
Computer Communications

Peer to Peer networking

Ack: Many of the slides are adaptations of slides by authors in the bibliography section.

P2P 2

p2p

 Quickly grown in popularity
 numerous sharing applications
 many million people worldwide use P2P networks

 But what is P2P in the Internet?
 Searching or location?
 Computers “Peering”?
 Take advantage of resources at the edges of

the network
• End-host resources have increased dramatically
• Broadband connectivity now common

Lecture outline

 Evolution of p2p networking
 seen through file-sharing applications

 Other applications

 Multimedia

P2P 3

P2P 4

P2P Networks: file sharing

 Common Primitives:
 Join: how do I begin participating?
 Publish: how do I advertise my file?
 Search: how to I find a file/service?
 Fetch: how to I retrieve a file/use service?

P2P 5

First generation in p2p file
sharing/lookup

 Centralized Database: single directory
 Napster

 Query Flooding
 Gnutella

 Hierarchical Query Flooding
 KaZaA

 (Further unstructured Overlay Routing
 Freenet, …)

 Structured Overlays
 …

P2P 6

P2P: centralized directory
original “Napster” design (1999, S.

Fanning)
1) when peer connects, it informs

central server:
 IP address, content

2) Alice queries directory server
for “Boulevard of Broken
Dreams”

3) Alice requests file from Bob

centralized
directory server

peers

Alice

Bob

1

1

1

12

3

P2P 7

Napster: Publish

I have X, Y, and Z!

Publish

insert(X,
123.2.21.23)

...

123.2.21.23

P2P 8

Napster: Search

Where is file A?

Query Reply

search(A)
-->
123.2.0.18Fetch

123.2.0.18

P2P 9

First generation in p2p file
sharing/lookup

 Centralized Database
 Napster

 Query Flooding: no directory
 Gnutella

 Hierarchical Query Flooding
 KaZaA

 (Further unstructured Overlay Routing
 Freenet)

 Structured Overlays
 …

P2P 10

Gnutella: Overview

 Query Flooding:
 Join: on startup, client contacts a few other

nodes (learn from bootstrap-node); these
become its “neighbors”

 Publish: no need

 Search: ask neighbors, who ask their neighbors,
and so on... when/if found, reply to sender.

 Fetch: get the file directly from peer

P2P 11

I have file A.

I have file A.

Gnutella: Search

Where is file A?

Query

Reply

P2P 12

Gnutella: protocol

Query

QueryHit

Query

QueryHit

File transfer:
HTTP• Query message

sent over existing TCP
connections
• peers forward
Query message
• QueryHit
sent over
reverse
path

Scalability:
limited scope
flooding

P2P 13

Napsetr vs Gnutella:
Discussion +, -?

 Pros:
 Simple
 Fully de-centralized
 Search cost

distributed

 Cons:
 Search scope is O(N)
 Search time is O(???)

 Pros:
 Simple
 Search scope is O(1)

 Cons:
 Server maintains O(N)

State
 Server performance

bottleneck
 Single point of failure

P2P 14

Gnutella

Interesting concept in practice:
overlay network:

active gnutella peers and edges form an overlay

 A network on top of another network:
 Edge is not a physical link (what is it then?)

P2P 15

First generation in p2p file
sharing/lookup

 Centralized Database
 Napster

 Query Flooding
 Gnutella

 Hierarchical Query Flooding: some directories
 KaZaA

 Further unstructured Overlay Routing
 Freenet

 …

P2P 16

KaZaA: Overview
 “Smart” Query Flooding:

 Join: on startup, client contacts a “supernode” ... may at
some point become one itself

 Publish: send list of files to supernode
 Search: send query to supernode, supernodes flood query

amongst themselves.
 Fetch: get the file directly from peer(s); can fetch

simultaneously from multiple peers

P2P 17

KaZaA: File Insert

I have X!

Publish

insert(X,
123.2.21.23)

...

123.2.21.23

“Super Nodes”

P2P 18

KaZaA: File Search

Where is file A?

Query

search(A)
-->
123.2.0.18

search(A)
-->
123.2.22.50

Replies

123.2.0.18

123.2.22.50

“Super Nodes”

P2P 19

KaZaA: Discussion

 Pros:
 Tries to balance between search overhead and space needs
 Tries to take into account node heterogeneity:

• Bandwidth
• Host Computational Resources

 Rumored to take into account network locality
 Cons:

 Still no real guarantees on search scope or search time

 P2P architecture used by Skype, Joost (communication,
video distribution p2p systems)

P2P 20

First steps in p2p file sharing/lookup

 Centralized Database
 Napster

 Query Flooding
 Gnutella

 Hierarchical Query Flooding
 KaZaA

 Further unstructured Overlay Routing
 Freenet: some directory, cache-like, based on recently seen targets;

see literature pointers for more

 Structured Overlay Organization and Routing
 Distributed Hash Tables
 Combine database+distributed system expertise

P2P 21

Problem from this perspective

How to find data in a distributed file sharing system?

(Routing to the data)

Lookup is a key problem

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client ?

P2P 22

Centralized Solution

O(M) state at server, O(1) at client
O(1) search communication overhead
Single point of failure

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

DB

Central server (Napster)

P2P 23

Distributed Solution

O(1) state per node

Worst case O(E) messages per lookup

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

Flooding (Gnutella, etc.)

P2P 24

Distributed Solution
(some more structure? In-between the two?)

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

balance the update/lookup
complexity..
Abstraction: a distributed “hash-
table” (DHT) data structure:

put(id, item);item = get(id);

Implementation: nodes form a distributed
data structure

eg. Ring, Tree, Hypercube, SkipList,
Butterfly.

Hash function maps entries to nodes; using
the node structure, find the node responsible
for item; that one knows where the item is

- >

P2P 25

Hash function maps entries to
nodes; using the node structure, find
the node responsible for item; that
one knows where the item is

Challenges:
•Keep the hop count small
• Keep the routing tables “right size”
• Stay robust despite rapid changes in membership

figure source: wikipedia

I do not know DFCD3454
but should ask my

right-hand neighbour

P2P 26

DHT: Overview

 Structured Overlay Routing:
 Join: On startup, contact a “bootstrap” node and integrate

yourself into the distributed data structure; get a node id
 Publish: Route publication for file id toward an appropriate node

id along the data structure
• Need to think of updates when a node leaves

 Search: Route a query for file id toward a close node id. Data
structure guarantees that query will meet the publication.

 Fetch: Two options:
• Publication contains actual file => fetch from where query stops
• Publication says “I have file X” => query tells you 128.2.1.3 has X,

use http or similar (i.e. rely on IP routing) to get X from 128.2.1.3

DHT: Comments/observations?

 think about structure maintenance/benefits

P2P 27

P2P 28

Next generation in p2p netwoking

 Swarming
 BitTorrent, Avalanche, …

 …

P2P 29

BitTorrent: Next generation
fetching
 In 2002, B. Cohen debuted BitTorrent
 Key Motivation:

 Popularity exhibits temporal locality (Flash Crowds)
 Focused on Efficient Fetching, not Searching:

 Distribute the same file to groups of peers
 Single publisher, multiple downloaders

 Used by publishers to distribute software, other large files

 http://vimeo.com/15228767

P2P 30

BitTorrent: Overview

 Swarming:
 Join: contact centralized “tracker” server, get

a list of peers.
 Publish: can run a tracker server.
 Search: Out-of-band. E.g., use Google, some

DHT, etc to find a tracker for the file you
want. Get list of peers to contact for
assembling the file in chunks

 Fetch: Download chunks of the file from your
peers. Upload chunks you have to them.

31

File distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of
peers exchanging

chunks of a file

obtain list
of peers

trading
chunks

peer

P2P file distribution

32

BitTorrent (1)

 file divided into chunks.
 peer joining torrent:

 has no chunks, but will accumulate them over time
 registers with tracker to get list of peers,

connects to subset of peers (“neighbors”)
 while downloading, peer uploads chunks to other

peers.
 peers may come and go
 once peer has entire file, it may (selfishly) leave or

(altruistically) remain

33

BitTorrent: Tit-for-tat
(1) Alice “optimistically unchokes” Bob

(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

With higher upload rate,
can find better trading

partners & get file faster!

34

BitTorrent (2)

Pulling Chunks
 at any given time,

different peers have
different subsets of
file chunks

 periodically, a peer
(Alice) asks each
neighbor for list of
chunks that they have.

 Alice sends requests
for her missing chunks
 rarest first

• Sending Chunks: tit-for-tat
• Alice sends chunks to (4)

neighbors currently sending
her chunks at the highest
rate
• re-evaluate top 4 every

10 secs
• every 30 secs: randomly

select another peer, starts
sending chunks
• newly chosen peer may

join top 4
• “optimistically unchoke”

new leecher

BitTorrent – joining a torrent

Peers divided into:
 seeds: have the entire file
 leechers: still downloading

data
request

peer list

metadata file

join

1

2 3

4
seed/leecher

website

tracker

1. obtain the metadata file
2. contact the tracker
3. obtain a peer list (contains seeds & leechers)
4. contact peers from that list for data

!

BitTorrent – exchanging data

I have leecher A

●Verify pieces using hashes
●Download sub-pieces in parallel
● Advertise received pieces to the entire peer list
● Look for the rarest pieces

seed

leecher B

leecher C

BitTorrent - unchoking

leecher A

seed

leecher B

leecher C
leecher D

● Periodically calculate data-receiving rates
● Upload to (unchoke) the fastest downloaders
● Optimistic unchoking
▪ periodically select a peer at random and upload to it
▪ continuously look for the fastest partners

P2P 38

BitTorrent: Discussion

 Works reasonably well in practice
 Gives peers incentive to share resources; tries

to avoids freeloaders

Efficiency/scalability through
peering (collaboration)

P2P 39

40

File Distribution: Server-Client vs P2P
Question : How much time to distribute file

from one server to N peers?

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

File, size F

us: server upload
bandwidth
ui: peer i upload
bandwidth

di: peer i download
bandwidth

41

File distribution time: server-client

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F server sequentially
sends N copies:
 NF/us time

 client i takes F/di
time to download

increases linearly in N
(for large N)

= dcs depends on

max { NF/us, F/min(di) }i

Time to distribute F
to N clients using

client/server approach

42

File distribution time: P2P

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F server must send one
copy: F/us time

 client i takes F/di time
to download

 NF bits must be
downloaded (aggregate)
 fastest possible upload rate: us + ui

dP2P depends on max { F/us, F/min(di) , NF/(us + ui) }
i

2: Application Layer 43

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

Server-client vs. P2P: example

Client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

Lecture outline

 Evolution of p2p networking
 seen through file-sharing applications

 Other applications

P2P 44

Overlay: a network
implemented on top of a
network
 E.g. Peer-to-peer

networks, ”backbones”
in adhoc networks,
transportaiton network
overlays, electricity
grid overlays ...

P2P – not only sharing files…
• Content delivery, software publication

• Streaming media applications

• Distributed computations (volunteer
computing)

• Portal systems

• Distributed search engines

• Collaborative platforms

• Communication networks

• Social applications

• Other overlay-related applications....

Router Overlays for e.g.
protection/mitigation of flooding attacks

P2P 46

2: Application Layer 47

P2P Case study: Skype

 inherently P2P: pairs
of users communicate.

 proprietary
application-layer
protocol (inferred via
reverse engineering)

 hierarchical overlay
with SNs

 Index maps usernames
to IP addresses;
distributed over SNs

Skype clients (SC)

Supernode
(SN)

Skype
login server

2: Application Layer 48

Peers as relays

 Problem when both
Alice and Bob are
behind “NATs”.
 NAT prevents an outside

peer from initiating a call
to insider peer

 Solution:
 Using Alice’s and Bob’s

SNs, Relay is chosen
 Each peer initiates

session with relay.
 Peers can now

communicate through
NATs via relay

More examples: a story in
progress...

New power grids: be adaptive!

• Bidirectional power and information flow
– Micro‐producers or “prosumers”, can share resources
– Distributed energy resources

• Communication + resource‐administration (distributed system) layer
– aka “smart” grid 50

New power grids

Natural overlays for microgrids

Interested in project on the
topic?
 To express interest, send email

 <ptrianta>@ chalmers.se
 Incl. Motivation and info on you (courses,

interests, some own work)
 Research course in preparation, ac. year 2012-

2013

P2P 52

P2P 53

Bibliography
Collective sources
 Kurose, Ross: Computer Networking, a top-down approach, p2p in applications chapter

AdisonWesley 2009
 Aberer’s coursenotes

 http://lsirwww.epfl.ch/courses/dis/2007ws/lecture/week%208%20P2P%20systems-
general.pdf

 http://lsirwww.epfl.ch/courses/dis/2007ws/lecture/week%209%20Structured%20Overlay%
20Networks.pdf

Papers for Further Study
 Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications, Ion Stoica,

Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. ACM
SIGCOMM 2001, San Deigo, CA, August 2001, pp. 149-160.

 Kademlia: A Peer to peer information system Based on the XOR Metric. Petar
Maymounkov and David Mazières , 1st International Workshop on Peer-to-peer
Systems, 2002.

 Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer
systems, A. Rowstron and P. Druschel, IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), November 2001.

Bibliography (cont)
 A Scalable Content-Addressable Network, S. Ratnasamy, P. Francis, M. Handley, R. Karp,

and S. Shenker, Sigcomm 2001, San Diego, CA, USA, August, 2001.
 Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A

Distributed Anonymous Information Storage and Retrieval System. Int’l Workshop on
Design Issues in Anonymity and Unobservability. LNCS 2009. Springer Verlag 2001.

 Viceroy: A Scalable and Dynamic Emulation of the Butterfly. By D. Malkhi, M. Naor and D.
Ratajczak. In Proceedings of the 21st ACM Symposium on Principles of Distributed
Computing (PODC '02), August 2002. Postscript.

 Incentives build Robustness in BitTorrent, Bram Cohen. Workshop on Economics of Peer-
to-Peer Systems, 2003.

 Do incentives build robustness in BitTorrent? Michael Piatek, Tomas Isdal, Thomas
Anderson, Arvind Krishnamurthy and Arun Venkataramani, NSDI 2007

 Exploiting BitTorrent For Fun (But Not Profit)
iptps06.cs.ucsb.edu/talks/Liogkas_BitTorrent.ppt

 J. Mundinger, R. R. Weber and G. Weiss. Optimal Scheduling of Peer-to-Peer File
Dissemination. Journal of Scheduling, Volume 11, Issue 2, 2008. [arXiv] [JoS]

 Christos Gkantsidis and Pablo Rodriguez, Network Coding for Large Scale Content
Distribution, in IEEE INFOCOM, March 2005 (avalanche swarming)

P2P 54

