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Ack: Many of the slides are adaptations of slides by authors in the bibliography section.
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p2p

 Quickly grown in popularity
 numerous sharing applications
 many million people worldwide use P2P networks 

 But what is P2P in the Internet?
 Searching or location? 
 Computers “Peering”? 
 Take advantage of resources at the edges of 

the network
• End-host resources have increased dramatically
• Broadband connectivity now common



Lecture outline

 Evolution of p2p networking 
 seen through file-sharing applications

 Other applications

 Multimedia
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P2P Networks: file sharing

 Common Primitives:
 Join: how do I begin participating?
 Publish: how do I advertise my file?
 Search: how to I find a file/service?
 Fetch: how to I retrieve a file/use service?
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First generation in p2p file 
sharing/lookup

 Centralized Database: single directory
 Napster

 Query Flooding
 Gnutella

 Hierarchical Query Flooding
 KaZaA

 (Further unstructured Overlay Routing
 Freenet, …)

 Structured Overlays
 …
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P2P: centralized directory
original “Napster” design (1999,  S.  

Fanning)
1) when peer connects, it informs 

central server:
 IP address, content

2) Alice queries directory server 
for “Boulevard of Broken 
Dreams”

3) Alice requests file from Bob

centralized
directory server

peers

Alice

Bob

1

1

1

12

3
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Napster: Publish

I have X, Y, and Z!

Publish

insert(X,
123.2.21.23)

...

123.2.21.23
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Napster: Search

Where is file A?

Query Reply

search(A)
-->
123.2.0.18Fetch

123.2.0.18
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First generation in p2p file 
sharing/lookup

 Centralized Database
 Napster

 Query Flooding: no directory
 Gnutella

 Hierarchical Query Flooding
 KaZaA

 (Further unstructured Overlay Routing
 Freenet)

 Structured Overlays
 …
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Gnutella: Overview

 Query Flooding:
 Join: on startup, client contacts a few other 

nodes (learn from bootstrap-node); these 
become its “neighbors”

 Publish: no need

 Search: ask neighbors, who ask their neighbors, 
and so on... when/if found, reply to sender.

 Fetch: get the file directly from peer
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I have file A.

I have file A.

Gnutella: Search

Where is file A?

Query

Reply
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Gnutella: protocol

Query

QueryHit

Query

QueryHit

File transfer:
HTTP• Query message

sent over existing TCP
connections
• peers forward
Query message
• QueryHit 
sent over 
reverse
path

Scalability:
limited scope
flooding



P2P 13

Napsetr vs Gnutella: 
Discussion +, -?

 Pros:
 Simple 
 Fully de-centralized
 Search cost 

distributed

 Cons:
 Search scope is O(N)
 Search time is O(???)

 Pros:
 Simple
 Search scope is O(1)

 Cons:
 Server maintains O(N) 

State
 Server performance 

bottleneck
 Single point of failure
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Gnutella

Interesting concept in practice: 
overlay network:

active gnutella peers and edges form an overlay 

 A network on top of another network:
 Edge is not a physical link (what is it then?)
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First generation in p2p file 
sharing/lookup

 Centralized Database
 Napster

 Query Flooding
 Gnutella

 Hierarchical Query Flooding: some directories
 KaZaA

 Further unstructured Overlay Routing
 Freenet

 …
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KaZaA: Overview
 “Smart” Query Flooding:

 Join: on startup, client contacts a “supernode” ... may at 
some point become one itself

 Publish: send list of files to supernode
 Search: send query to supernode, supernodes flood query 

amongst themselves.
 Fetch: get the file directly from peer(s); can fetch 

simultaneously from multiple peers



P2P 17

KaZaA: File Insert

I have X!

Publish

insert(X,
123.2.21.23)

...

123.2.21.23

“Super Nodes”
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KaZaA: File Search

Where is file A?

Query

search(A)
-->
123.2.0.18

search(A)
-->
123.2.22.50

Replies

123.2.0.18

123.2.22.50

“Super Nodes”
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KaZaA: Discussion

 Pros:
 Tries to balance between search overhead and space needs
 Tries to take into account node heterogeneity:

• Bandwidth
• Host Computational Resources

 Rumored to take into account network locality
 Cons:

 Still no real guarantees on search scope or search time

 P2P architecture used by Skype, Joost (communication, 
video distribution p2p systems)
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First steps in p2p file sharing/lookup

 Centralized Database
 Napster

 Query Flooding
 Gnutella

 Hierarchical Query Flooding
 KaZaA

 Further unstructured Overlay Routing
 Freenet: some directory, cache-like, based on recently seen targets; 

see literature pointers for more

 Structured Overlay Organization and Routing
 Distributed Hash Tables
 Combine database+distributed system expertise
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Problem from this perspective

How to find data in a distributed file sharing system?

(Routing to the data)

Lookup is a key problem

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client ?
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Centralized Solution

O(M) state at server, O(1) at client
O(1) search communication overhead
Single point of failure

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

DB

Central server (Napster)
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Distributed Solution

O(1) state per node

Worst case O(E) messages per lookup

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

Flooding (Gnutella, etc.)
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Distributed Solution 
(some more structure? In-between the two?)

Internet

Publisher
Key=“LetItBe”

Value=MP3 data

Lookup(“LetItBe”)

N1

N2 N3

N5N4
Client

balance the  update/lookup 
complexity..
Abstraction: a distributed “hash-
table” (DHT) data structure:

put(id, item);item = get(id);

Implementation: nodes form a distributed 
data structure

eg. Ring, Tree, Hypercube, SkipList, 
Butterfly.

Hash function maps entries to nodes; using
the node structure, find the node responsible
for item; that one knows where the item is

- >
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Hash function maps entries to
nodes; using the node structure, find
the node responsible for item; that
one knows where the item is

Challenges:
•Keep the hop count small
• Keep the routing tables “right size”
• Stay robust despite rapid changes in membership

figure source: wikipedia

I do not know DFCD3454
but should ask my 

right-hand neighbour
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DHT: Overview

 Structured Overlay Routing:
 Join: On startup, contact a “bootstrap” node and integrate 

yourself into the distributed data structure; get a node id
 Publish: Route publication for file id toward an appropriate node 

id along the data structure
• Need to think of updates when a node leaves

 Search: Route a query for file id toward a close node id. Data 
structure guarantees that query will meet the publication.

 Fetch: Two options:
• Publication contains actual file => fetch from where query stops
• Publication says “I have file X” => query tells you 128.2.1.3 has X, 

use http or similar (i.e. rely on IP routing) to get X from 128.2.1.3 



DHT: Comments/observations? 

 think about structure maintenance/benefits
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Next generation in p2p netwoking

 Swarming
 BitTorrent, Avalanche, …

 …
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BitTorrent: Next generation 
fetching
 In 2002, B. Cohen debuted BitTorrent
 Key Motivation:

 Popularity exhibits temporal locality (Flash Crowds)
 Focused on Efficient Fetching, not Searching:

 Distribute the same file to groups of peers
 Single publisher, multiple downloaders

 Used by publishers to distribute software, other large files

 http://vimeo.com/15228767
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BitTorrent: Overview

 Swarming:
 Join: contact centralized “tracker” server, get 

a list of peers.
 Publish: can run a tracker server.
 Search: Out-of-band. E.g., use Google, some 

DHT, etc to find a tracker for the file you 
want. Get list of peers to contact for 
assembling the file in chunks

 Fetch: Download chunks of the file from your 
peers. Upload chunks you have to them.
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File distribution: BitTorrent 

tracker: tracks peers 
participating in torrent

torrent: group of 
peers exchanging  

chunks of a file

obtain list
of peers

trading 
chunks

peer

P2P file distribution
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BitTorrent (1)

 file divided into chunks.
 peer joining torrent: 

 has no chunks, but will accumulate them over time
 registers with tracker to get list of peers, 

connects to subset of peers (“neighbors”)
 while downloading,  peer uploads chunks to other 

peers. 
 peers may come and go
 once peer has entire file, it may (selfishly) leave or 

(altruistically) remain
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BitTorrent:  Tit-for-tat
(1) Alice “optimistically unchokes” Bob

(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

With higher upload rate, 
can find better trading 

partners & get file faster!
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BitTorrent (2)

Pulling Chunks
 at any given time, 

different peers have 
different subsets of 
file chunks

 periodically, a peer 
(Alice) asks each 
neighbor for list of 
chunks that they have.

 Alice sends requests 
for her missing chunks
 rarest first

• Sending Chunks: tit-for-tat
• Alice sends chunks to (4) 

neighbors currently sending 
her chunks at the highest 
rate
• re-evaluate top 4 every 

10 secs
• every 30 secs: randomly 

select another peer, starts 
sending chunks
• newly chosen peer may 

join top 4
• “optimistically unchoke”



new leecher

BitTorrent – joining a torrent

Peers divided into: 
 seeds: have the entire file
 leechers: still downloading

data
request

peer list

metadata file

join

1

2 3

4
seed/leecher

website

tracker

1. obtain the metadata file
2. contact the tracker
3. obtain a peer list (contains seeds & leechers)
4. contact peers from that list for data



! 

BitTorrent – exchanging data

I have leecher A

●Verify pieces using hashes
●Download sub-pieces   in parallel
● Advertise received pieces to the entire peer list
● Look for the rarest pieces

seed

leecher B

leecher C



BitTorrent - unchoking

leecher A

seed

leecher B

leecher C
leecher D

● Periodically calculate data-receiving rates
● Upload to (unchoke) the fastest downloaders
● Optimistic unchoking
▪ periodically select a peer at random and upload to it
▪ continuously look for the fastest partners
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BitTorrent: Discussion

 Works reasonably well in practice
 Gives peers incentive to share resources; tries 

to avoids freeloaders



Efficiency/scalability through
peering (collaboration)
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File Distribution: Server-Client vs P2P
Question : How much time to distribute file 

from one server to N  peers?

us

u2d1 d2
u1

uN

dN

Server

Network (with 
abundant bandwidth)

File, size F

us: server upload 
bandwidth
ui: peer i upload 
bandwidth

di: peer i download 
bandwidth
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File distribution time: server-client

us

u2d1 d2
u1

uN

dN

Server

Network (with 
abundant bandwidth)

F server sequentially 
sends N copies:
 NF/us time 

 client i takes F/di 
time to download

increases linearly in N
(for large N)

= dcs depends on

max { NF/us, F/min(di) }i

Time to  distribute F
to N clients using 

client/server approach 
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File distribution time: P2P

us

u2d1 d2
u1

uN

dN

Server

Network (with 
abundant bandwidth)

F server must send one 
copy: F/us time 

 client i takes F/di time 
to download

 NF bits must be 
downloaded (aggregate)
 fastest possible upload rate: us + ui

dP2P depends on  max { F/us, F/min(di) , NF/(us + ui) }
i
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Lecture outline

 Evolution of p2p networking 
 seen through file-sharing applications

 Other applications
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Overlay: a network 
implemented on top of a 
network
 E.g. Peer-to-peer 

networks, ”backbones” 
in adhoc networks, 
transportaiton network 
overlays, electricity
grid overlays ...

P2P – not only sharing files…
• Content delivery, software publication 

• Streaming media applications

• Distributed computations (volunteer 
computing)

• Portal systems

• Distributed search engines 

• Collaborative platforms

• Communication networks 

• Social applications

• Other overlay-related applications....



Router Overlays for e.g. 
protection/mitigation of flooding attacks 

P2P 46



2: Application Layer 47

P2P Case study: Skype

 inherently P2P: pairs 
of users communicate.

 proprietary 
application-layer 
protocol (inferred via 
reverse engineering) 

 hierarchical overlay 
with SNs

 Index maps usernames 
to IP addresses; 
distributed over SNs

Skype clients (SC)

Supernode 
(SN)

Skype 
login server
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Peers as relays

 Problem when both 
Alice and Bob are 
behind  “NATs”. 
 NAT prevents an outside 

peer from initiating a call 
to insider peer

 Solution:
 Using Alice’s and Bob’s 

SNs, Relay is chosen
 Each peer initiates 

session with relay. 
 Peers can now 

communicate through 
NATs via relay



More examples: a story in 
progress...



New power grids: be adaptive!

• Bidirectional power  and information flow
– Micro‐producers or “prosumers”, can share resources
– Distributed energy resources

• Communication + resource‐administration  (distributed system) layer
– aka “smart” grid 50



New power grids

Natural overlays for microgrids



Interested in project on the 
topic?
 To express interest, send email

 <ptrianta>@ chalmers.se
 Incl. Motivation and info on you (courses, 

interests, some own work)
 Research course in preparation, ac. year 2012-

2013
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