system

* Inefficient for tasks with "bad” periods

— Tasks with mutually inappropriate periods gives rise to
large time tables, which consumes memory

CHALMERS

Dynamic scheduling

General properties:

® On-line schedule generation

— Schedule determined by on-line behavior controlled by
e.g. task priorities or time quanta

— Schedulability for hard-real-time systems must be tested
off-line by making predictions on the on-line behavior

7 fF & & &7

Schedule generated
T, % % v 2 v with rate-monotonic
v v
||

v priority assignment
75 | |
2
Il Il Il >
0 5 10 15 t

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #4
Updated October 29, 2011

Dynamic scheduling

General properties:

o Mutual exclusion and precedence must be handled on-line
— Support for run-time synchronization or task offsets needed

e [arge variety of static and dynamic priority schemes

— Rate-monotonic scheduling
— Deadline-monotonic scheduling

— Earliest-deadline-first scheduling

Dynamic scheduling

Advantages:

e High flexibility
— Schedule can easily adapt to changes in the system

e Effective for different types of tasks
— Sporadic tasks easily supported (via suitable priority assignment)
— Implementation is not affected by task characteristics

Disadvantages:
® | ess predictable execution
— Temporary variations (jitter) in periodicity can occur

¢ Complicated inter-task communication
— Task must synchronize to exchange data
— Difficult to adapt to TDMA networks (but simple for e.g. CAN)

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #4
Updated October 29, 2011

Dynamic scheduling

Rate-monotonic scheduling (RM):

e Uses static priorities
— Priority is determined by task frequency (rate)
— Tasks with higher rates (i.e., shorter periods) are assigned
higher priorities
e Theoretically well-established (for the uniprocessor)
— Sufficient schedulability test can be performed in linear time
(under certain simplifying assumptions)
— Exact schedulability test is an NP-complete problem

— RM is optimal among all scheduling algorithms that uses static
priorities under the assumption that Di = T for all tasks

Dynamic scheduling

Deadline-monotonic scheduling (DM):

e Uses static priorities
— Priority is determined by task deadline
— Tasks with shorter (relative) deadlines are assigned higher

priorities
— Note: RM is a special case of DM, with Di = Ti
e Theoretically well-established (for the uniprocessor)
— Exact schedulability test is an NP-complete problem

— DM is optimal among all scheduling algorithms that uses static
priorities under the assumption that Di < T: for all tasks

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #4
Updated October 29, 2011

Dynamic scheduling

Earliest-deadline-first scheduling (EDF):

e Uses dynamic priorities
— Priority is determined by how critical the process is at a given
time instant

— The task whose absolute deadline is closest in time receives
the highest priority

e Theoretically well-established (for the uniprocessor)
— Exact schedulability test can be performed in linear time
(under certain simplifying assumptions)
— EDF is optimal among all scheduling algorithms that uses
dynamic priorities under the assumption that Di = T for all tasks

Dynamic scheduling

Example: RM versus EDF 7,:(C=2T =3)
7,:(C,=4T,=1)

Time overflow

Tl
RM
7,
v v v
7 T = = | =
E D F 0 5 10 15 20 25
. v v v

10

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #4
Updated October 29, 2011

Handling shared resources

What if tasks are no longer independent?

e Common cause:

— Multiple tasks access a shared software/hardware object for
which mutual exclusion is enforced.

e Solutions:

— On-line resource access protocols where conflicts are resolved
at run-time using dynamic adjustments of task priorities.
Examples: PIP, PCP, ICPP, SRP

— Off-line resource scheduling which produces non-overlapping
task execution windows to avoid conflicts at run-time.
Examples: Xu & Parnas’ algorithm; myopic algorithm

CHALMERS

Handling shared resources

Blocking problem (preemptive scheduling):

priority (H) > priority (L)
|:| normal execution H and L share resource R

/777) critical region

H blocked
A f——
H V7775 R
t

t t2 t

11

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #4
Updated October 29, 2011

CHALMERS

Handling shared resources

Priority inversion phenomenon:
priority (H) > priority (M) > priority (L)
|:| normal execution H and L share resource R

/777 critical region

A

y — ;
. e

H blocked

§
.
\
.

72

t

,_.
—
Iy

—

CHALMERS

Handling shared resources

Avoiding priority inversion:

e Access-control protocols for critical sections:

— Priority Inheritance Protocol (PIP)
— Priority Ceiling Protocol (PCP)

— Distributed PCP

12

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #4
Updated October 29, 2011

CHALMERS

Handling shared resources

Priority Inheritance Protocol:

e Basic idea: When a task 7, blocks one or more higher-
priority tasks, it temporarily assumes (inherits) the highest
priority of the blocked tasks.

e Advantage:

— Prevents medium-priority tasks from preempting 7, and
prolonging the blocking duration experienced by
higher-priority tasks.

e Disadvantage:

— Deadlock: priority inheritance can cause deadlock

— Chained blocking: the highest-priority task may be blocked
once by every other task executing on the same processor.

CHALMERS

Handling shared resources

Priority Ceiling Protocol:

e Basic idea: Each resource is assigned a priority ceiling
equal to the priority of the highest-priority task that can lock
it. Then, a task 7, is allowed to enter a critical section only if
its priority is higher than all priority ceilings of the resources
currently locked by tasks other thant, .

When the task 7, blocks one or more higher-priority tasks, it
temporarily inherits the highest priority of the blocked tasks.

e Advantage:
— No deadlock: priority ceilings prevent deadlocks

— No chained blocking: a task can be blocked at most the
duration of one critical section.

13

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #4
Updated October 29, 2011

CHALMERS

Handling shared resources

Priority Ceiling Protocol: priority (H) > priority (M) > priority (L)
H sequentially accesses resources R1 and R2
M accesses resource R3

|:| normal execution L accesses resource Rs and nests Rz

/777 critical region

A
H [] N
R1 R2 t
A
M | R
R3 t
ceiling blocking
L M_W 7 %) .
R3 R3 R2 R2 R3 t

CHALMERS

Handling shared resources

Distributed PCP:

e All critical sections associated with the same global
resource are bound to a specified synchronization

processor.

e A task "migrates” to the synchronization processor to
execute the critical section (using remote-procedure calls)
— deadlock-free algorithm
— large overhead for message-passing protocol

e All critical sections associated with the same global
resource are executed at a priority equal to the
semaphore’s priority ceiling

— short blocking times

14

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #4
Updated October 29, 2011

CHALMERS

Handling shared resources

Alternative approach:

Lock-free and wait-free object sharing

If several tasks attempt to access a lock-free (wait-free)
object concurrently, and if some proper subset of these tasks
stop taking steps, then one (each) of the remaining tasks
completes its access in a finite number of its own steps.

CHALMERS

Handling shared resources

Lock-Free Object Sharing:

e Basic idea: The lock-free object sharing scheme is
implemented using "retry loops”. Object accesses are
implemented using compare-and-swap instructions
typically found in modern RISC processors.

e Advantage:
— Resource accesses are non-blocking
— Deadlock-free
— Avoids priority inversion
— Requires no kernel-level support

e Disadvantage:
— Potentially unbounded retry loops

15

EDAA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #4
Updated October 29, 2011

CHALMERS

Handling shared resources

Wait-Free Object Sharing:

e Basic idea: The wait-free object sharing scheme is
implemented using a "helping” strategy where one task
"helps” one or more other tasks to complete an operation.
Before beginning an operation, a task must announce its
intentions in an "announce variable”. While attempting to
perform its own operations, a task must also help any
previously-announced operation (on its processor) to
complete execution.

e Advantage:
— Non-blocking, deadlock-free, and priority-inversion-free
— Requires no kernel-level support
— Precludes waiting dependencies among tasks

CHALMERS

Handling shared resources

Non-existence of optimal on-line shared-resource
scheduler:

When there are mutual exclusion constraints in a system,
it is impossible to find an optimal on-line scheduling
algorithm (unless it is clairvoyant).

Complexity of shared-resource feasibility test:

The problem of deciding feasibility for a set of periodic tasks
which use semaphores to enforce mutual exclusion is NP-hard.

16

