

CHAI MEDS
The "Bandersnatch" problem
Initial attempt: Pull down your reference books and plunge into the task with great enthusiasm.
Some weeks later Your office is filled with crumpled-up scratch paper, and your enthusiasm has lessened considerable because
the solution seems to be to examine all possible designs!
New problem: How do you convey the bad information to your boss?

СН	ALMERS
	NP-complete problems
	NP-complete problems : Problems that are "just as hard" as a large number of other problems that are widely recognized as being difficult by algorithmic experts.
,	Ĭ

CHALMERS
NP-complete problems
Problem:
 A general question to be answered
Example: The "traveling salesman optimization problem"
Parameters:
• Free problem variables, whose values are left unspecified Example: A set of "cities" $C = \{c_1,, c_n\}$ and a "distance" $d(c_i, c_j)$ between each pair of cities c_i and c_j
Instance:
• An instance of a problem is obtained by specifying particular values for all the problem parameters Example: $C = \{c_1, c_2, c_3, c_4\}, d(c_1, c_2) = 10, d(c_1, c_3) = 5, d(c_1, c_4) = 9, d(c_2, c_3) = 6, d(c_2, c_4) = 9, d(c_3, c_4) = 3$

CHALMERS
NP-complete problems
 Reducibility: A problem П' is <u>reducible</u> to problem П if, for any instance of П', an instance of П can be constructed in polynomial time such that solving the instance of П will solve the instance of П' as well. When П' is <u>reducible</u> to П, we write П' ∝ П
A decision problem Π is said to be <u>NP-complete</u> if $\Pi \in NP$ and, for all other decision problems $\Pi' \in NP$, Π' polynomially reduces to Π .

CHALMERS
Strong NP-completeness
If a decision problem Π is NP-complete and is <u>not</u> a number problem, then it cannot be solved by a pseudo-polynomial-time algorithm unless P = NP.
÷
Assuming $P \neq NP$, the only NP-complete problems that are potential candidates for being solved by pseudo-polynomial-time algorithms are those that are number problems.
Ļ
A decision problem Π which cannot be solved by a pseudo-polynomial-time algorithm, unless P = NP, is said to be <u>NP-complete in the strong sense</u> .

CHALMERS
History of NP-completeness
S. Cook: (1971) "The Complexity of Theorem Proving Procedures" Every problem in the class NP of decision problems polynomially reduces to the SATISFIABILITY problem:
Given a set U of Boolean variables and a collection C of clauses over U , is there a satisfying truth assignment for C ?
R. Karp: (1972) "Reducibility among Combinatorial Problems" Decision problem versions of many well-known combinatorial optimization problems are "just as hard" as SATISFIABILITY.

NP-complete scheduling problems Non-preemptive uniprocessor scheduling of periodic tasks: Independent tasks with individual offsets and periods, and non-preemptive dispatching. Transformation from 3-PARTITION (Jeffay, Stanat and Martel, 1991) NP-complete in the strong sense. Additional reading: Read the paper by Jeffay, Stanat and Martel (RTSS'91)	ALMERS
Non-preemptive uniprocessor scheduling of periodic tasks: Independent tasks with individual offsets and periods, and non-preemptive dispatching. Transformation from 3-PARTITION (Jeffay, Stanat and Martel, 1991) NP-complete in the strong sense. Additional reading: Read the paper by Jeffay, Stanat and Martel (RTSS'91)	NP-complete scheduling problems
Independent tasks with individual offsets and periods, and non-preemptive dispatching. Transformation from 3-PARTITION (Jeffay, Stanat and Martel, 1991) NP-complete in the strong sense. Additional reading: Read the paper by Jeffay, Stanat and Martel (RTSS'91)	Non-preemptive uniprocessor scheduling of periodic tasks:
NP-complete in the strong sense. Additional reading: Read the paper by Jeffay, Stanat and Martel (RTSS'91)	Independent tasks with individual offsets and periods, and non-preemptive dispatching. Transformation from 3-PARTITION (Jeffay, Stanat and Martel, 1991)
Additional reading: Read the paper by Jeffay, Stanat and Martel (RTSS'91)	NP-complete in the strong sense.
is used for proving strong NP-completeness (Theorem 5.2)	Additional reading: Read the paper by Jeffay, Stanat and Martel (RTSS'91) Study particularly how the transformation from 3-PARTITION is used for proving strong NP-completeness (Theorem 5.2)