

СН	ALMERS
	Verification
	How do we simplify formal verification?
	 Concurrent real-time programming paradigm Suitable schedulable entity (process, thread,) Language constructs for expressing application constraints for schedulable entities (data types, annotations,) WCET must be derivable for schedulable entities (special caution with usage of dynamic language constructs)
	 Deterministic task execution Time tables or static/dynamic task priorities Preemptive task execution
	 Run-time protocols for access to shared resources (dynamic priority adjustment and non-preemptable code sections)

 CHALMERS

 Verification

 Verification

 How do we perform schedulability analysis?

 How do we perform schedulability analysis?

 Introduce abstract models of system components:

 - Task model (computation requirements, timing constraints)

 - Processor model (resource capacities)

 - Run-time model (task states, dispatching)

 • Predict whether task executions will meet constraints

 - Use abstract system models

 - Make sure that computation requirements never exceed resource capacities

 Generate (partly or completely) run-time schedule resulting from task executions and detect worst-case scenarios

Lecture #2

	Run-time model
Ţ	ask states:
•	Waiting
	 Task has not yet arrived for the first time, or has finished executing but not re-arrived
٠	Ready
	 Task has arrived and can potentially execute on the processor (kept waiting in a ready queue)
٠	Running
	 Task is currently executing on the processor
D	ispatcher:
•	A run-time mechanism that takes the first element (task) in the ready gueue and executes it on the processor

CHALMERS Scheduling

- Application constraints can be met through <u>scheduling</u>.
- Scheduling used in many disciplines ("operations research")
 - Production pipelines
 - Real-time systems
 - Classroom scheduling
 - Airline crew scheduling
 - ...

CHALMERS

Schedule = resources + operations on a time line

• An important part of real-time system design is to choose a scheduling technique that generates a good schedule (that fulfills the application constraints).

CHALMERS

Evaluating a real-time system

How do we measure and compare performance?

• Quantify system performance

Lecture #2

- Choose useful performance measures (metrics)
- Perform objective performance analysis
- Choose suitable evaluation methodology
- Examples: theoretical and/or experimental analysis
- Compare performance of different designs
 - Make trade-off analysis using chosen performance measures
- Identify fundamental performance limitations
 - Find "bottleneck" mechanisms that affect performance

Performance measures

"Yardsticks" by which the performance of a system is expressed.

Why do we need it?

- To objective evaluate different design solutions and choose the "best" one
- To rubberstamp a system with performance potential or quality guarantees (cf. "Intel inside", "ISO 9000")

CHALMERS

Performance measures

What is required by a performance measure?

- Must be concise to avoid ambiguity
 - preferably a single number
 - use a weighted sum of constituent local performance measures
 - should reflect user-perceived utility
 - no artificial measures should be used
 - some measures are contradictory
 - processing speed vs. power consumption in a handheld computer
 - some measures are misleading
 - MIPS (million instructions executed per second)

Lecture #2

CHALMERS
Performance measures
Suitable real-time performance measures:
Laxity $X = \min_{r_i \in T} \{D_i - C_i\}$ Amount of time that the start of a task can be delayed without it missing its deadline (calculated <u>before</u> scheduling)
Lateness $L = \max_{r_i \in \mathbf{T}} \{R_i - D_i\}$ Amount of time by which a task completes after its deadline (calculated <u>after</u> scheduling)
Successful tasks $N_{\text{success}} = \left \left\{ \tau_i \in \mathbf{T} : R_i - D_i \le 0 \right\} \right $ Number of tasks that composition on before their deadline (calculated <u>after</u> scheduling)
$\begin{array}{lll} \mbox{Jitter} & J_{\rm output} = \max_{\tau_{i} \in T, k \geq 1} \left\{ \left \left(f_{i,k+1} - f_{i,k}^{*} \right) - T_{i} \right \right\} \\ \mbox{Amount of deviation free expected periodicity of a task's completion} \\ (calculated after scheduling) \end{array} \right.$

Lecture #2