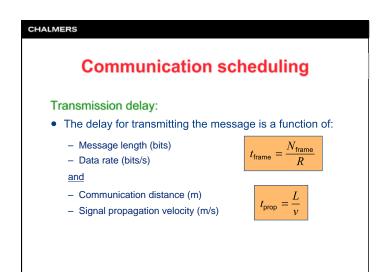
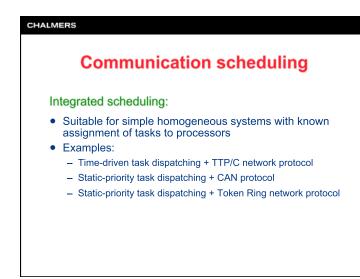
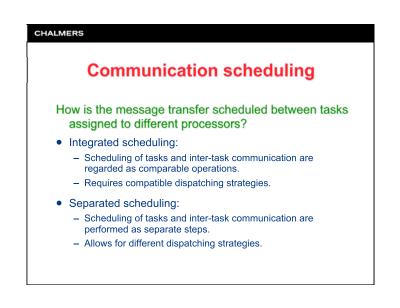

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Updated November 17, 2011

CHALMERS Communication scheduling Hardware platform μ_1 sender receiver μ_2 μ_3


Lecture #10


CHALMERS

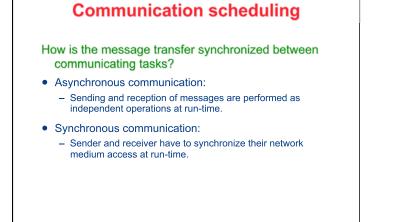

Communication scheduling

Queuing delay:

- The queuing delay for a task is caused by:
 - Waiting for a corresponding time slot (TTP/C, FlexRay)
 - Waiting for a transmission token (Token Ring)
 - Waiting for a contention-free transmission (Ethernet)
 - Waiting for network priority negotiation (CAN)
 - Waiting for removal from priority queue (EDD-D, Switched Ethernet)

CHALMERS

Communication scheduling


Separated scheduling:

- Suitable for heterogeneous systems or when assignment of tasks to processors is not always known in advance
- Motivation:
 - Transmission delay is zero if communicating tasks are assigned to the same processor
 - Number of communication links that a message traverses may be a function of the assignment (depends on topology and routing strategy)
 - Different communication links may employ different message dispatching policies

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Updated November 17, 2011

Updated November 17, 2011

CHALMERS

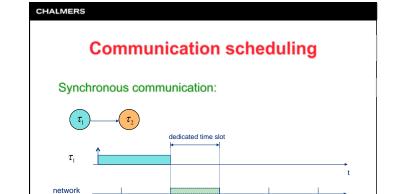
CHALMERS Communication scheduling Asynchronous communication Implementation: Network controller chips administrate message transmission (example: CAN, Ethernet)

- Interrupt handler notifies the receiver
- Large variations ("jitter") in message arrival time can occur
- Message jitter gives rise to <u>release jitter</u> at receiving task (which may negatively affect schedulability)
- Techniques for minimizing release jitter:
 - Explicit arrival times (offsets) for receiving tasks
 - Maintained message periodicity in multi-hop networks

CHALMERS Communication scheduling Asynchronous communication: queuing delay τ_1 transmission delay τ_1 notification delay τ_2 τ_2 τ_2 τ_2 τ_3

release iitter

CHALMERS


Communication scheduling

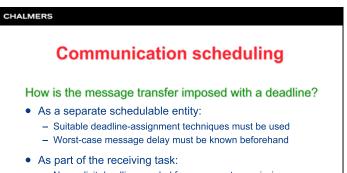
Synchronous communication

- Implementation:
 - Dedicated time slot in a TDMA network
 - Global off-line scheduling necessary
- Techniques for minimizing release jitter
 - Suitable arrival times (offsets) for receiving tasks
 - Use an off-line scheduling algorithm with jitter minimization as the scheduling objective

Lecture #10

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Updated November 17, 2011

Communication scheduling


How is the message transferred onto the medium?

• Contention-free communication:

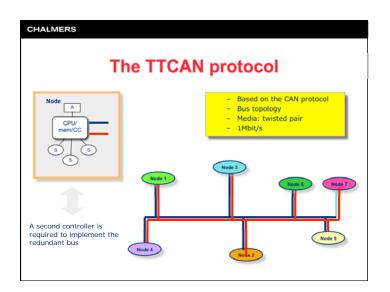
 τ_{2}

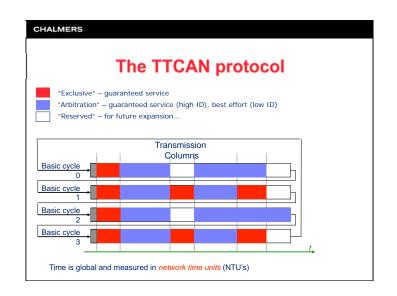
CHALMERS

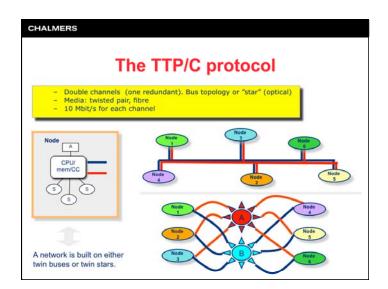
- Processors need not contend for medium access at run-time
- Examples: TTP/C, FlexRay, Switched Ethernet
- Token-based communication:
 - Each processor using the medium gets one chance to send its messages, based on a <u>predetermined</u> order
 - Examples: FDDI, Token Ring (IEEE 802.5)
- Collision-based communication:
 - Processors may have to contend for the medium at run-time
 - Examples: Ethernet (IEEE 802.3), CAN

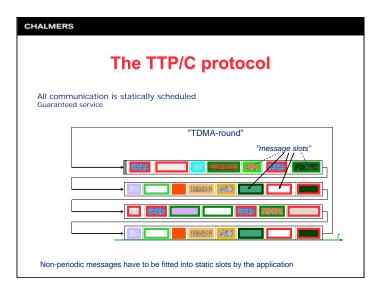
- No explicit deadline needed for message transmission
- May impose release jitter on the receiving task

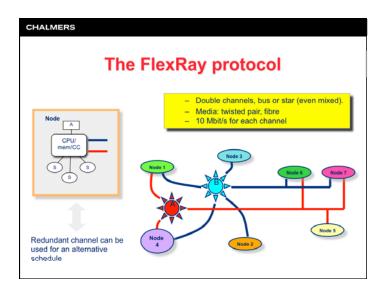
CHALMERS

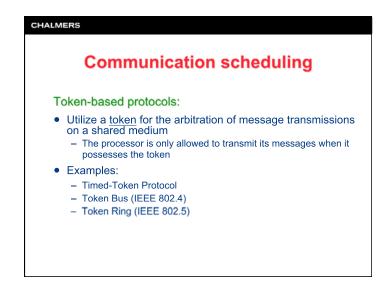

Communication scheduling

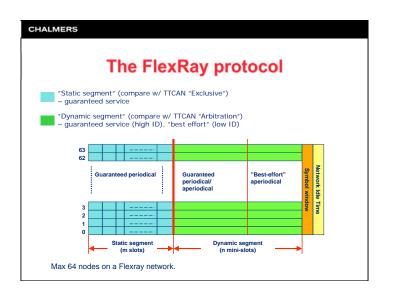

Contention-free protocols:


- One or more dedicated time slots for each task/processor
 - Shared communication bus
 - Medium access is divided into communication cycles (normally related to task hyper periods to allow for integrated scheduling)
 - TTP/C, TTCAN ("exclusive mode"), FlexRay ("static segment")
- One sender only for each communication line
 - Point-to-point communication networks with link switches
 - Output and input buffers with deterministic queuing policies in switches provide delay bounds
 - EDD-D, Switched Ethernet, Network Calculus

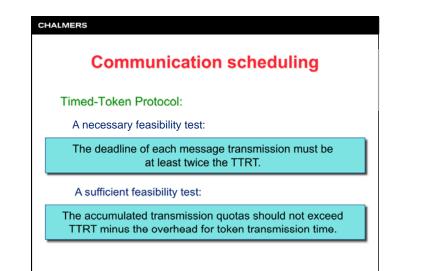

Lecture #10

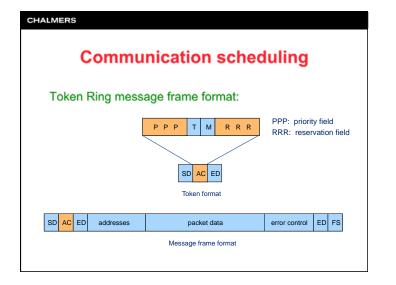


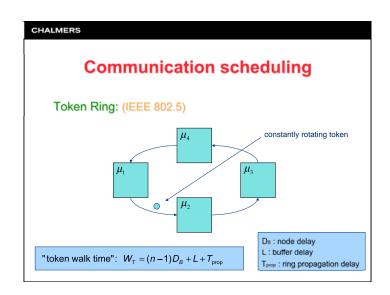




CHALMERS


Communication scheduling


Timed-Token Protocol: (Malcolm & Zhao, 1994)


- Concepts:
 - By token rotation (TR) we mean that the token has made a complete cycle among all the processor nodes.
 - The token cycle time is the <u>real</u> value of the time taken for TR.
 - The target token-rotation time (TTRT) is an <u>expected</u> value of the time taken for TR.
- Protocol:
 - Every time the token visits a processor node, it is allowed to transmit up to a pre-assigned quota of real-time messages.
 - At token reception, token cycle time is compared against TTRT:
 - if token is late, only real-time messages are transmitted
 - if token is early, non-real-time messages are also transmitted

7

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012 Updated November 17, 2011

CHALMERS
Communication scheduling
Token Ring protocol:
 Each node examines RRR of a busy token as it passes and inserts the priority of its pending message only if it is greater than the priority currently in RRR. A node does not grab a "free" token unless the priority of its pending message is at least as high as the priority in PPP. Then the token status is changed to "busy". A transmitting node appends its pending message after the "busy" token and sets RRR appropriately. A transmitting node waits until it receives back the "busy" token before releasing the next "free" token with PPP set to the (possibly) updated RRR.

 Notion of highest priority might be outdated since the system is distributed

Communication scheduling

Token Ring real-time protocol: (Sathaye & Strosnider, 1994)

The rate-monotonic (RM) scheduling algorithm can be

 Messages cannot be interrupted during transmission, which means that message scheduling is non-preemptive.

adapted to the Token Ring protocol by assuming a

- Message headers must be included in message size

non-preemptive dispatching model.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2011/2012

Updated November 17, 2011

CHALMERS

Limitations:

 The number of priority bits (3) defined in IEEE 802.5 does not allow for an arbitrary number of priority levels.

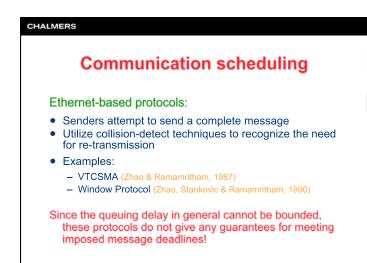
CHALMERS

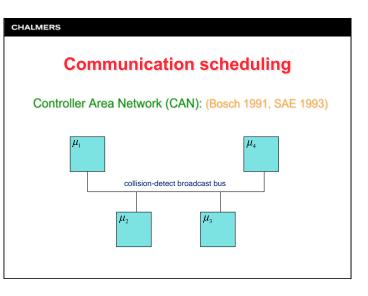
Lecture #10

Communication scheduling

Token Ring real-time protocol: (Sathaye & Strosnider, 1994)

A sufficient and necessary feasibility test:

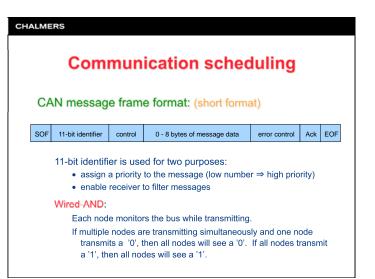

$$\forall i: R_i = t_{sys} + b_i + \sum_{j \in hp(i)} \left\lceil \frac{R_i}{T_j} \right\rceil e_j \le D_i$$


 t_{svs} : system overhead defined by the system

 b_i : blocking time due to ongoing transmissions

 e_i : "execution time" consisting of the following time components

- Capture token when node has highest-priority message pending
- Transmit message
- Transmit subsequent free token



CHALMERS

Communication scheduling

CAN protocol: (binary countdown)

- 1. Each node with a pending message waits until bus is idle.
- The node begins transmitting the highest-priority message pending on the node. Identifier is transmitted first, in the order of most-significant bit to least-significant bit.
- 3. If a node transmits a recessive bit ('1') but sees a dominant bit ('0') on the bus, then it stops transmitting since it is not transmitting the highest-priority message in the system.
- 4. The node that transmits the last bit of its identifier without detecting a bus inconsistency has the highest priority and can start transmitting the body of the message.

CHALMERS

Communication scheduling

CAN real-time protocols:

- Protocol #1: (Tindell et al., 1994)
 - The rate-monotonic (RM) scheduling algorithm can be adapted to the CAN protocol by assuming non-preemptive dispatching.

• Protocol #2: (Zuberi & Shin, 1995)

 The earliest-deadline-first (EDF) and deadline-monotonic (DM) scheduling algorithms can also be adapted to the CAN protocol by appropriately partitioning the identifier field.

Additional reading:

Study the paper by Zuberi and Shin (RTAS'95)