
Chapter 3: Transport Layer
Part B

Course on Computer Communication
and Networks, CTH/GU

The slides are adaptation of the slides made
available by the authors of the course’s main
textbook

3: Transport Layer 3b-1

TCP: Overview RFCs: 793 1122 1323 2018 2581TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

� full duplex data:
bi di i l d fl i � li bl i d b t � bi-directional data flow in
same connection

� point-to-point:

� reliable, in-order byte
steam:
� no “message boundaries”� point to point:

� one sender, one receiver
� no message boundaries

� pipelined:
� TCP congestion and flow

� flow controlled:
� sender will not overwhelm

receiver

CP congest on and flow
control set window size

� send & receive buffers
receiver

� connection-oriented:
� handshaking (exchange of g g

control msgs) init’s sender,
receiver state before data
exchange, MSS (maximum

 i)

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

application
writes data

application
reads data

3: Transport Layer 3b-2

segment size) send buffer receive buffer
segment

Pipelining: increased utilizationPipelining: increased utilization

first packet bit transmitted t = 0

sender receiver

first packet bit transmitted, t = 0
last bit transmitted, t = L / R

RTT
first packet bit arrives
last packet bit arrives, send ACK
last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 3rd packet arrives, send ACK

Increase utilization
by a factor of 3!

U
sender =

.024
30.008

= 0.0008 3 * L / R
RTT + L / R

=

3: Transport Layer 3b-3

TCP Flow Control:
Dynamic sliding windows

receiver: explicitly
f d f

flow control
informs sender of
(dynamically changing)
amount of free buffer

sender won’t overrun
receiver’s buffers by

transmitting too much,
space
� RcvWindow field in

TCP segment

g ,
too fast

RcvBuffer = size or TCP Receive Buffer TCP segment
sender: keeps the amount

of transmitted,
ACK d d l h

RcvBuffer = size or TCP Receive Buffer

RcvWindow = amount of spare room in Buffer

unACKed data less than
most recently received
RcvWindow

3: Transport Layer 3b-4
receiver buffering

TCP Round Trip Time and TimeoutTCP Round Trip Time and Timeout

Q: how to set TCP Q: how to estimate RTT?Q how to set TCP
timeout value?

� longer than RTT

Q
� SampleRTT: measured time from

segment transmission until ACK
receipt

� note: RTT will vary
� too short: premature

timeout

receipt
� ignore retransmissions,

cumulatively ACKed segmentstimeout
� unnecessary

retransmissions

� SampleRTT will vary, want
estimated RTT “smoother”
� use several recent

� too long: slow reaction
to segment loss

� use several recent
measurements, not just
current SampleRTT

3: Transport Layer 3b-5

TCP Round Trip Time and TimeoutTCP Round Trip Time and Timeout

EstimatedRTT = (1-x)*EstimatedRTT + x*SampleRTTEstimatedRTT (1 x) EstimatedRTT + x SampleRTT

� Exponential weighted average: influence of given
sample decreases exponentially fastp p y

� typical value of x: 0.1

S tti th tim tSetting the timeout
� EstimtedRTT plus “safety margin”

l i ti i l f t i� large variation in EstimatedRTT -> larger safety margin

Timeout = EstimatedRTT + 4*Deviation

Deviation = (1-x)*Deviation +
x*|SampleRTT-EstimatedRTT|

3: Transport Layer 3b-6

Example RTT estimation:Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350

300

350

250

on
ds

)

200RT
T

(m
ill

ise
co

150

100
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

3: Transport Layer 3b-7

SampleRTT Estimated RTT

TCP seq #’s and ACKsTCP seq. # s and ACKs
Seq. #’s: byte stream

“number” of first byte in Host A Host Bnumber of first byte in
segment’s data
� initially random (to min.

probability of conflict with

Host A Host B

User
types

‘C’probability of conflict, with
“historical” segments,
buffered in the network)

� recycling sequence numbers?

C
host ACKs
receipt of
‘C’, echoes

b k ‘C’ACKs: seq # of next byte
expected from other side
� cumulative ACK

host ACKs
receipt
f h d

back ‘C’

Q: how receiver handles out-of-
order segments

of echoed
‘C’

A: TCP spec doesn’t say, - up to
implementor time

simple telnet scenario

3: Transport Layer 3b-8

simple telnet scenario

TCP ACK generation [RFC 1122 RFC 2581]TCP ACK generation [RFC 1122, RFC 2581]

E t TCP R i tiEvent

in-order segment arrival,

TCP Receiver action

delayed ACK. Wait up to 500ms
f t t If t tno gaps,

everything else already ACKed

i d t i l

for next segment. If no next segment,
send ACK

immediatel send singlein-order segment arrival,
no gaps,
one delayed ACK pending

immediately send single
cumulative ACK

out-of-order segment arrival
higher-than-expect seq. #
gap detected

send duplicate ACK, indicating seq. #
of next expected byte

gap detected

arrival of segment that
partially or completely fills gap

immediate ACK if segment starts
at lower end of gap

3: Transport Layer 3b-9

partially or completely fills gap at lower end of gap

TCP: retransmission scenaria retransm ss on scenar a
Host A Host B Host A Host B

eo
ut

l

ti
m

eo
ut

X eq
=9

2
ti

m
e

0
ti

m
eo

ut

loss Se
Se

q=
10

0
time lost ACK scenario time premature timeout,

cumulative ACKs

3: Transport Layer 3b-10

cumulative ACKs

Fast RetransmitFast Retransmit

Ti i d f If d i 3 � Time-out period often
relatively long:
� long delay before

� If sender receives 3
ACKs for the same
data it supposes that � long delay before

resending lost packet
� Detect lost segments

data, it supposes that
segment after ACKed
data was lost:gm

via duplicate ACKs.
� Sender often sends

 t b k t

� fast retransmit: resend
segment before timer
expiresmany segments back-to-

back
� If segment is lost,

expires

f gm ,
there will likely be many
duplicate ACKs.

3: Transport Layer 3b-11

TCP Connection ManagementTCP Connection Management

Recall: TCP sender receiver establish Recall: TCP sender, receiver establish
“connection” before exchanging data segments -
to initialize TCP variables

� client: connection initiator
Socket clientSocket = new Socket("hostname","port

number");

� server: contacted by client
Socket connectionSocket = welcomeSocket.accept();

Note: connection is between processes (socket end-points);
underlying network may be connectionless

3: Transport Layer 3b-12

TCP Connection Management:
E t bli hi tiEstablishing a connection
Three way handshake:
Step 1: client end system sends TCP

SYN control segment to server
� specifies initial seq #

client server

open

Step 2: server end system receives
SYN:
� allocates buffers (can be (

“step4”, cf. SYNflood attacks)
� specifies server-> client initial

seq. #
� ACKs received SYN (SYNACK � ACKs received SYN (SYNACK

control segment)
� Negotiate MSS

St 3 li t i SYNACKStep 3: client receives SYNACK-
segm:
� allocates buffers
� ACKs the SYNACK (segment

3: Transport Layer 3b-13

� ACKs the SYNACK (segment
may contain payload)

TCP Connection Management: Closing a
connection

Requires distributed agreement (cf. also q g m (f
Byzantine generals problem)

client closes socket:

client server

closeclient closes socket
clientSocket.close();

Step 1: client end system sends TCP FIN p y
control segment to server

Step 2: server receives FIN, replies with ACK.
(P bl h d d h l (Possibly has more data to send; then closes
connection, sends FIN.

Step 3: client receives FIN replies with ACK
close

Step 3: client receives FIN, replies with ACK.
Enters “timed wait” (needed to be able to
respond with ACK to received FINs, if first
ACK was lost) m

ed
 w

ai
t

3: Transport Layer 3b-14

ACK was lost)

Step 4: server, receives ACK. Connection
closed. closed

ti
m

TCP Connection Management (cont)TCP Connection Management (cont)

TCP server
lifecycle

TCP client
lifecyclelifecycle

3: Transport Layer 3b-15

TCP segment structure

 t # d t t #

32 bits
URG: urgent data countingsource port # dest port #

sequence number
acknowledgement number

g
(generally not used)

ACK: ACK #
lid

counting
by bytes
of data
(not segments!)acknowledgement number

rcvr window size
ptr urgent datachecksum

FSRPAUhead
len

not
used

valid
PSH: push data now
(generally not used) # bytes

 illin

(not segments!)

ptr urgent data

Options (variable length)RST, SYN, FIN:
connection estab
(d

rcvr willing
to accept

application
data

(setup, teardown
commands)

Internet data
(variable length)

Internet
checksum

(as in UDP)

3: Transport Layer 3b-16

Principles of Congestion ControlPrinciples of Congestion Control

 Congestion: a top-10 problem!
� informally: “too many sources sending too much

d f f k h dl ”data too fast for network to handle”
� different from flow control!
� manifestations:

� lost packets (buffer overflow at routers)
� long delays (queueing in router buffers)

3: Transport Layer 3b-17

Causes/costs of congestion: scenario 1Causes/costs of congestion: scenario 1

� two senders two
Host A

λin : original data
λout

� two senders, two
receivers

� one router,
unlimited shared

output link buffers
Host B

� one router,
infinite buffers

� no retransmission

l d l � large delays
when congested

� i � maximum
achievable
throughput

3: Transport Layer 3b-18

throughput

Causes/costs of congestion: scenario 2Causes/costs of congestion: scenario 2

� one router finite buffers � one router, finite buffers
� sender retransmits lost packets

Host A λin : original
data

λout

finite shared output Host B

λ'in : original data, plus
retransmitted data

link buffers

3: Transport Layer 3b-19

Causes/costs of congestion: scenario 2Causes/costs of congestion: scenario 2
� always: (goodput)λ

in
λout=

� “perfect” retransmission only when loss:

� retransmission of delayed (not lost) packet makes larger

in out
λ

in
λout>

λ
in

y p g
(than perfect case) for same

inλout

“costs” of congestion: (more congestion /)
� more work (retrans) for given “goodput”

3: Transport Layer 3b-20

p
� unneeded retransmissions: link carries multiple copies of pkt

Causes/costs of congestion: scenario 3Causes/costs of congestion: scenario 3
� four senders λ

in
Q: what happens as

� multihop paths
� timeout/retransmit

in
Q pp

and increase ?λ
in

Host A
λin : original data λout

λ'in : original data, plus
retransmitted data

finite shared output
link buffers

Host B

3: Transport Layer 3b-21

Causes/costs of congestion: scenario 3Causes/costs of congestion: scenario 3
H
o

λ
o
s
t
A

H

o
u
t

H
o
s
t
B

Another “cost” of congestion:
h k d d “ i i � when packet dropped, any “upstream transmission

capacity used for that packet was wasted!

3: Transport Layer 3b-22

Summary causes of Congestion:Summary causes of Congestion:

B d k d i (b l k)� Bad network design (bottlenecks)
� Bad use of network : feed with more than can go

th hthrough
� … congestion ☺ (bad congestion-control policies

e g dropping the wrong packets etc)e.g. dropping the wrong packets, etc)

3: Transport Layer 3b-23

Two broad approaches towards congestion controlTwo broad approaches towards congestion control

End-end congestion Network-assisted congestion
l

g
control:

� no explicit feedback from
t k

control:
� routers provide feedback to

end systems
network

� congestion inferred from
end-system observed loss,

� single bit indicating
congestion (SNA, DECbit,
TCP/IP ECN, ATM)

li it t s d sh ld y ,
delay

� approach taken by TCP
(focus here)

� explicit rate sender should
send at

� routers may serve flows with
parameters may also apply (focus here) parameters, may also apply
admission control on
connection-request

� (see later, in assoc. with N/W � (see later, in assoc. with N/W
layer, ATM policies,
multimedia apps & QoS, match
of traffic needs with use of
th N/W)

3: Transport Layer 3b-24

the N/W)

TCP Congestion ControlTCP Congestion Control
� end-end control (no network assistance)
� sender limits transmission: How does sender perceive
LastByteSent-LastByteAcked ≤ CongWin

� Roughly,

p
congestion?

� loss event = timeout or 3
duplicate ackst CongWin

/

� CongWin is dynamic, function of perceived

duplicate acks
� TCP sender reduces rate

(CongWin) after loss

rate = CongWin
RTT Bytes/sec

� CongWin is dynamic, function of perceived
network congestion (NOTE: different than
receiver’s window!)

event
Q: any problem with this?
three mechanisms:

cwnd
bytes three mechanisms:

� AIMD
� slow startRTT

� conservative after
timeout eventsRTT

ACK(s)

3: Transport Layer 3b-25

ACK(s)

TCP SlowstartTCP Slowstart
Slowstart algorithm Host A Host B

initialize: Congwin = 1
for (each segment ACKed) RT

T

for (each segment ACKed)
Congwin = 2 * Congwin

until (loss event OR

� exponential increase (per RTT)

(
CongWin > threshold)

� exponential increase (per RTT)
in window size (not so slow !?)

� loss event = timeout (Tahoe (
TCP) and/or three duplicate
ACKs (Reno TCP)

time

3: Transport Layer 3b-26

TCP C i idTCP Congestion Avoidance
 d

/* slowstart is over */

Congestion avoidance

/* Congwin > threshold */
Until (loss event) {
every w segments ACKed:every w segments ACKed:

Congwin++
}}

threshold = Congwin/2
Congwin = 1
perform slowstart

3: Transport Layer 3b-27

Refinement (Reno)
Avoid slow starts!
G t li i Go to linear increase

after 3rd duplicate
ack, starting from
window of size (1/2
window before
change)g)

3: Transport Layer 3b-28

TCP AIMD
multiplicative decrease:

cut CongWin in half
additive increase:

increase CongWin by cut CongWin in half
after loss event

increase CongWin by
1 MSS every RTT in
the absence of loss

24 Kbytes

congestion
window events: probing

16 Kbytes

8 Kbytes

time

L li d TCP ti

3: Transport Layer 3b-29

Long-lived TCP connection

Summary: TCP Congestion Control

� When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

� When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.congestion avoidance phase, window grows linearly.

� When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to set to CongWin/2 and CongWin set to
Threshold.

� When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

3: Transport Layer 3b-30

TCP sender congestion controlg
Event State TCP Sender Action Commentary

ACK i t Sl St t C Wi C Wi + MSS R lti i d bli fACK receipt
for previously
unacked
data

Slow Start
(SS)

CongWin = CongWin + MSS,
If (CongWin > Threshold)

set state to “Congestion
Avoidance”

Resulting in a doubling of
CongWin every RTT

ACK receipt
for previously
unacked
data

Congestion
Avoidance
(CA)

CongWin = CongWin+MSS *
(MSS/CongWin)

Additive increase, resulting
in increase of CongWin by
1 MSS every RTT

Loss event
detected by
triple
duplicate

SS or CA Threshold = CongWin/2,
CongWin = Threshold,
Set state to “Congestion
Avoidance”

Fast recovery,
implementing multiplicative
decrease. CongWin will not
drop below 1 MSSduplicate

ACK
Avoidance drop below 1 MSS.

Timeout SS or CA Threshold = CongWin/2,
CongWin = 1 MSS,

Enter slow start

Set state to “Slow Start”

Duplicate
ACK

SS or CA Increment duplicate ACK count
for segment being acked

CongWin and Threshold not
changed

3: Transport Layer 3b-31

TCP Fairness

TCP’s congestion
Fairness goal: if N TCP

sessions share same

TCP s congestion
avoidance effect:
AIMD: additive

bottleneck link, each
should get 1/N of link

i

increase, multiplicative
decrease

capacity� increase window by 1 per
RTT

� decrease window by
TCP connection 1

� decrease window by
factor of 2 on loss event

bottleneck
router
p it R

TCP
connection 2

3: Transport Layer 3b-32

capacity R

Why is TCP fair?Why is TCP fair?
Two competing sessions:Two competing sessions:
� Additive increase gives slope of 1, as throughout increases
� multiplicative decrease decreases throughput proportionally

R equal bandwidth share

i id ddi i i
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase

RC nn ti n 1 th hp t

3: Transport Layer 3b-33

RConnection 1 throughput

Fairness (more)
Fairness and UDP Fairness and parallel TCP

connections
� Multimedia apps often

do not use TCP
d t t t

connections
� nothing prevents app from

opening parallel cnctions� do not want rate
throttled by congestion
control

opening parallel cnctions
between 2 hosts.

� Web browsers do this
� Instead use UDP:

� pump audio/video at
t t t t l t

� Web browsers do this ….

constant rate, tolerate
packet loss

� Research area: TCP � Research area: TCP
friendly

3: Transport Layer 3b-34

TCP delay modelingTCP delay modeling

Q: How long does it take to Notation assumptions:Q: How long does it take to
receive an object from a
Web server after sending

Notation, assumptions:
� Assume one link between

client and server of rate Rf g
a request?

� TCP connection establishment
� Assume: fixed congestion

window, W segments
� S MSS (bit)� data transfer delay � S: MSS (bits)
� O: object size (bits)
� no retransmissions (no loss � no retransmissions (no loss,

no corruption)

3: Transport Layer 3b-35

TCP delay Modeling: Fixed windowTCP delay Modeling: Fixed window
K:= O/WS

Case 1: WS/R > RTT + S/R: Case 2: WS/R < RTT + S/R:Case 1: WS/R > RTT + S/R:
ACK for first segment in window
returns before window’s worth
f d

Case 2: WS/R < RTT + S/R:
wait for ACK after sending
window’s worth of data sent
latency = 2RTT + O/R

3: Transport Layer 3b-36

of data sent
latency = 2RTT + O/R

latency = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]

TCP Latency Modeling: Slow Start

� Now suppose window grows according to slow start.
� Will show that the latency of one object of size O is:

R
S

R
SRTTP

R
ORTTLatency P)12(2 −−⎥⎦

⎤
⎢⎣
⎡ +++=

where P is the number of times TCP stalls at server:

}1,{min −= KQP

where
- Q = number of times the server would stall until cong. window grows larger than
a “full-utilization” window (if the object were of unbounded size).(j)

- K = number of (incremental-sized) congestion-windows that “cover” the object.

3: Transport Layer 3b-37

TCP Delay Modeling: Slow Start (2)
initiate TCP
connection

request

Delay components:
• 2 RTT for connection
estab and request

RTT

request
object

first window
= S/R

d i d

estab and request
• O/R to transmit
object
• time server idles due second window

= 2S/R

third window
4S/R

time server idles due
to slow start

Server idles: = 4S/R

fourth windowExample:

Server idles
P = min{K-1,Q} times

fourth window
= 8S/RExample:

• O/S = 15 segments
• K = 4 windows
• Q = 2

complete
transmissionobject

delivered

time at

Q = 2
• P = min{K-1,Q} = 2

Server idles P=2 times

3: Transport Layer 3b-38

time at
client

serverServer idles P 2 times

TCP Delay Modeling (3)

ementacknowledgreceivesserveruntil

segment send tostartsserver whenfrom time=+ RTT
R
S

ementacknowledgreceivesserver until

window kththe transmit totime2 1 =− Sk

initiate TCP
connection

t

th windowafter thetimeidle2 1 kSRTTS k =⎥
⎤

⎢
⎡ −+

+
−

w dowtt et a s ttot e
R

RTT

request
object

first window
= S/R

second window
2S/Rth windowafter thetimeidle 2 k

R
RTT

R
=⎥⎦⎢⎣

+ = 2S/R

third window
= 4S/R

idleTimeRTT
R
O P

p
p2delay

1

++=
=
∑ fourth window

= 8S/R

SSRTTPRTTO
R
SRTT

R
SRTT

R
O

P

k
P

k

)12(][2

]2[2 1

1
−+++= −

=
∑

complete
transmissionobject

delivered

3: Transport Layer 3b-39

R
S

R
SRTTPRTT

R
O P)12(][2 −−+++=

time at
client

time at
server

TCP Delay Modeling (4)y g ()
Recall K = number of windows that cover object

≥+++= − }222:{min 110 OSSSkK kL

How do we calculate K ?

≥

≥+++= −

}12{i

}/222:{min
}{

110

Ok

SOk

k

kL

+≥=

≥−=

)}1(log:{min

}12:{min

2
Okk

S
k k

⎥⎥
⎤

⎢⎢
⎡ +=)1(log

)}(g{

2

2

S
O

S

⎥⎢ S

Calculation of Q, number of idles for infinite-size object,
is similar

3: Transport Layer 3b-40

is similar.

Wireless TCPWireless TCP
Problem: higher data error-rate destroys congestion control

principle (assumption)p p p

Possible solutions:
� Non-transparent (indirect): manage congestion control in 2 � Non-transparent (indirect): manage congestion-control in 2

sub-connections (one wired, one wireless). But … the
semantics of a connection changes: ack at the sender means
that base-station (not the receiver) received the segmentthat base station, (not the receiver) received the segment

� Transpartent: use extra rules at the base-station (network
l t smissi s) t ”hid ” th s f th i l ss layer retransmissions...) to ”hide” the errors of the wireless
part from the sender. But … the sender may still timeout in
the meanwhile and think that there is congestion ...

� Vegas algorithm: observe RTT estimation and reduce
transmission rate when in danger of loss

3: Transport Layer 3b-41

Chapter 3: SummaryChapter 3: Summary

� principles behind
transport layer services:

N t� multiplexing/demultiplexing
� reliable data transfer
� flow control

Next:
� leaving the network

“edge” (application
� flow control
� congestion control

� instantiation and

edge (appl cat on
transport layer)

� into the network “core”

implementation in the Internet
� UDP

TCP� TCP

3: Transport Layer 3b-42

