
11/30/2010

1

Chapter 8
Network Security

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously
represent a lot of work on our part. In return for use, we only ask the
following:

� If you use these slides (e.g., in a class) in substantially unaltered form,
that you mention their source (after all, we’d like people to use our book!)

� If you post any slides in substantially unaltered form on a www site, that
you note that they are adapted from (or perhaps identical to) our slides, and
note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2009
J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking:
A Top Down Approach ,
5th edition.
Jim Kurose, Keith Ross
Addison-Wesley, April
2009.

Chapter 8: Network Security

Chapter goals:

r understand principles of network security:
m cryptography and its many uses beyond
“confidentiality”

m authentication

m message integrity

r security in practice:
m firewalls and intrusion detection systems

m security in application, transport, network, link
layers

m We stopped at slide 86. Elad Michael Schiller

Encryption

http://techchannel.att.com/play-video.cfm/2009/10/12/From-
the-Labs:-Encryption1

http://techchannel.att.com/play-video.cfm/2009/9/15/From-
The-Labs:-Encryption

Network-Security

http://techchannel.att.com/play-video.cfm/2009/12/7/From-
The-Labs:-Network-Security11

http://techchannel.att.com/play-video.cfm/2009/12/10/From-
the-Labs:-Network-Security111

http://techchannel.att.com/play-video.cfm/2009/9/21/From-
The-Labs:-Network-Security1

3

Chapter 8 roadmap

8.1 What is network security?

8.2 Principles of cryptography

8.3 Message integrity

8.4 Securing e-mail

8.5 Securing TCP connections: SSL

8.6 Network layer security: IPsec

8.7 Securing wireless LANs

8.8 Operational security: firewalls and IDS

What is network security?

Confidentiality: only sender, intended receiver
should “understand” message contents

m sender encrypts message

m receiver decrypts message

Authentication: sender, receiver want to confirm
identity of each other

Message integrity: sender, receiver want to ensure
message not altered (in transit, or afterwards)
without detection

Access and availability: services must be accessible
and available to users

I wonder where
Alice moved to?

11/30/2010

2

Friends and enemies: Alice, Bob, Trudy

r well-known in network security world

r Bob, Alice (lovers!) want to communicate “securely”

r Trudy (intruder) may intercept, delete, add messages

secure
sender

secure
receiver

channel data, control
messages

data data

Alice Bob

Trudy

Who might Bob, Alice be?

r … well, real-life Bobs and Alices!
r Web browser/server for electronic
transactions (e.g., on-line purchases)

r on-line banking client/server
r DNS servers
r routers exchanging routing table updates
r other examples?

There are bad guys (and girls) out there!

Q: What can a “bad guy” do?
A: A lot! See section 1.6

m eavesdrop: intercept messages
m actively insert messages into connection
m impersonation: can fake (spoof) source address
in packet (or any field in packet)

m hijacking: “take over” ongoing connection by
removing sender or receiver, inserting himself
in place

m denial of service: prevent service from being
used by others (e.g., by overloading resources)

Chapter 8 roadmap

8.1 What is network security?

8.2 Principles of cryptography

8.3 Message integrity

8.4 Securing e-mail

8.5 Securing TCP connections: SSL

8.6 Network layer security: IPsec

8.7 Securing wireless LANs

8.8 Operational security: firewalls and IDS

11

The language of cryptography

m plaintext message

KA(m) ciphertext, encrypted with key KA
m = KB(KA(m))

plaintext plaintextciphertext

K
A

encryption
algorithm

decryption
algorithm

Alice’s
encryption
key

Bob’s
decryption
key

K
B

12

Simple encryption scheme

substitution cipher: substituting one thing for another
m monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopqrstuvwxyz

ciphertext: mnbvcxzasdfghjklpoiuytrewq

Plaintext: bob. i love you. alice

ciphertext: nkn. s gktc wky. mgsbc

E.g.:

Key: the mapping from the set of 26 letters to the
set of 26 letters

11/30/2010

3

13

Polyalphabetic encryption

r n monoalphabetic cyphers, M1,M2,…,Mn

r Cycling pattern:
m e.g., n=4, M1,M3,M4,M3,M2; M1,M3,M4,M3,M2;

r For each new plaintext symbol, use
subsequent monoalphabetic pattern in
cyclic pattern
m dog: d from M1, o from M3, g from M4

r Key: the n ciphers and the cyclic pattern

14

Breaking an encryption scheme

r Cipher-text only
attack: Trudy has
ciphertext that she
can analyze

r Two approaches:
m Search through all
keys: must be able to
differentiate resulting
plaintext from
gibberish

m Statistical analysis

r Known-plaintext attack:
trudy has some plaintext
corresponding to some
ciphertext

m eg, in monoalphabetic
cipher, trudy determines
pairings for a,l,i,c,e,b,o,

r Chosen-plaintext attack:
trudy can get the
cyphertext for some
chosen plaintext

15

Types of Cryptography

r Crypto often uses keys:
m Algorithm is known to everyone
m Only “keys” are secret

r Public key cryptography
m Involves the use of two keys: 1 private + 1 public

r Symmetric key cryptography
m Involves the use one key

r Hash functions
m Involves the use of no keys
m Nothing secret: How can this be useful?

16

Symmetric key cryptography

symmetric key crypto: Bob and Alice share same
(symmetric) key: K

r e.g., key is knowing substitution pattern in mono
alphabetic substitution cipher

Q: how do Bob and Alice agree on key value?

plaintextciphertext

K S

encryption
algorithm

decryption
algorithm

S

K S

plaintext
message, m

K (m)
S

m = KS(KS(m))

17

Two types of symmetric ciphers

r Stream ciphers
m encrypt one bit at time

r Block ciphers
m Break plaintext message in equal-size blocks

m Encrypt each block as a unit

18

Stream Ciphers

r Combine each bit of keystream with bit of
plaintext to get bit of ciphertext

r m(i) = i-th bit of message

r ks(i) = i-th bit of keystream

r c(i) = i-th bit of ciphertext

r c(i) = ks(i) ⊕ m(i) (⊕ = exclusive or)

r m(i) = ks(i) ⊕ c(i)

keystream
generatorkey keystream

pseudo random

11/30/2010

4

19

RC4 Stream Cipher

r RC4 is a popular stream cipher
m Extensively analyzed and considered good

m Key can be from 1 to 256 bytes

m Used in WEP for 802.11

m Can be used in SSL

20

Block ciphers

r Message to be encrypted is processed in
blocks of k bits (e.g., 64-bit blocks).

r 1-to-1 mapping is used to map k-bit block of
plaintext to k-bit block of ciphertext

Example with k=3:

input output
000 110
001 111
010 101
011 100

input output
100 011
101 010
110 000
111 001

What is the ciphertext for 010110001111 ?

21

Block ciphers

r Message to be encrypted is processed in
blocks of k bits (e.g., 64-bit blocks).

r 1-to-1 mapping is used to map k-bit block of
plaintext to k-bit block of ciphertext

Example with k=3:

input output
000 110
001 111
010 101
011 100

input output
100 011
101 010
110 000
111 001

What is the ciphertext for 010110001111 ?
101

22

Block ciphers

r Message to be encrypted is processed in
blocks of k bits (e.g., 64-bit blocks).

r 1-to-1 mapping is used to map k-bit block of
plaintext to k-bit block of ciphertext

Example with k=3:

input output
000 110
001 111
010 101
011 100

input output
100 011
101 010
110 000
111 001

What is the ciphertext for 010110001111 ?
101000

23

Block ciphers

r Message to be encrypted is processed in
blocks of k bits (e.g., 64-bit blocks).

r 1-to-1 mapping is used to map k-bit block of
plaintext to k-bit block of ciphertext

Example with k=3:

input output
000 110
001 111
010 101
011 100

input output
100 011
101 010
110 000
111 001

What is the ciphertext for 010110001111 ?
101000111

24

Block ciphers

r Message to be encrypted is processed in
blocks of k bits (e.g., 64-bit blocks).

r 1-to-1 mapping is used to map k-bit block of
plaintext to k-bit block of ciphertext

Example with k=3:

input output
000 110
001 111
010 101
011 100

input output
100 011
101 010
110 000
111 001

What is the ciphertext for 010110001111 ?
101000111001

11/30/2010

5

25

Block ciphers

r How many possible mappings are there for
k=3?
m How many 3-bit inputs?
m How many permutations of the 3-bit inputs?
m Answer: 40,320 ; not very many!

r In general, 2k! mappings; huge for k=64
r Problem:

m Table approach requires table with 264 entries,
each entry with 64 bits

r Table too big: instead use function that
simulates a randomly permuted table

26

Prototype function

64-bit input

S1

8bits

8 bits

S2

8bits

8 bits

S3

8bits

8 bits

S4

8bits

8 bits

S7

8bits

8 bits

S6

8bits

8 bits

S5

8bits

8 bits

S8

8bits

8 bits

64-bit intermediate

64-bit output

Loop for
n rounds

8-bit to
8-bit
mapping

From Kaufman
et al

27

Why rounds in prototpe?

r If only a single round, then one bit of input
affects at most 8 bits of output.

r In 2nd round, the 8 affected bits get
scattered and inputted into multiple
substitution boxes.

r How many rounds?
m How many times do you need to shuffle cards

m Becomes less efficient as n increases

28

Encrypting a large message

r Why not just break message in 64-bit
blocks, encrypt each block separately?
m If same block of plaintext appears twice, will
give same cyphertext.

r How about:
m Generate random 64-bit number r(i) for each
plaintext block m(i)

m Calculate c(i) = KS(m(i) ⊕ r(i))
m Transmit c(i), r(i), i=1,2,…
m At receiver: m(i) = KS(c(i)) ⊕ r(i)
m Problem: inefficient, need to send c(i) and r(i)

29

Cipher Block Chaining (CBC)

r CBC generates its own random numbers
m Have encryption of current block depend on result of
previous block

m c(i) = KS(m(i) ⊕ c(i-1))

m m(i) = KS(c(i)) ⊕ c(i-1)

r How do we encrypt first block?
m Initialization vector (IV): random block = c(0)

m IV does not have to be secret

r Change IV for each message (or session)
m Guarantees that even if the same message is sent
repeatedly, the ciphertext will be completely different
each time

Cipher Block Chaining

r cipher block: if input
block repeated, will
produce same cipher
text:

t=1
m(1) = “HTTP/1.1” block

cipher
c(1) = “k329aM02”

…

r cipher block chaining:
XOR ith input block, m(i),
with previous block of
cipher text, c(i-1)

m c(0) transmitted to
receiver in clear

m what happens in
“HTTP/1.1” scenario
from above?

+

m(i)

c(i)

t=17
m(17) = “HTTP/1.1” block

cipher
c(17) = “k329aM02”

block
cipher

c(i-1)

11/30/2010

6

31

Symmetric key crypto: DES

DES: Data Encryption Standard
r US encryption standard [NIST 1993]

r 56-bit symmetric key, 64-bit plaintext input

r Block cipher with cipher block chaining

r How secure is DES?

m DES Challenge: 56-bit-key-encrypted phrase
decrypted (brute force) in less than a day

m No known good analytic attack

r making DES more secure:

m 3DES: encrypt 3 times with 3 different keys

(actually encrypt, decrypt, encrypt)

32

Symmetric key
crypto: DES

initial permutation

16 identical “rounds” of
function application,
each using different
48 bits of key

final permutation

DES operation

33

AES: Advanced Encryption Standard

r new (Nov. 2001) symmetric-key NIST
standard, replacing DES

r processes data in 128 bit blocks

r 128, 192, or 256 bit keys

r brute force decryption (try each key)
taking 1 sec on DES, takes 149 trillion
years for AES

34

Public Key Cryptography

symmetric key crypto
r requires sender,
receiver know shared
secret key

r Q: how to agree on key
in first place
(particularly if never
“met”)?

public key cryptography
r radically different
approach [Diffie-
Hellman76, RSA78]

r sender, receiver do
not share secret key

r public encryption key
known to all

r private decryption
key known only to
receiver

35

Public key cryptography

plaintext
message, m

ciphertextencryption
algorithm

decryption
algorithm

Bob’s public
key

plaintext
messageK (m)

B
+

K
B
+

Bob’s private
key

K
B
-

m = K (K (m))
B

+
B
-

36

Public key encryption algorithms

need K () and K () such that
B B

. .

given public key K , it should be
impossible to compute
private key K B

B

Requirements:

1

2

RSA: Ronald Rivest, Adi Shamir, Leonard Adelson

+ -

K (K (m)) = m
BB

- +

+

-

11/30/2010

7

37

Prerequisite: modular arithmetic

r x mod n = remainder of x when divide by n
r Facts:

[(a mod n) + (b mod n)] mod n = (a+b) mod n
[(a mod n) - (b mod n)] mod n = (a-b) mod n
[(a mod n) * (b mod n)] mod n = (a*b) mod n

r Thus
(a mod n)d mod n = ad mod n

r Example: x=14, n=10, d=2:
(x mod n)d mod n = 42 mod 10 = 6
xd = 142 = 196 xd mod 10 = 6

38

RSA: getting ready

r A message is a bit pattern.

r A bit pattern can be uniquely represented by an
integer number.

r Thus encrypting a message is equivalent to
encrypting a number.

Example

r m= 10010001 . This message is uniquely
represented by the decimal number 145.

r To encrypt m, we encrypt the corresponding
number, which gives a new number (the
cyphertext).

39

RSA: Creating public/private key
pair
1. Choose two large prime numbers p, q.
(e.g., 1024 bits each)

2. Compute n = pq, z = (p-1)(q-1)

3. Choose e (with e<n) that has no common factors
with z. (e, z are “relatively prime”).

4. Choose d such that ed-1 is exactly divisible by z.
(in other words: ed mod z = 1).

5. Public key is (n,e). Private key is (n,d).

K
B
+ K

B
-

40

RSA: Encryption, decryption

0. Given (n,e) and (n,d) as computed above

1. To encrypt message m (<n), compute

c = m mod ne

2. To decrypt received bit pattern, c, compute

m = c mod nd

m = (m mod n)e mod ndMagic
happens!

c

41

RSA example:

Bob chooses p=5, q=7. Then n=35, z=24.
e=5 (so e, z relatively prime).
d=29 (so ed-1 exactly divisible by z).

bit pattern m me c = m mod ne

0000l000 12 24832 17

c m = c mod nd

17 481968572106750915091411825223071697 12

cd

encrypt:

decrypt:

Encrypting 8-bit messages.

42

Why does RSA work?

r Must show that cd mod n = m
where c = me mod n

r Fact: for any x and y: xy mod n = x(y mod z) mod n
m where n= pq and z = (p-1)(q-1)

r Thus,
cd mod n = (me mod n)d mod n

= med mod n

= m(ed mod z) mod n

= m1 mod n

= m

11/30/2010

8

43

RSA: another important property

The following property will be very useful later:

K (K (m)) = m
BB

- +
K (K (m))

BB
+ -

=

use public key
first, followed
by private key

use private key
first, followed
by public key

Result is the same!

44

Follows directly from modular arithmetic:

(me mod n)d mod n = med mod n

= mde mod n

= (md mod n)e mod n

K (K (m)) = m
BB

- +
K (K (m))

BB
+ -

=Why ?

45

Why is RSA Secure?

r Suppose you know Bob’s public key (n,e).
How hard is it to determine d?

r Essentially need to find factors of n
without knowing the two factors p and q.

r Fact: factoring a big number is hard.

Generating RSA keys

r Have to find big primes p and q

r Approach: make good guess then apply
testing rules (see Kaufman)

46

Session keys

r Exponentiation is computationally intensive

r DES is at least 100 times faster than RSA

Session key, KS
r Bob and Alice use RSA to exchange a
symmetric key KS

r Once both have KS, they use symmetric key
cryptography

Chapter 8 roadmap

8.1 What is network security?

8.2 Principles of cryptography

8.3 Message integrity

8.4 Securing e-mail

8.5 Securing TCP connections: SSL

8.6 Network layer security: IPsec

8.7 Securing wireless LANs

8.8 Operational security: firewalls and IDS

48

Message Integrity

r Allows communicating parties to verify
that received messages are authentic.
m Content of message has not been altered

m Source of message is who/what you think it is

m Message has not been replayed

m Sequence of messages is maintained

r Let’s first talk about message digests

11/30/2010

9

49

Message Digests

r Function H() that takes as
input an arbitrary length
message and outputs a
fixed-length string:
“message signature”

r Note that H() is a many-
to-1 function

r H() is often called a “hash
function”

r Desirable properties:
m Easy to calculate

m Irreversibility: Can’t
determine m from H(m)

m Collision resistance:
Computationally difficult
to produce m and m’ such
that H(m) = H(m’)

m Seemingly random output

large
message

m

H: Hash
Function

H(m)

50

Internet checksum: poor message digest

Internet checksum has some properties of hash function:

ü produces fixed length digest (16-bit sum) of input

ü is many-to-one

r But given message with given hash value, it is easy to find another
message with same hash value.

r Example: Simplified checksum: add 4-byte chunks at a time:

I O U 1

0 0 . 9

9 B O B

49 4F 55 31

30 30 2E 39

39 42 D2 42

message ASCII format

B2 C1 D2 AC

I O U 9

0 0 . 1

9 B O B

49 4F 55 39

30 30 2E 31

39 42 D2 42

message ASCII format

B2 C1 D2 ACdifferent messages
but identical checksums!

51

Hash Function Algorithms

r MD5 hash function widely used (RFC 1321)

m computes 128-bit message digest in 4-step process.

r SHA-1 is also used.

m US standard [NIST, FIPS PUB 180-1]

m 160-bit message digest

52

Message Authentication Code (MAC)
m
es
sa
ge

H()

s
m
es
sa
ge

m
es
sa
ge

s

H()

compare

s = shared secret

r Authenticates sender
r Verifies message integrity
r No encryption !
r Also called “keyed hash”
r Notation: MDm = H(s||m) ; send m||MDm

53

Hash-based Message
Authentication Code (HMAC)
r Popular MAC standard

r Addresses some subtle security flaws

1. Concatenates secret to front of message.

2. Hashes concatenated message

3. Concatenates the secret to front of
digest

4. Hashes the combination again.

54

Hash-based Message
Authentication Code (HMAC)

r Could we have the same security that HMAC
provides by using MAC = H(s||m)

m A serious flaw: with most hash functions, it is easy
to append data to the message without knowing the
key and obtain another valid MAC.

m The alternative, appending the key using MAC =
H(m||s) , suffers from the problem that an attacker
who can find a collision in the (unkeyed) hash
function has a collision in the MAC.

m Using MAC = MAC = H(s||m||s) is better, however
there are vulnerabilities with this approach, even
when two different keys are used.

11/30/2010

10

55

Hash-based Message
Authentication Code (HMAC)
r No known extensions attacks have been

found against the current HMAC
specification which is defined as
H(s∥H(s∥m)) because the outer application
of the hash function masks the
intermediate result of the internal hash.

m The values of ipad and opad are not critical to
the security of the algorithm, but were
defined in such a way to have a large Hamming
distance from each other and so the inner and
outer keys will have fewer bits in common.

56

Example: OSPF

r Recall that OSPF is an
intra-AS routing protocol

r Each router creates map of
entire AS (or area) and runs
shortest path algorithm
over map

r Router receives link-state
advertisements (LSAs) from
all other routers in AS

Attacks:

r Message insertion

r Message deletion

r Message modification

r How do we know if an
OSPF message is
authentic?

57

OSPF Authentication

r Within an Autonomous
System, routers send
OSPF messages to
each other.

r OSPF provides
authentication choices

m No authentication

m Shared password:
inserted in clear in 64-
bit authentication field
in OSPF packet

m Cryptographic hash

r Cryptographic hash
with MD5

m 64-bit authentication
field includes 32-bit
sequence number

m MD5 is run over a
concatenation of the
OSPF packet and
shared secret key

m MD5 hash then
appended to OSPF
packet; encapsulated in
IP datagram

End-point authentication

r Want to be sure of the originator of the
message – end-point authentication.

r Assuming Alice and Bob have a shared
secret, will MAC provide end-point
authentication.
m We do know that Alice created the message.

m But did she send it?

58

MAC
Transfer $1M
from Bill to Trudy

MAC
Transfer $1M from
Bill to Trudy

Playback attack

MAC =
f(msg,s)

“I am Alice”

R

MAC
Transfer $1M
from Bill to Susan

MAC =
f(msg,s,R)

Defending against playback
attack: nonce

11/30/2010

11

61

Digital Signatures

Cryptographic technique analogous to hand-
written signatures.

r sender (Bob) digitally signs document,
establishing he is document owner/creator.

r Goal is similar to that of a MAC, except now use
public-key cryptography

r verifiable, nonforgeable: recipient (Alice) can
prove to someone that Bob, and no one else
(including Alice), must have signed document

62

Digital Signatures

Simple digital signature for message m:
r Bob signs m by encrypting with his private key
KB, creating “signed” message, KB(m)

--Dear AliceOh, how I have missed you. I think of you all the time! …(blah blah blah)BobBob’s message, m

Public key
encryption
algorithm

Bob’s private
key

K B
- Bob’s message, m, signed (encrypted) with his private keyK B

-
(m)

63

large
message

m
H: Hash
function H(m)

digital
signature
(encrypt)

Bob’s
private

key K B
-

+

Bob sends digitally signed
message:

Alice verifies signature and
integrity of digitally signed
message:

KB(H(m))
-

encrypted
msg digest

KB(H(m))
-

encrypted
msg digest

large
message

m

H: Hash
function

H(m)

digital
signature
(decrypt)

H(m)

Bob’s
public
key K B

+

equal
?

Digital signature = signed message digest

64

Digital Signatures (more)

r Suppose Alice receives msg m, digital signature KB(m)

r Alice verifies m signed by Bob by applying Bob’s
public key KB to KB(m) then checks KB(KB(m)) = m.

r If KB(KB(m)) = m, whoever signed m must have used
Bob’s private key.

+ +- -- -+
Alice thus verifies that:

ü Bob signed m.
ü No one else signed m.
ü Bob signed m and not m’.

Non-repudiation:
� Alice can take m, and signature KB(m) to
court and prove that Bob signed m.

-

65

Public-key certification

r Motivation: Trudy plays pizza prank on Bob
m Trudy creates e-mail order:
Dear Pizza Store, Please deliver to me four
pepperoni pizzas. Thank you, Bob

m Trudy signs order with her private key

m Trudy sends order to Pizza Store

m Trudy sends to Pizza Store her public key, but
says it’s Bob’s public key.

m Pizza Store verifies signature; then delivers
four pizzas to Bob.

m Bob doesn’t even like Pepperoni

66

Certification Authorities

r Certification authority (CA): binds public key to
particular entity, E.

r E (person, router) registers its public key with CA.
m E provides “proof of identity” to CA.

m CA creates certificate binding E to its public key.

m certificate containing E’s public key digitally signed by CA
– CA says “this is E’s public key”

Bob’s
public
key K B

+

Bob’s
identifying
information

digital
signature
(encrypt)

CA
private

key K CA
-

K B
+

certificate for
Bob’s public key,

signed by CA

11/30/2010

12

67

Certification Authorities

r When Alice wants Bob’s public key:

m gets Bob’s certificate (Bob or elsewhere).

m apply CA’s public key to Bob’s certificate, get
Bob’s public key

Bob’s
public
key K B

+

digital
signature
(decrypt)

CA
public
key

K CA
+

K B
+

68

Certificates: summary

r Primary standard X.509 (RFC 2459)

r Certificate contains:
m Issuer name

m Entity name, address, domain name, etc.

m Entity’s public key

m Digital signature (signed with issuer’s private
key)

r Public-Key Infrastructure (PKI)
m Certificates and certification authorities

m Often considered “heavy”

Chapter 8 roadmap

8.1 What is network security?

8.2 Principles of cryptography

8.3 Message integrity

8.4 Securing e-mail

8.5 Securing TCP connections: SSL

8.6 Network layer security: IPsec

8.7 Securing wireless LANs

8.8 Operational security: firewalls and IDS

Secure e-mail

Alice:
� generates random symmetric private key, KS.
� encrypts message with KS (for efficiency)
� also encrypts KS with Bob’s public key.
� sends both KS(m) and KB(KS) to Bob.

� Alice wants to send confidential e-mail, m, to Bob.

KS().

KB()
.+

+ -

KS(m)

KB(KS)
+

m

KS

KS

KB+

Internet

KS().

KB()
.-

KB-

KS

m
KS(m)

KB(KS)
+

Secure e-mail

Bob:
� uses his private key to decrypt and recover KS
� uses KS to decrypt KS(m) to recover m

� Alice wants to send confidential e-mail, m, to Bob.

KS().

KB()
.+

+ -

KS(m)

KB(KS)
+

m

KS

KS

KB+

Internet

KS().

KB()
.-

KB-

KS

m
KS(m)

KB(KS)
+

Secure e-mail (continued)

• Alice wants to provide sender authentication message
integrity.

• Alice digitally signs message.
• sends both message (in the clear) and digital signature.

H(). KA()
.-

+ -

H(m)KA(H(m))
-

m

KA-

Internet

m

KA()
.+
KA
+

KA(H(m))
-

m
H(). H(m)

compare

11/30/2010

13

Secure e-mail (continued)
• Alice wants to provide secrecy, sender authentication,
message integrity.

Alice uses three keys: her private key, Bob’s public key, newly
created symmetric key

H(). KA()
.-

+

KA(H(m))
-

m

KA-

m

KS().

KB()
.+

+

KB(KS)
+

KS

KB+

Internet

KS

Chapter 8 roadmap

8.1 What is network security?

8.2 Principles of cryptography

8.3 Message integrity

8.4 Securing e-mail

8.5 Securing TCP connections: SSL

8.6 Network layer security: IPsec

8.7 Securing wireless LANs

8.8 Operational security: firewalls and IDS

75

SSL: Secure Sockets Layer

r Widely deployed security
protocol

m Supported by almost all
browsers and web servers

m https
m Tens of billions $ spent

per year over SSL
r Originally designed by

Netscape in 1993
r Number of variations:

m TLS: transport layer
security, RFC 2246

r Provides
m Confidentiality
m Integrity
m Authentication

r Original goals:
m Had Web e-commerce

transactions in mind
m Encryption (especially

credit-card numbers)
m Web-server

authentication
m Optional client

authentication
m Minimum hassle in doing

business with new
merchant

r Available to all TCP
applications

m Secure socket interface

76

SSL and TCP/IP

Application

TCP

IP

Normal Application

Application

SSL

TCP

IP

Application
with SSL

• SSL provides application programming interface (API)
to applications
• C and Java SSL libraries/classes readily available

77

Could do something like PGP:

• But want to send byte streams & interactive data
•Want a set of secret keys for the entire connection
• Want certificate exchange part of protocol:
handshake phase

H(). KA()
.-

+

KA(H(m))
-

m

KA
-

m

KS().

KB()
.+

+

KB(KS)
+

KS

KB
+

Internet

KS

78

Toy SSL: a simple secure channel

r Handshake: Alice and Bob use their
certificates and private keys to
authenticate each other and exchange
shared secret

r Key Derivation: Alice and Bob use shared
secret to derive set of keys

r Data Transfer: Data to be transferred is
broken up into a series of records

r Connection Closure: Special messages to
securely close connection

11/30/2010

14

79

Toy: A simple handshake

r MS = master secret

r EMS = encrypted master secret

80

Toy: Key derivation

r Considered bad to use same key for more than one
cryptographic operation

m Use different keys for message authentication code
(MAC) and encryption

r Four keys:
m Kc = encryption key for data sent from client to server

m Mc = MAC key for data sent from client to server

m Ks = encryption key for data sent from server to client

m Ms = MAC key for data sent from server to client

r Keys derived from key derivation function (KDF)
m Takes master secret and (possibly) some additional
random data and creates the keys

81

Toy: Data Records
r Why not encrypt data in constant stream as we
write it to TCP?

m Where would we put the MAC? If at end, no message
integrity until all data processed.

m For example, with instant messaging, how can we do
integrity check over all bytes sent before displaying?

r Instead, break stream in series of records
m Each record carries a MAC
m Receiver can act on each record as it arrives

r Issue: in record, receiver needs to distinguish
MAC from data

m Want to use variable-length records

length data MAC

82

Toy: Sequence Numbers

r Attacker can capture and replay record or
re-order records

r Solution: put sequence number into MAC:
m MAC = MAC(Mx, sequence||data)

m Note: no sequence number field

r Attacker could still replay all of the
records
m Use random nonce

83

Toy: Control information

r Truncation attack:
m attacker forges TCP connection close segment

m One or both sides thinks there is less data than
there actually is.

r Solution: record types, with one type for
closure
m type 0 for data; type 1 for closure

r MAC = MAC(Mx, sequence||type||data)

length type data MAC

84

Toy SSL: summary

en
cr
yp
te
d

bob.com

11/30/2010

15

85

Toy SSL isn’t complete

r How long are the fields?

r What encryption protocols?

r No negotiation
m Allow client and server to support different
encryption algorithms

m Allow client and server to choose together
specific algorithm before data transfer

86

Most common symmetric ciphers in
SSL

r DES – Data Encryption Standard: block

r 3DES – Triple strength: block

r RC2 – Rivest Cipher 2: block

r RC4 – Rivest Cipher 4: stream

Public key encryption

r RSA

