EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #2
Updated October 23, 2011

CHALMERS CHALMERS

Verification Verification
How do we verify the system? - \'% How do we verify the system?
,
Ad hoc testing: I Formal analysis of the implementation:
Run the system for "a while” and let the absence of failures .) - .
"prove” the correctness Verify logllcal corlrectness usmlg proof machine
« fast method that indicates that "everything seems to work” * requires dedicated description language
« pathological cases can be overlooked during testing « abstraction level very high (often implementation independent)

« too frequently used as the only method in industrial design
Verify temporal correctness using schedulability analysis

« necessary for verifying hard-real-time systems

« requires WCET for each task

* requires support in programming language and run-time system

Exhaustive testing:

Verify all combinations of input data, time and faults {3
e considers all possible cases
 requires an unreasonable amount of time for testing

Results from the verification phase are only valid if all
assumptions actually apply at run-time!

CHALMERS CHALMERS

Verification Verification

What sources of uncertainty exist in formal verification? How do we simplify formal verification?
e Non-determinism in tasks’ WCET (undisturbed execution) e Concurrent real-time programming paradigm

— Input data and internal state controls execution paths — Suitable schedulable entity (process, thread, ...)

— Memory access patterns control delays in processor — Language constructs for expressing application constraints

architecture (pipelines and cache memories) for schedulable entities (data types, annotations, ...)

e Non-determinism in tasks’ execution interference - Z\;(jggnrcvlijtﬁ Eseadng’fgli;%iiﬁgidﬂfbéeczr:gt'sit(:)pec'al

(pseudo-parallel execution) on with usage of dyn: guag

— Run-time execution model controls interference pattern e Deterministic task execution

. . s — Time tables or static/dynamic task priorities
e Conflicts in tasks’ demands for shared resources ' " P
X X X — Preemptive task execution
- E)T;:;igO'C)’?Zf;lg;ahs;gxzfgt;rén;g]}{vgg’rg :;s:otorg:sc:ontrolled — Run-time protocols for access to shared resources (dynamic
9 u priority adjustment and non-preemptable code sections)

CHALMERS

Verification

How do we perform schedulability analysis?

e |ntroduce abstract models of system components:
— Task model (computation requirements, timing constraints)
— Processor model (resource capacities)
— Run-time model (task states, dispatching)

e Predict whether task executions will meet constraints
— Use abstract system models
— Make sure that computation requirements never exceed
resource capacities
— Generate (partly or completely) run-time schedule resulting
from task executions and detect worst-case scenarios

CHALMERS

Task model

A task model must be defined to be able to analyze the
temporal behavior of a set of tasks.

e The static parameters of a task describe characteristics
that apply independent of other tasks.
— Derived from the specification or implementation of the system
— For example: period, deadline, WCET

e The dynamic parameters of a task describe effects that
occur during the execution of the task.
— Is a function of the run-time system and the characteristics
of other tasks
— For example: start time, completion time, response time

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #2
Updated October 23, 2011

CHALMERS

Task model

Abstract model

Implementation

task body P1 is
Interval : constant Duration := 5.0;
Next_Time : Time;

begin

Next_Time := Clock + Interval;

Toop
Action; =
delay until Next_Time; @ Tl { Cl'Tl’ Dl’ol}
Next_Time := NexE_Timé + Interval;

end P1;
task body P2 is
Interval : constant Duration := 7.0;
Next_Time : Time;
begin —
Next_Time := Clock + Interval; Tz —{ Cz'Tzv DZ'OQ}
Toop

Action;
delay Until Next_Time;
Next_ Time := Next_Time + Interval;
end l0op;
end P2;

CHALMERS

Task model

Static task parameters: T

T, : period

@ T, :{ C.T, Di,Oi} D, :(relative) deadline

0O, : (absolute) time offset

o
= T =T

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #2
Updated October 23, 2011

_ _

Task model Task model
Dynamic task parameters: a8l te o #* netance Different types of tasks:
s, :start time of k" instance e Periodic tasks
@ T ={ Ci ,TI, DI,Oi} f,, :completion time of k™ instance - A periodic task arrives with a time interval 7:
R, : response time of k" instance

e Sporadic tasks

. th ;
7, * the k™ instance of 7, — A sporadic task arrives with a time interval = 7;

Tu Ti2 V Tis i ® Aperiodic tasks
4 1 4
AL U, l\ I — An aperiodic task has no guaranteed minimum time between
oM f t two subsequent arrivals
'S
" - a,=0+k-1)T R, =f —a, = Hard real-time systems can only contain periodic and
a R ‘ _ . sporadic tasks.
ik ik R = rT'ITaél{ Ri,k} (worst-case response time)

CHALMERS CHALMERS

Processor model Run-time model

Homogeneous processors: Task states:
e |dentical processors * Waiting) o o

— WCETi tant — Task has not yet arrived for the first time, or has finished

IS @ constan executing but not re-arrived
[]
Heterogeneous processors: Ready . .
— Task has arrived and can potentially execute on the processor

e Uniform processors (kept waiting in a ready queue)

— WCET is the product of a basic execution time and a ¢ Running

scaling factor — Task is currently executing on the processor

e Unrelated processors Dispatcher:

— WCET is not related for different processors ® A run-time mechanism that takes the first element (task)

in the ready queue and executes it on the processor.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #2
Updated October 23, 2011

CHALMERS CHALMERS

Scheduling

e Application constraints can be met through scheduling.

e Scheduling used in many disciplines ("operations research”)
— Production pipelines
— Real-time systems
— Classroom scheduling
— Airline crew scheduling

Schedule = resources + operations on a time line

e An important part of real-time system design is to choose
a scheduling technique that generates a good schedule
(that fulfills the application constraints).

CHALMERS

Performance measures

“Yardsticks” by which the performance of a
system is expressed.

Why do we need it?

e To objective evaluate different design solutions and
choose the “best” one

e To rubberstamp a system with performance potential
or quality guarantees (cf. “Intel inside”, “ISO 9000”)

Evaluating a real-time system

How do we measure and compare performance?
e Quantify system performance
— Choose useful performance measures (metrics)
e Perform objective performance analysis
— Choose suitable evaluation methodology
— Examples: theoretical and/or experimental analysis
e Compare performance of different designs
— Make trade-off analysis using chosen performance measures
e |dentify fundamental performance limitations
— Find “bottleneck” mechanisms that affect performance

CHALMERS

Performance measures

What is required by a performance measure?

e Must be concise to avoid ambiguity

— preferably a single number
¢ use a weighted sum of constituent local performance measures

should reflect user-perceived utility
¢ no artificial measures should be used

— some measures are contradictory
e processing speed vs. power consumption in a handheld computer

— some measures are misleading
e MIPS (million instructions executed per second)

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #2
Updated October 23, 2011

_

Performance measures

What is required by a performance measure?

e Must provide efficient coding of information
— determine relevance of individual pieces

e Must provide objective basis for ranking
— use same set of applications for evaluations
e Must provide objective optimization criteria for design

— identify application-sensitive criteria

e Must provide verifiable facts
— use measures that can be derived for a real system

Performance measures

Suitable real-time performance measures:

Laxity X =min__, {D. - Cr}
Amount of time that the start of a task can be delayed without
it missing its deadline (calculated before scheduling)

Lateness L=max__ {R-D}
Amount of time by which a task completes after its deadline
(calculated after scheduling)

Successful tasks N =[{z,eT:R - D, <0
Number of tasks that complete on or before their deadline
(calculated after scheduling)

Jitter S e = MAX .'l'_r\l{l(-l;.i»! ey)— ".H

Amount of deviation from expected periodicity of a task’s completion
(calculated after scheduling)

_

Performance measures

Traditional performance measures:

Throughput
Average # of operations/data processed by system per time unit

Reliability
Probability that system will not fail in a given time interval

Availability
Fraction of time for which system is up (providing service)

These measures do not take deadlines into account!

Performance measures

Cost function — a general real-time performance measure
Cumulative value: C=Y v(f)

7,eT

Value associated with a task as a function of its completion time

V()

Non real-time

Performance measures

Cost function — a general real-time performance measure
Cumulative value: C=Y v(f)

TeT

Value associated with a task as a function of its completion time

V()

Soft real-time

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Lecture #2
Updated October 23, 2011

Performance measures

Cost function — a general real-time performance measure
Cumulative value: C=Y v(f)

7eT

Value associated with a task as a function of its completion time

V()

Hard real-time

