Roger Johansson/2011

Time triggered real time communication

Presentation overview

• Background

automotive electronics, an application area for time triggered communication.

Time triggered protocols

TTPC, first commercial implementation. Originally from TU Vienna. Operational in civil aircrafts.

TTCAN, based on *Controller Area Network* (CAN) which is widely used in today's vehicular electronic systems.

FlexRay, based on BMW's "ByteFlight". Anticipated in next generation automotive electronic systems.

• Hybrid scheduling

combining static scheduling with fixed priority scheduling analysis.

Time triggered real time communication

CHALMERS

A premium passenger car is controlled and managed by 80+ Embedded Systems

Time triggered real time communication

CHALMERS

Roger Johansson/2011

1

Virtual differentiation between variants

3

Power production

and distribution

Simple

components

1970

Roger Johansson/2011

Roger Johansson/2011

Roger Johansson/2011

CHALMERS

Roger Johansson/2011

Roger Johansson/2011

Non-functional requirements

Tradeoffs from Safety/Reliability requirements

The extremes from reliability requirements leads to safety requirements.

Safety requirements implies redundancy, (Fail-Operational, Fail-Safe, etc).

Safety requirements also demands predictability, we has to show, a priori, that the system will fulfill it's mission in every surrounding at every time.

• In a distributed environment, only time triggered protocols and redundant buses can provide this safety. Contemporary TTP's are:

TTP/C, first commercial implementation. Originally from TU Vienna. Operational in civil aircrafts.

TTCAN, based on *Controller Area Network* (CAN) which is widely used in today's vehicular electronic systems.

FlexRay, based on BMW's "ByteFlight". Operational in contemporary automotive electronic systems.

Time triggered real time communication

Time is global and measured in network time units (NTU's)

CNI works as a "firewall"

CPU/mem

/CC

s

Nod Α

S

Status, global time, membership

Control, clock interrupt Watchdog, checking consensus Data the actual message

s

A network is built on either twin buses or twin stars.

TTP/C

Roger Johansson/2011

Nod 5

Nod 4

Nod

5

Nod

- Double channels (one redundant). Bus topology or "star" (optical)

Nod

В

- Media: twisted pair, fibre

- 10 Mbit/s for each channel

1

Nod

2

Nod

3

CHALMERS

All communication is statically scheduled Guaranteed service

Non periodical messages has to been fitted into static slots by the application

Time triggered real time communication

Time triggered real time communication

Roger Johansson/2011

Comparisons

All protocols targets real time applications. TTCAN and Flexay combines time AND event triggered paradigms well.

- All protocols are suitable for scheduling tools. TTP/C has commercial production tools. Tools for TTCAN and Flexray are anticipated.
- CAN, many years experiences, a lot of existing applications. Implies migration of existing CAN applications into TTCAN.

TTP/C considered as complex.

Poor support for asynchronous events. High complexity, lacks second (or multiple) sources.

Flexray is the latest initiative.

Supported by most automotive suppliers.

CHALMERS

Combining time triggering with events: Example of Hybrid scheduling for TTCAN

Roger Johansson/2011

Messages are sorted into three different categories:

- Hard real-time, for minimal jitter with guaranteed response time.
- Firm real-time, for guaranteed response time, but can tolerate jitter.
- Soft real-time, for "best effort" messages.

Choose a strategy:

Strategy 1:

Strategy 2:

schedule for large message

triggers.

Roger Johansson/2011

Multiple solutions satisfies the equation...

Minimize number of *basic cycles*, requires a longer *basic cycle*, and more

Minimize length of *basic cycles*, increase probability of finding a feasible

Persuing the strategies...

Construct a schedule for the following set:

 $M^{h} = (M1, M2, M3)$ with the following attributes (NTU): $M1_{p} = 1000, M1_{e} = 168$ $M2_{p} = 2000, M2_{e} = 184$ $M3_{p} = 3000, M3_{e} = 216$

> Basic 1 (at 0) cvcle 2 (at 375)

3 (at 750) 4 (at 1125)

5 (at 1500)

6 (at 1875

7 (at 2250)

8 (at 2625) 9 (at 3000)

10 (at 3375)

11 (at 3750)

13 (at 4500)

14 (at 4875)

15 (at 5250)

16 (at 5625)

14 15

16

12 (at 4125) 4125

It's obvious that:

LCM(M1, M2, M3) = 6000.

 $\Rightarrow x = 6000$

 $\Rightarrow x = 3000$

 $\Rightarrow x = 1500$

 $\Rightarrow x = 750$

 $\Rightarrow x = 375$

 $\Rightarrow x = 187.5$

and:

CHALMERS

 $6000 = x 2^n$

Time triggered real time communication

CHALMERS

Strategy 2

n = 0:

n = 1:

n = 2:6000 = $x 2^2$

n = 3: 6000 = $x 2^3$

n = 4:

n = 5:

 $6000 = x 2^4$

 $6000 = x 2^5$

 $6000 = x 2^0$

 $6000 = x 2^{1}$

(same as strategy 1)

26

Roger Johansson/2011

Minimur

Trigger

formatio

4000

000

 M_{2}

 M_1 ?

 M_{I}

1000

 M_1

2000

 M_3

 M_1 M_2

4168

 $M_1 = M_2$

 M_1

 $M_1 M_2$

168

CHALMERS

Time triggered real time communication

Roger Johansson/2011

25

Strategy 1

Minimizing number of basic cycles yields: $2^n = 1$, so n = 0 and x = 6000. Hwc1 and Hwc2 are fulfilled.

Total numbers of *triggers* for N messages in one basic cycle is:

$$\sum_{i=1}^{N} \frac{LCM(M)}{M^{i}}$$

in this case:

of triggers = $\frac{6000}{1000} + \frac{6000}{2000} + \frac{6000}{3000} = 11$

So, strategy 1, leads to a solution with:

- 1 basic cycle and 11 triggers.
- MAtrix cycle length is 6000 NTU.

Basic Cycle Triggers												
0	168	352	1000	2000	2168	3000	3352	40004168	<mark>5000</mark>			
M_{I}	M_2	M_3	M_{I}	M_{I}	M_2	M_1	M_3	$M_1 M_2$	M_1			

Time triggered real time communication

Roger Johansson/2011

Strategy 2

Avoid this conflict with the requirement that: a basic cycle shall be at least as long as the shortest period in the message set.

Applying this restriction we get: n = 2, (x = 1500) which yields a feasible schedule:

			-	_						_	
L	Basic	1	0	168	352	-	-	-	1000		Trigger
L	cycle	2	-	-	-	2000	2168	-	-		Information
l	-	3	3000	-	3352	-	-	4000	4168		Minimum
L		4	-	-	-	5000	-	-	-		Triggers
l	1		M_1	M_2	M_3				M_1		4
l	2					M_1	M_2				2
	3		M_1		M_3			M_1	M_2		4
	4					M_1					1

Time triggered real time communication	29
CHALMERS	Roger Johansson/2011

Conclusions

· Applicable real time communication protocols for future safety-critical applications has to provide strictly periodical (minimal jitter), periodical (jitter is negliable) and a-periodic communication to fully support control applications.

- Scheduling periodical and a-periodical events requires a new approach, hybrid scheduling.
- Hybrid scheduling is sparsely found in today's literature...

CHALMERS

Verifying the events... (*M*)

B	asic Gre	ey slots are	e suppo	sed to be	allocated	for M ⁿ					
<u> </u>	ycie NI										
1		4 0									
2				a.		Q2					
		- 43		94			45 				
2'	n	q _{N-3}					q _{N-2}		q _{N-1}		
er	for me for me for el end end nd	$\begin{array}{l} \text{message } n \\ \text{ssage } n \\ \text{virtual} \\ (\ Q_m + \\ Q_m = \ VM \\ \text{se} \\ \\ Q_m = \sum_{\forall j: P_m}^1 \\ \text{dif} \end{array}$	$g = m$ $n = 1$ $mess$ $T_m) =$ $f_i, comple$ $g_{eP_j} \left[\frac{Q_m}{t_j} \right]$	$\left \begin{array}{c} T_{j} \\ T_{j} \\ T_{j} \end{array} \right ^{T_{j}}$	last_m M _i = 1 u within	p to l (VM _{i,s}	ast_VI	M VM _i ,comp)		
Time triggered	real time	communic	ation							30 Roger Johansson/2011	
Time	trigo	gereo	d re	al ti	me c	omr	nun	icat	ion		

Thank you for your attention.

CH