
<u>Chapter 7 + ATM/VC networks (3, 4, 5):</u> <u>Multimedia networking, QoS, Congestion</u> <u>control</u>

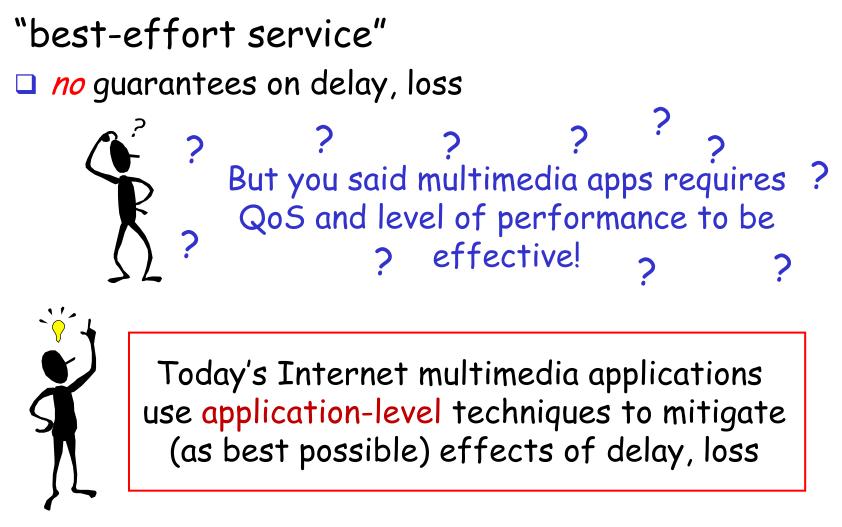
Course on Computer Communication and Networks, CTH/GU

The slides are adaptation of the slides made available by the authors of the course's main textbook

Multimedia and Quality of Service: What is it?

Network service guarantees (delay, jitter, loss rate, ...) 7-2

MM Networking Applications


- **Classes of MM applications:**
- 1) stored streaming
- 2) live streaming
- 3) interactive, real-time

- <u>Fundamental</u> <u>characteristics:</u>
- typically delay sensitive
 - end-to-end delay
 - 🗅 delay jitter
- loss tolerant: infrequent losses cause minor glitches

Jitter is the variability of packet delays within the same packet stream antithesis with data, which are loss intolerant but delay tolerant.

7: Multimedia Networking

Multimedia Over Today's Internet

Solution Approaches in IP Networks

To mitigate impact of "best-effort" protocols:

- Use UDP to avoid TCP's slow-start phase...
- Buffer content at client and control playback to remedy jitter
- Different error control methods
- Exhaust all uses of caching, proxys, etc
- Adapt compression level to available bandwidth
- add more bandwidth

Scalability? May need major change of the protocols (?):

m ... to consider resource reservation, traffic classes, service level agreements, ... (more on this in a short while...)

Chapter 7: goals

Principles

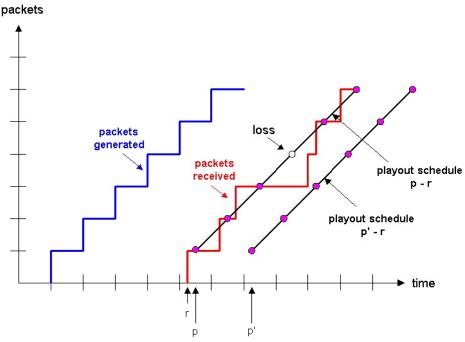
- classify multimedia applications
- identify network services applications need
- making the best of best-effort service

Protocols and Architectures

- specific protocols for best-effort
- mechanisms for providing QoS
- architectures for QoS

Multimedia Applications, Services, Needs, ...

- Application Classes, QoS, challenges
- Today's representative technology
 - recovery from jitter and loss (eg IP telephony)
 - Overlays) CDN: content distribution networks
 - Streaming protocols



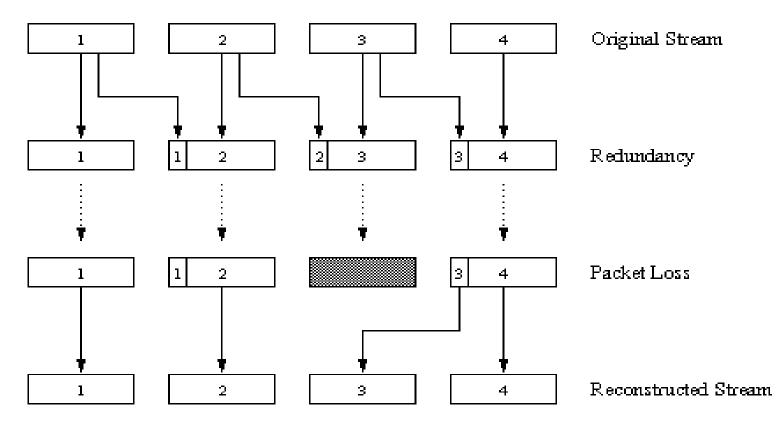
- Improving QoS in Networks (also related with congestion-control)
 - Packet scheduling and policing
- Two generally different approaches
 - □ The VC (ATM) approach (incl. material from Ch 3, 4, 5)
 - Internet approach: Int-serv + RSVP, Diff-serv

Internet Phone's Playout Delay

Fixed: chunk timestamped t is played out (at the receiver) at time t + q (assuming it arrived)

Observe: delay-loss trade-off large q: less packet loss small q: better interactive experience

Dynamic:

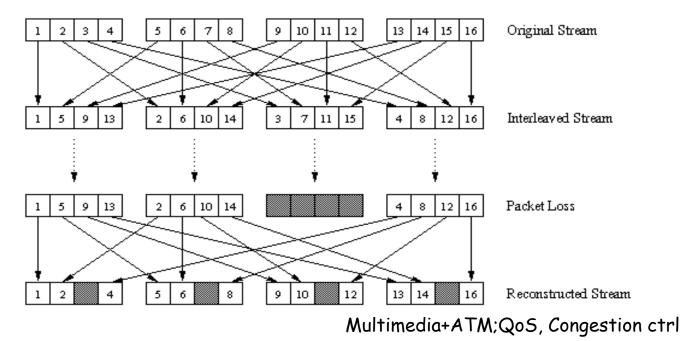

- estimate network delay +variance (as in TCP);
- · adjust playout-delay at the beginning of each talkspurt

• will cause silent periods to be compressed and elongated by a small amount; not noticeable in speech

Multimedia+ATM;QoS, Congestion ctrl 8

Recovery From Packet Loss (FEC)

Piggybacking Lower Quality Stream



Multimedia+ATM;QoS, Congestion ctrl 9

Recovery From Packet Loss/FEC

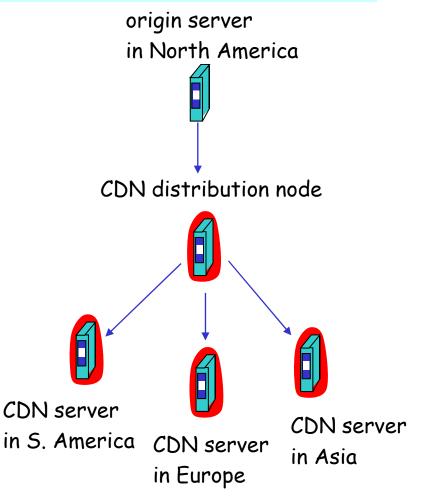
(cont)

- 3. Interleaving: no redundancy, but can cause delay in playout beyond Real Time requirements
 - Upon loss, have a set of partially filled chunks
 - playout time must adapt to receipt of group
 - Divide 20 msec of audio data into smaller units of 5 msec each and interleave

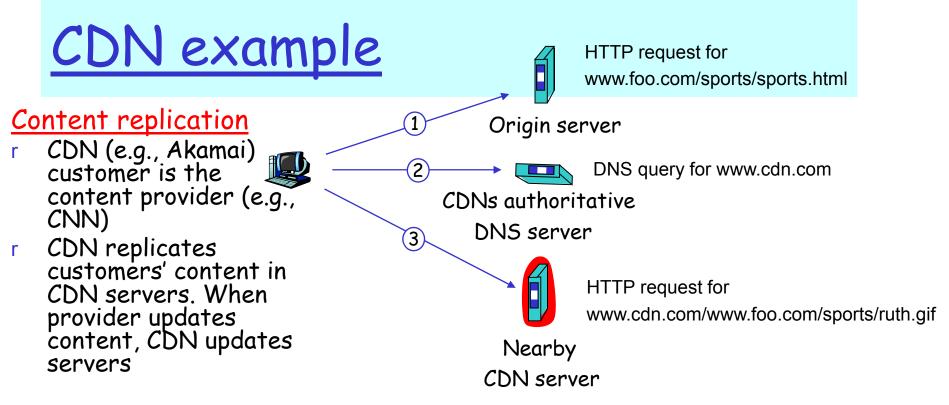
10

Multimedia Applications, Services, Needs, ...

- Application Classes, QoS, challenges
- Today's representative technology
 - recovery from jitter and loss (eg IP telephony)
 - Overlays) CDN: content distribution networks
 - Streaming protocols



- Improving QoS in Networks (also related with congestion-control)
 - Packet scheduling and policing
- Two generally different approaches
 - □ The VC (ATM) approach (incl. material from Ch 3, 4, 5)
 - Internet approach: Int-serv + RSVP, Diff-serv


Content distribution networks(CDNs)

Content replication

- Challenging to stream large files from single origin server in real time
- Solution: replicate content at several/many servers
 - content downloaded to CDN servers ahead of time
 - content "close" to user avoids impairments (loss, delay) of sending content over long paths
 - CDN server typically in edge/access network
 - Resembles overlay networks in P2P applications

Video link: <u>http://vimeo.com/26469929</u> Multimedia+ATM;QoS, Congestion ctrl 12

origin server (www.foo.com)

- distributes HTML
- replaces:

http://www.foo.com/sports.ruth.gif

with

http://www.cdn.com/www.foo.com/sports/ruth.gif

CDN company (cdn.com)

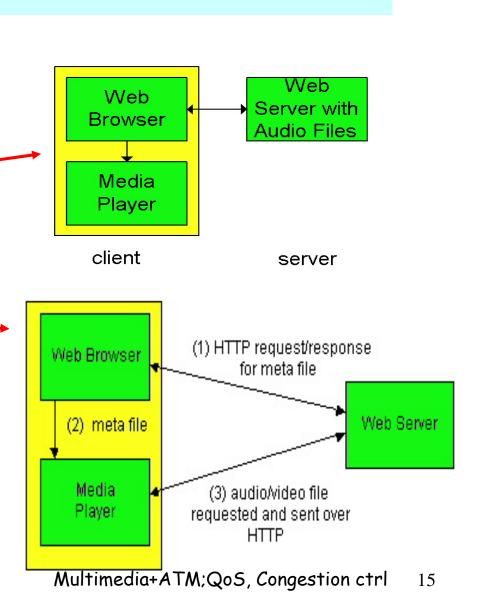
- uses its authoritative DNS server (*always involved*) to redirect requests
 - m "map" to determine closest CDN server to requesting ISP

Video link: <u>http://vimeo.com/2646992Mu</u>ltimedia+ATM;QoS, Congestion ctrl 13

Multimedia Applications, Services, Needs, ...

- Application Classes, QoS, challenges
- Today's representative technology
 - recovery from jitter and loss (eg IP telephony)
 - Overlays) CDN: content distribution networks
 - Streaming protocols

- Improving QoS in Networks (also related with congestion-control)
 - Packet scheduling and policing
- Two generally different approaches
 - □ The VC (ATM) approach (incl. material from Ch 3, 4, 5)
 - Internet approach: Int-serv + RSVP, Diff-serv


Streaming From Web Servers

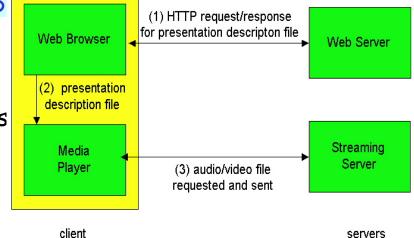
- Audio (in file), Video (interleaved audio+images in 1 file, or 2 separate files + client synchronizes display) sent as HTTP-object
- A simple architecture:

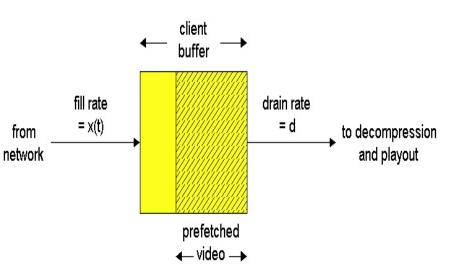
Browser requests the object(s); after reception pass them to the player (no pipelining)

Alternative:

- browser requests and receives a
 Meta File
- Browser launches the appropriate Player and passes it the Meta File;
- Player sets up a HTTP connection with Web Server and downloads + plays the file

Using a Streaming Server

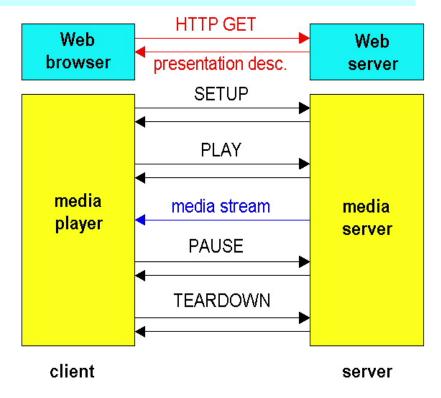

gets around HTTP = allows a choice of UDP vs. TCP

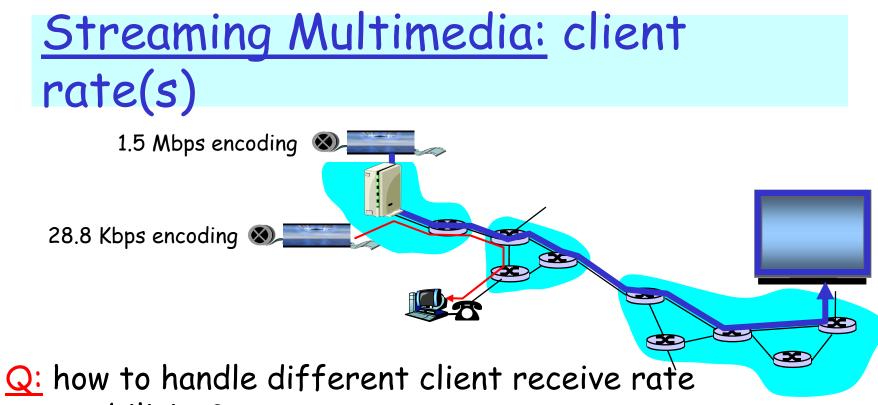

UDP

- sending rate appropriate for client (oblivious to network congestion !) = encoding rate = constant rate
- fill rate = constant rate packet loss rate
- short playout delay (2-5 seconds) to remove jitter
- error recovery: time permitting

TCP

- Send rate as instructed by TCP's flow and congestion ctrl
 - fill rate fluctuates due to TCP congestion control
- larger playout delay: smooth TCP delivery rate
- TCP passes easier through firewalls


servers

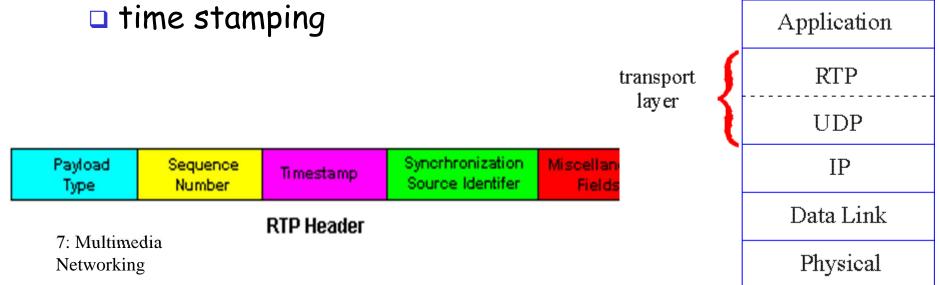

Multimedia+ATM;QoS, Congestion ctrl 16

Real Time Streaming Protocol (RTSP)

... replaces http, adds control:

- For user to control display: rewind, fast forward, pause, resume, etc...
- Out-of-band protocol (uses two connections, one for control messages (Port 554) and for media stream)
- RFC 2326 permits use of either TCP or UDP

capabilities?


- m 28.8 Kbps dialup
- m 100Mbps Ethernet
- <u>A:</u> server stores multiple copies of video, encoded at different rates
- Info is found in the metafile, RTSP client can GET the Multimedia+ATM; QoS, Congestion ctrl 18

Real-Time Protocol (RTP) RFC 3550

- RTP specifies packet structure for packets carrying audio, video data
 - payload type (encoding)
 - □ sequence numbering

RTP packets encapsulated in UDP segments

interoperability: if two Internet phone applications run RTP, then they may be able to work together

Summary: Internet Multimedia: bag of tricks

- use UDP to avoid TCP congestion control (delays) for time-sensitive traffic
- client-side adaptive playout delay: to compensate for delay
- error recovery (on top of UDP)
 - □ FEC, interleaving, error concealment
 - Retransmissions only time-permitting
- CDN: bring content closer to clients
- server side matches stream bandwidth to available client-to-server path bandwidth
 - chose among pre-encoded stream rates
 - dynamic server encoding rate

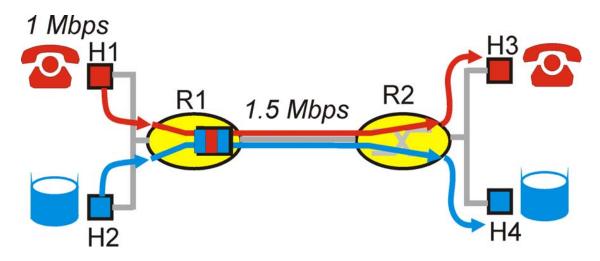
Multimedia Applications, Services, Needs, ...

- Application Classes, QoS, challenges
- Today's representative technology
 - recovery from jitter and loss (eg IP telephony)
 - Overlays) CDN: content distribution networks
 - Streaming protocols

- Improving QoS in Networks (also related with congestion-control)
 - Packet scheduling and policing
- Two generally different approaches
 - □ The VC (ATM) approach (incl. material from Ch 3, 4, 5)
 - Internet approach: Int-serv + RSVP, Diff-serv

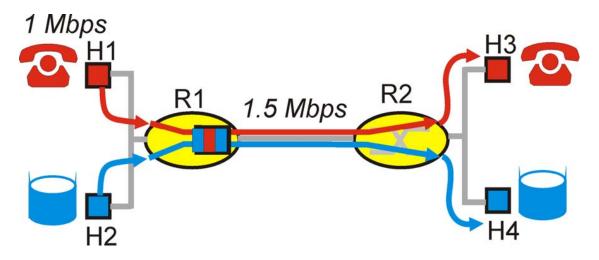
QoS parameters: recall

Contract between


- network user
- network provider

□ Agree on

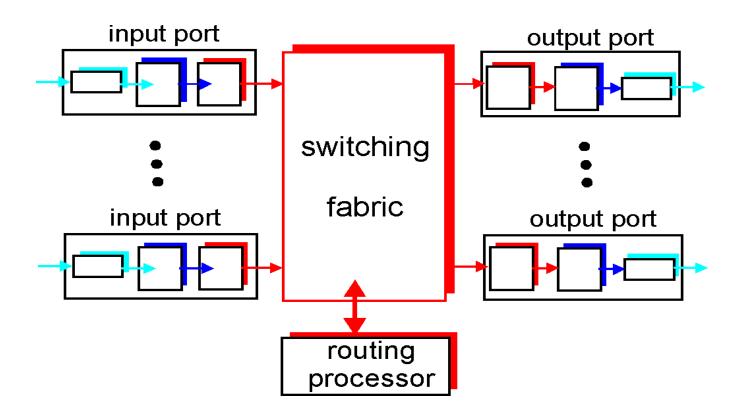
- Traffic characteristics (packet rate, sizes, ...)
- Network service guarantees (delay, jitter, loss rate, ...)


Improving QOS in IP Networks

- IETF groups are working on proposals to provide better QOS control in IP networks, i.e., going beyond best effort
- Simple model for sharing and congestion studies:
- Questions
 - Distinguish traffic?
 - Control offered load? (isolate different "streams"?)
 - Resources? (utilization)
 - Control acceptance of new sessions?

Principles for QoS for networked applications

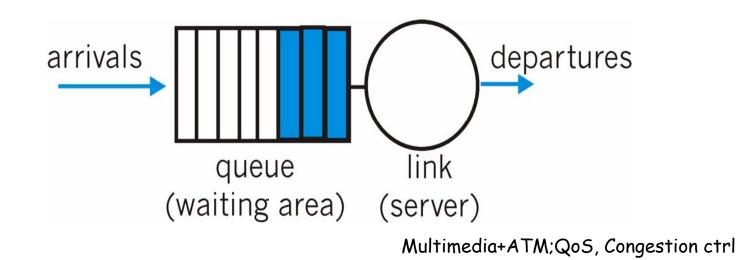
Packet classification Traffic shaping/policing (enforce contract terms) Packet scheduling (resource=bandwidth allocation) Admission control (will not study here)



Multimedia+ATM;QoS, Congestion ctrl 24

Where does this fit in?

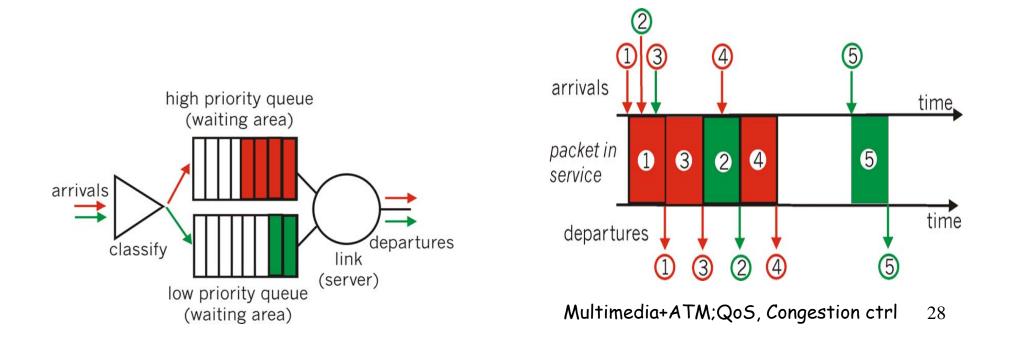
Where does this fit in?


Scheduling = choosing the next packet for transmission on a link (= allocate bandwidth)

Packet Scheduling Policies: FIFO

FIFO: in order of arrival to the queue

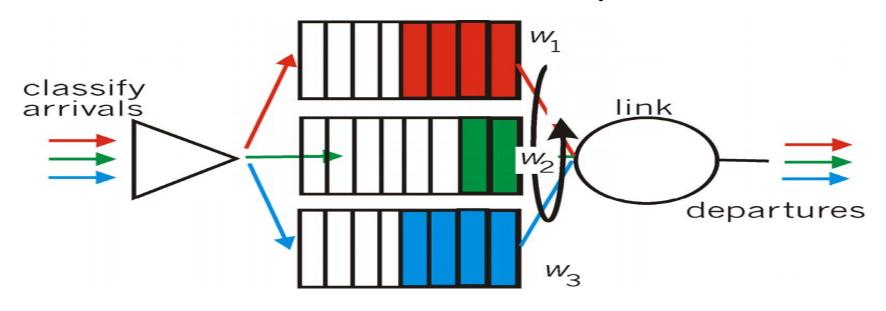
if buffer full: a discard policy determines which packet to discard among the arrival and those already queued



27

Packet Scheduling Policies: Priority queueing

Priority Queuing: classes have different priorities; priority may depend on explicit marking or other header info, eg IP source or destination, type of packet, etc.


 Transmit a packet from the highest priority class with a nonempty queue

<u>Scheduling Policies: Weighted Fair</u> <u>Queueing</u>

Weighted Fair Queuing: generalized Round Robin, including priorities (weights)

- provide each class with a differentiated amount of service
- □ class i receives a fraction of service $w_i/\Sigma(w_j)$

□ More on packet scheduling: work-conserving policies, delays, ...

Policing Mechanisms

Idea: *shape* the packet traffic (the network provider does *traffic policing,* ie monitors/enforces the "shape" agreed).

Traffic shaping, to limit transmission rates:

- (Long term) Average Rate (100 packets per sec or 6000 packets per min), crucial aspect is the interval length
- Peak Rate: e.g., 6000 p p minute Avg and 1500 p p sec Peak
- (Max.) Burst Size: Max. number of packets sent consecutively, ie over a very short period of time

Policing Mechanisms: Pure Leaky Bucket Idea: eliminates bursts completely; may cause unnecessary packet losses

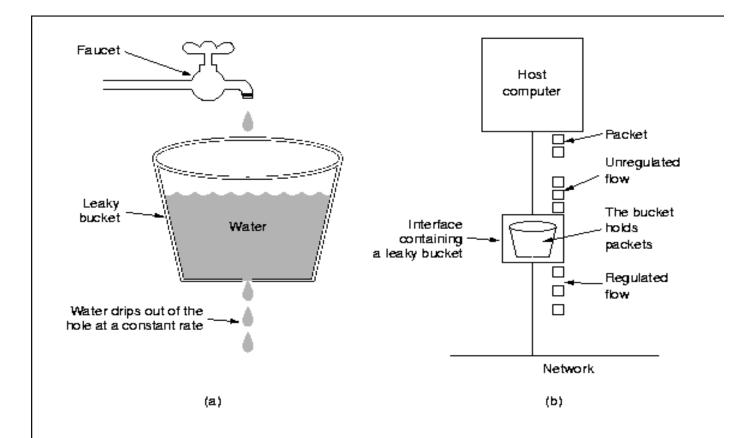


Fig. 5-24. (a) A leaky bucket with water. (b) A leaky bucket with ctrl 31 packets.

Policing Mechanisms: Leaky Token

Bucket Idea: packets sent by consuming tokens produced at constant rate r

- limit input to specified Burst Size (b= bucket capacity) and Average Rate (max admitted #packets over time period t is b+rt).
- to avoid still much burstiness, put a leaky bucket -with higher rate; why?after the token bucket)

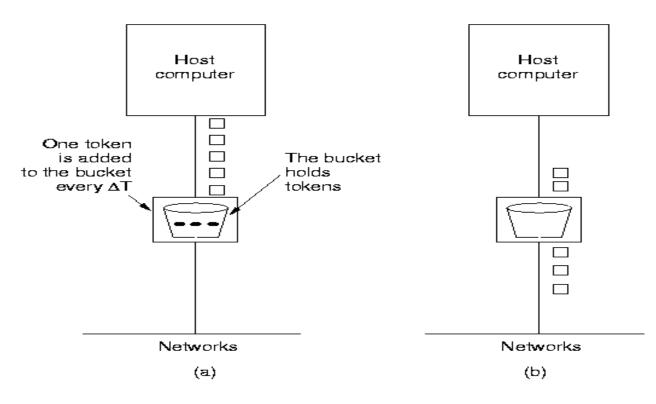
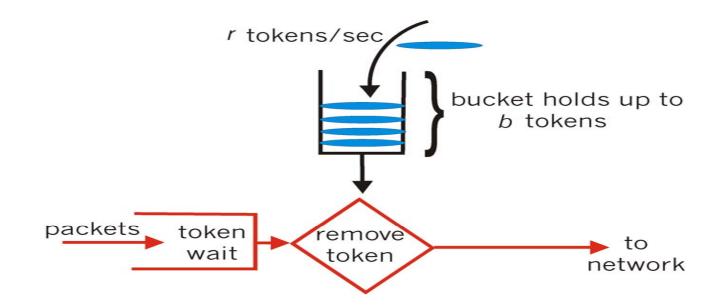
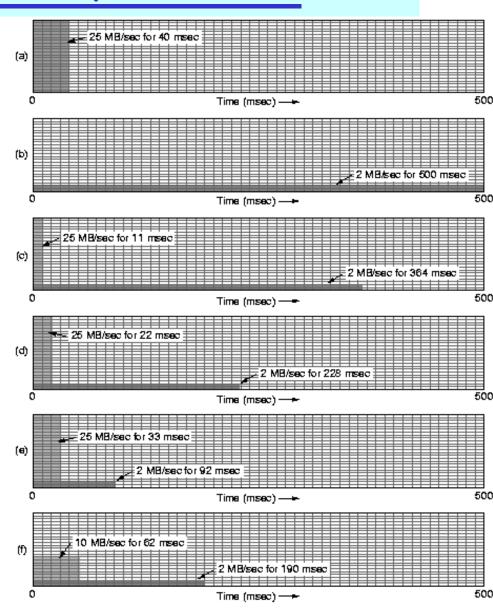



Fig. 5-26. The token bucket algorithm. (a) Before. (b) After. tion ctrl 32

Policing Mechanisms: token bucket


Another way to illustrate token buckets:

Policing: the effect of buckets

🗆 input

- output pure leaky bucket, 2MBps
- output token bucket 250KB,
 2MBps
- output token bucket 500KB,
 2MBps
- output token bucket 750KB,
 2MBps
- output 500KB, 2MBps token bucket feeding 10MBps leaky bucket

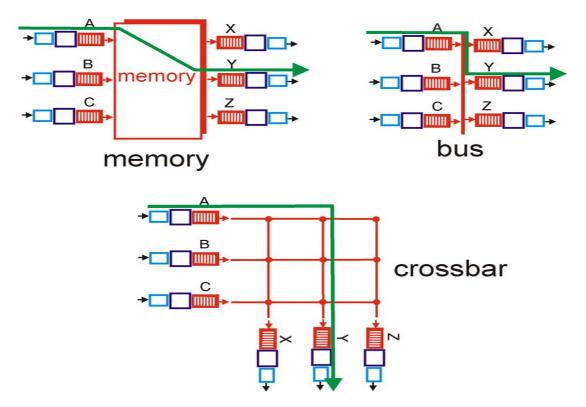
Multimedia Applications, Services, Needs, ...

- Application Classes, QoS, challenges
- Today's representative technology
 - recovery from jitter and loss (eg IP telephony)
 - Overlays) CDN: content distribution networks
 - Streaming protocols

- Improving QoS in Networks (also related with congestion-control)
 - Packet scheduling and policing

- Two generally different approaches
 - □ The VC (ATM) approach (incl. material from Ch 3, 4, 5)
 - Internet approach: Int-serv + RSVP, Diff-serv

(VC) ATM: Asynchronous Transfer Mode nets


Internet:

- today's *de facto* standard for global data networking
 1980's:
- telco's develop ATM: competing network standard for carrying highspeed voice/data

ATM principles:

- virtual-circuit networks: switches maintain state for each "call"
- small (48 byte payload, 5 byte header) fixed length cells (like packets)
 - fast switching
 - small size good for voice
- Assume low error-rates, do not perform error control (enhance speed)
- well-defined interface between "network" and "user" (think of telephone company)

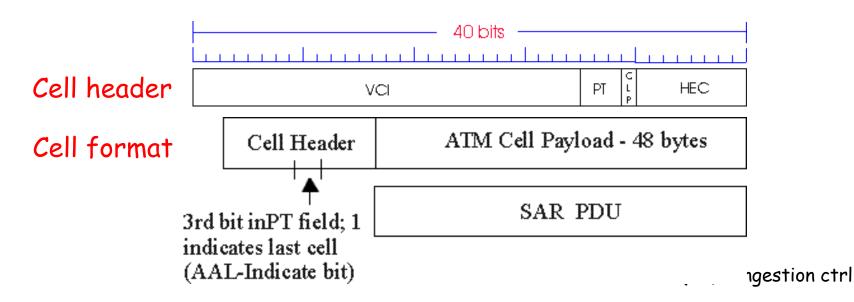
Recall: switching fabrics

•ATM switches: VC technology

•Virtual channels, virtual circuits

Based on Banyan crossbar switches

• ATM routing: as train travelling (hence no state for each "stream", but for each "train") Multimedia+ATM;QoS, Congestion ctrl 37

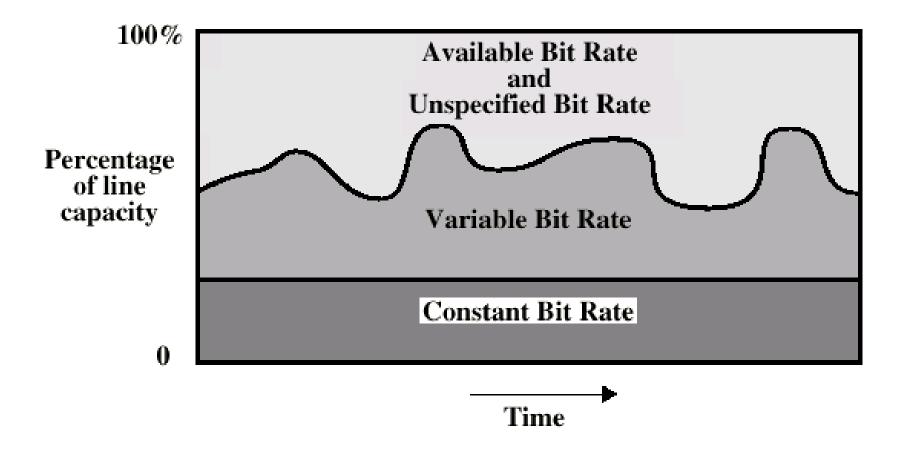

ATM cell (small packet)

- 48-byte payload
 - □ Why?: small payload -> short cell-creation delay for digitized voice
 - halfway between 32 and 64 (compromise!)
- Header: 5bytes
 - VCI: virtual channel ID
 - □ PT: Payload type (e.g. Resource Management cell versus data cell)
 - CLP: Cell Loss Priority bit

 \Box CLP = 1 implies low priority cell, can be discarded if congestion

38

HEC: Header Error Checksum



Example VC technology ATM Network service models:

Service		Guarantees ? Congestion				
Model	Example	Bandwidth	Loss	Order	Timing	feedback
Constant B <u>it Rate</u>	voice	constant rate	yes	yes	yes	no congestion
VariableBR (RT/nRT)	Video/ "streaming"	guaranteed rate	yes	yes	yes	no congestion
Available BR	www- browsing	guaranteed minimum	no	yes	no	yes
Undefined BR	Background file transfer	none	no	yes	no	no

With ABR you can get min guaranteed capacity and better, if possible; with UBR you can get better, but you may be thrown out in the middle \otimes

ATM Bit Rate Services

ATM Congestion Control

Several different strategies are used:

- Admission control and resource reservation: reserve resources when opening a VC; traffic shaping and policing (use bucket-like methods)
- Rate-based congestion control: similar to choke packets (method provided in IP (ICMP) also, but not really used in implementations); (especially for ABR traffic)
 - idea = give feedback to the sender and intermediate
 stations on the min. available (= max. acceptable) rate on
 the VC.

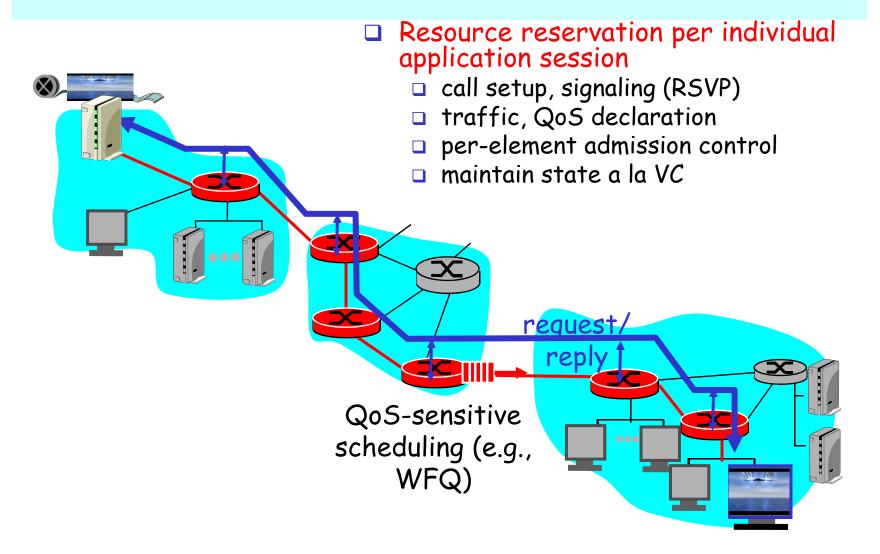
Multimedia Applications, Services, Needs, ...

- Application Classes, QoS, challenges
- Today's representative technology
 - recovery from jitter and loss (eg IP telephony)
 - Overlays) CDN: content distribution networks
 - Streaming protocols

- Improving QoS in Networks (also related with congestion-control)
 - Packet scheduling and policing

- Two generally different approaches
 - □ The VC (ATM) approach (incl. material from Ch 3, 4, 5)
 - Internet approach: Int-serv + RSVP, Diff-serv

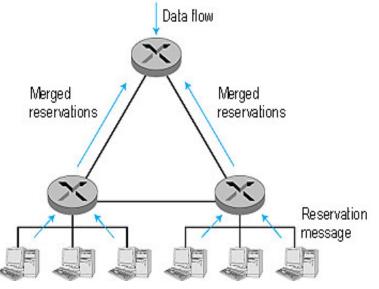
<u>Recall:</u>


Solution Approaches in IP Networks

- □ To mitigate impact of "best-effort" protocols:
 - □ Use UDP to avoid TCP's slow-start phase...
 - Buffer content at client and control playback to remedy jitter
 - Adapt compression level to available bandwidth
 - Exhaust all uses of caching, proxys, etc
 - add more bandwidth

Scalability? May need major change of the protocols (?):

- Incorporate resource reservation (bandwidth, processing, buffering), and new scheduling policies
- Use traffic classes for packets and differentiate service accordingly
- Set up service level agreements with applications, monitor and enforce the agreements, charge accordingly


Intserv: QoS guarantee scenario

Multimedia+ATM;QoS, Congestion ctrl 44

RSVP: resource reservation protocol

- **RSVP**: a leading candidate for signaling protocol
 - allows reservations for bandwidth in multicast trees
 - is receiver-oriented (the receiver of a data flow initiates and maintains the resource reservation for the flow).
 - Maintains soft-state
 receivers renew interest regularly
 - does not specify how the network provides the reserved bandwidth, only allows the applications to reserve it.
 - is not a routing protocol; it depends on an underlying routing protocol to determine the routes for the flows; when a route changes, RSVP re-reserves resources.
 - does not define the admission test, but it assumes that the routers perform such a test and that RSVP can interact with the test.

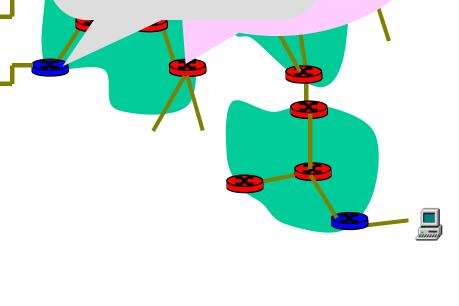
Back to Internet QoS support: alternatively?

Concerns with Intserv:

Scalability: signaling, maintaining per-flow router state difficult with large number of flows

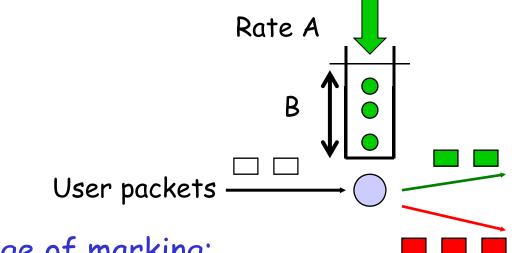
Diffserv approach:

- Don't define service classes, provide functional components to build service classes
 - Network core: stateless, simple
 - Combine flows into aggregated flows
 - Classification, shaping, admission at the network edge


Diffserv Architecture

- per-flow traffic management
- marks packets as in-profile and out-profile

- per class traffic management
- buffering and scheduling based on marking at edge
- preference given to in-profile packets



marking

ling

Edge-router Packet Marking

profile: pre-negotiated rate A, bucket size B
packet marking at edge based on per-flow profile

Possible usage of marking:

class-based marking: packets of different classes marked differently

intra-class marking: conforming portion of flow marked differently than non-conforming one

Packet is marked in the Type of Service (TOS) in IPv4, and Traffic Class in IPv6 Multimedia+ATM; QoS, Congestion ctrl

48

DiffServ Core Functions

- Forwarding: according to "Per-Hop-Behavior" (PHB) specified for the particular packet class; PHB is strictly based on classification marking
 - PHB does not specify what mechanisms to use to ensure required PHB performance behavior
 - Examples:
 - □Class A gets x% of outgoing link bandwidth over time intervals of a specified length
 - \Box Class A packets leave before packets from class B

□ BIG ADVANTAGE:

No state info to be maintained by routers!

<u>Summary: How should the Internet</u> evolve to better support multimedia?

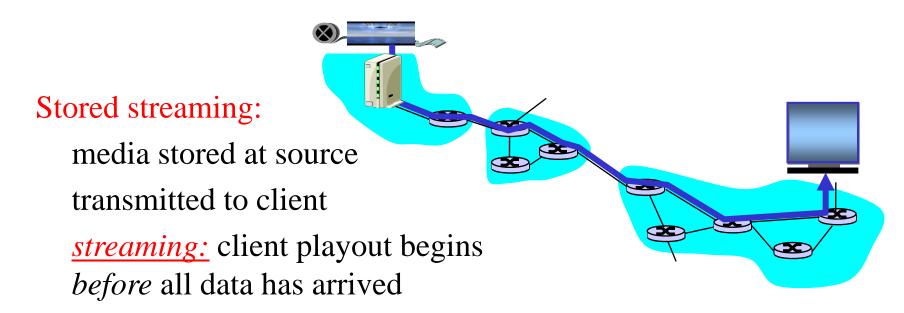
Integrated services philosophy:

- Fundamental changes in Internet so that apps can reserve end-to-end bandwidth
- Requires new, complex software in hosts & routers

<u>Laissez-faire</u>

- no major changes
- more bandwidth when needed
- Let application layer solve the problems

<u>Differentiated services</u> <u>philosophy:</u>


Fewer changes to Internet infrastructure, yet provide variable class service.

Opinions?

Streaming Stored Multimedia

VCR-like functionality: client can pause, rewind, FF, push slider bar

10 sec initial delay OK

1-2 sec until command effect OK Networking timing constraint for still-to-be transmitted data: in time for playout

Streaming Live Multimedia

Examples:

- Internet radio talk show
- live sporting event
- <u>Streaming</u> (as with streaming *stored* multimedia)
- playback buffer (to be explained soon)
- Interactivity
- □ fast forward impossible
- rewind, pause possible!

Real-Time Interactive Multimedia

applications: IP telephony, video conference, distributed interactive worlds

end-end delay requirements:

audio: < 150 msec good, < 400 msec OK
 includes application-level (packetization) and network delays
 higher delays noticeable, impair interactivity

session initialization

Real-Time (Phone) Over IP's Best-Effort

Delay jitter is handled by using timestamps, sequence numbers, and delaying playout at receivers either a fixed or a variable amount

Forward Error Control: to fix errors, make up losses

Adaptive Playout Delay (1)

- □ <u>Goal</u>: minimize playout delay, keeping late loss rate low
- Approach: adaptive playout delay adjustment:
 - estimate network delay, adjust playout delay at beginning of each talk spurt.
 - silent periods compressed and elongated.
 - □ chunks still played out every 20 msec during talk spurt.

 $t_i = timestamp of the ith packet$

 r_i = the time packet i is received by receiver

 p_i = the time packet i is played at receiver

 $r_i - t_i =$ network delay for ith packet

d_i = estimate of average network delay after receiving ith packet

dynamic estimate of average delay at receiver:

 $d_i = (1 - u)d_{i-1} + u(r_i - t_i)$

where u is a fixed constant (e.g., u = .01). Networking

Adaptive playout delay (2)

□ also useful to estimate average deviation of delay, v_i : $v_i = (1 - u)v_{i-1} + u | r_i - t_i - d_i |$

□ estimates d_i , v_i calculated for every received packet (but used only at start of talk spurt

□ for first packet in talk spurt, playout time is: $p_i = t_i + d_i + Kv_i$

where K is positive constant

□ remaining packets in talkspurt are played out periodically

Streaming

- Audio/Video file is segmented and sent over TCP or UDP;
- User interactive control provided, e.g. Real Time Streaming Protocol (RTSP)
- Helper Application: displays content, (typically requested via a Web browser); e.g. RealPlayer; typical functions:
 - Decompression
 - Jitter removal
 - Error correction: use redundant packets to be used for reconstruction of original stream
 - GUI for user control

RTSP Metafile Example

```
<title>Twister</title>
<session>
     <group language=en lipsync>
            <switch>
              <track type=audio
                  e="PCMU/8000/1"
                  src = "rtsp://audio.example.com/twister/audio.en/lofi">
              <track type=audio
                  e="DVI4/16000/2" pt="90 DVI4/8000/1"
                  src="rtsp://audio.example.com/twister/audio.en/hifi">
            </switch>
          <track type="video/jpeg"
                  src="rtsp://video.example.com/twister/video">
       </group>
</session>
```

RTSP Exchange Example

- C: SETUP rtsp://audio.example.com/twister/audio RTSP/1.0 Transport: rtp/udp; compression; port=3056; mode=PLAY
- S: RTSP/1.0 200 1 OK Session 4231
- C: PLAY rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0 Session: 4231 Range: npt=0-
- C: PAUSE rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0 Session: 4231 Range: npt=37
- C: TEARDOWN rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0 Session: 4231

Real-Time Protocol (RTP) & RT Control

Protocol (RTCP)

- standard packet format for real-time application
 - Payload Type: 7 bits: 128 possible types of encoding; eg PCM, MPEG2 video, GSM, etc. (sender can change in the middle of session)
 - Sequence Number: to detect packet loss
 - Timestamp: sampling instant of first byte in packet; to remove jitter introduced by the network
 - Synchronization Source identifier (SSRC): id for the source of a stream; assigned randomly by the source

RTPH	leader
------	--------

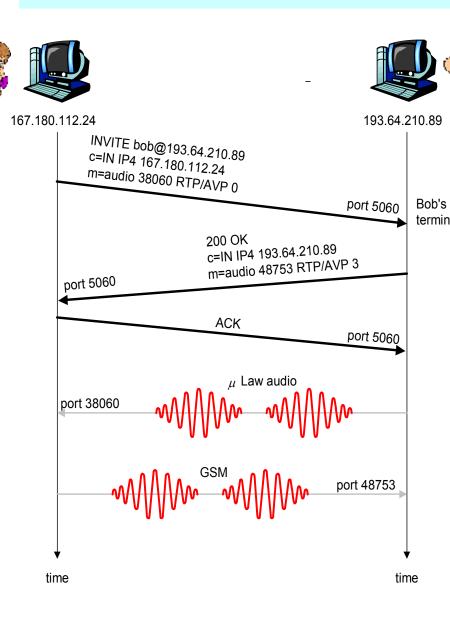
 Real-Time Control Protocol (RTCP): specifies report packets exchanged between sources and destinations, with statistics (# packets sent/lost, inter-arrival jitter
 Can be used to modify sender transmission rates

SIP Service Initiation Protocol

SIP long-term vision

- All phone/video conference calls take place over the Internet
- People are identified by names or e-mail addresses, rather than by phone numbers.
- You can reach the callee, no matter where the callee roams, no matter what IP device the callee is currently using.

What does it do:


- Determine current IP address of callee.
 - Maps mnemonic identifier to current IP address
- Setting up/ending a call
 - Provides also mechanisms so that caller and callee can agree on media type and encoding.

Call management

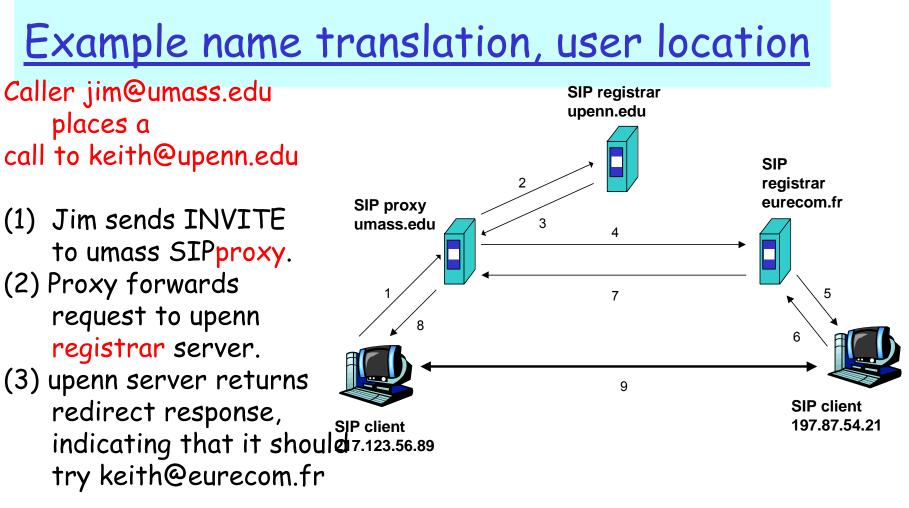
- Add new media streams during call
- Change encoding during call
- Invite others
- Transfer and hold calls

Multimedia+ATM;QoS, Congestion ctrl 62

Setting up a call to known IP address

Alice

Alice's SIP invite message
 indicates her port number & IP
 address+encoding


• Bob's 200 OK message (could also reject, say "busy", etc) ^{Bob's} indicates his port number, IP address & preferred encoding (GSM)

> • SIP messages can be sent over TCP or UDP; here over RTP/UDP.

•HTTP message syntax (but SIP maintains state)

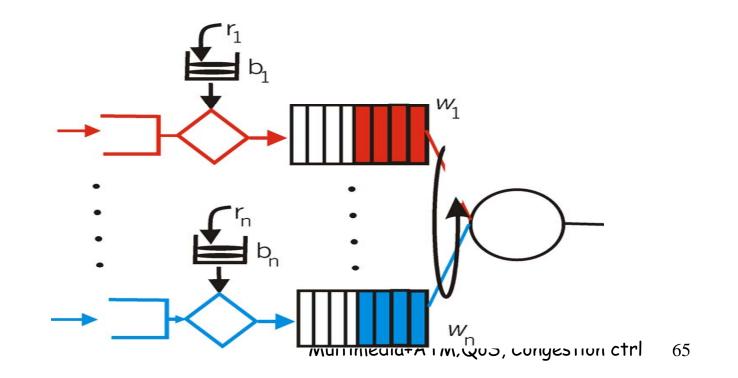
•Default SIP port number: 5060.

Multimedia+ATM; QoS, Congestion ctrl 63

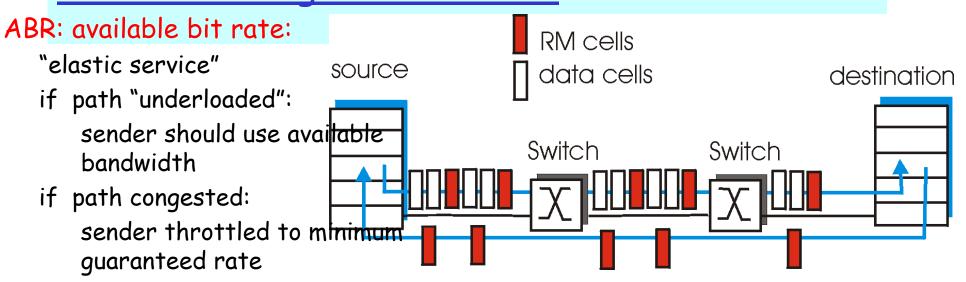
(4) umass proxy sends INVITE to eurecom registrar.

(5) eurecom registrar forwards INVITE to 197.87.54.21, which is running keith's SIP client.

(6-8) SIP response sent back


(9) media sent directly between clients.

(follows pretty much the DNS inquiry struttortedire) TM; QoS, Congestion ctrl 64


Token bucket + WFQ...

- ...can be combined to provide upper bound on packet delay in queue:
- □ b_i packets in queue, packets are serviced at a rate of at least $R \cdot w_i / \Sigma$ (wj) packets per second, then the time until the last packet is transmitted is at most

 $b_i / (R \cdot w_i / \Sigma (wj))$

ATM ABR congestion control

RM (resource management) cells:

- interspersed with data cells
- bits in RM cell set by switches ("network-assisted")
 - NI bit: no increase in rate (mild congestion)
 - CI bit: congestion indication two-byte ER (explicit rate) field in RM cell
 - congested switch may lower ER value in cell
 - sender' send rate thus minimum supportable rate on path

Traffic Shaping and Policing in ATM

(a)

(b)

(c)

(d)

1

Enforce the QoS parameters: check if *Peak Cell Rate (PCR)* and Cell Delay Variation (CDVT are within the negotiated limits:

Generic Cell Rate Algo: introduce

expected next time for a successive cell, based on T = 1/PCR

- border time L (= CDVT) < T in which next transmission may start (but never before T-L)
- A nonconforming cell may be discarded, or its Cell Loss *Priority* bit be set, so it may be discarded in case of congestior

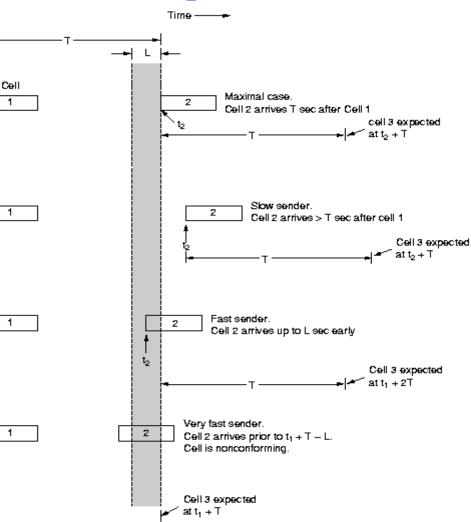
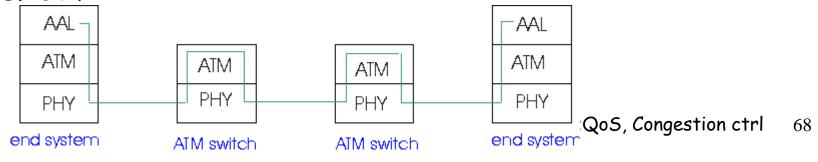
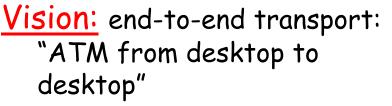


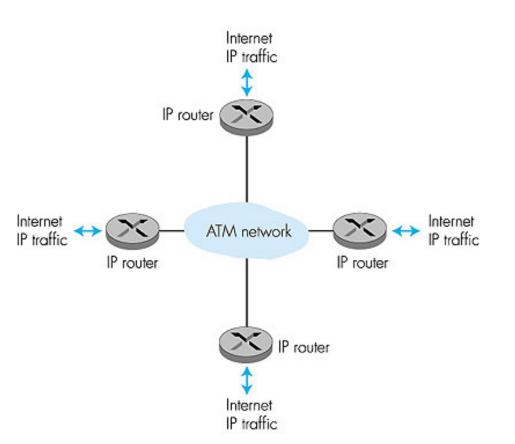
Fig. 5-73. The generic cell rate algorithm.


ATM Adaptation (Transport) Layer: AAL

Basic idea: cell-based VCs need to be "complemented "to be supportive for applications.

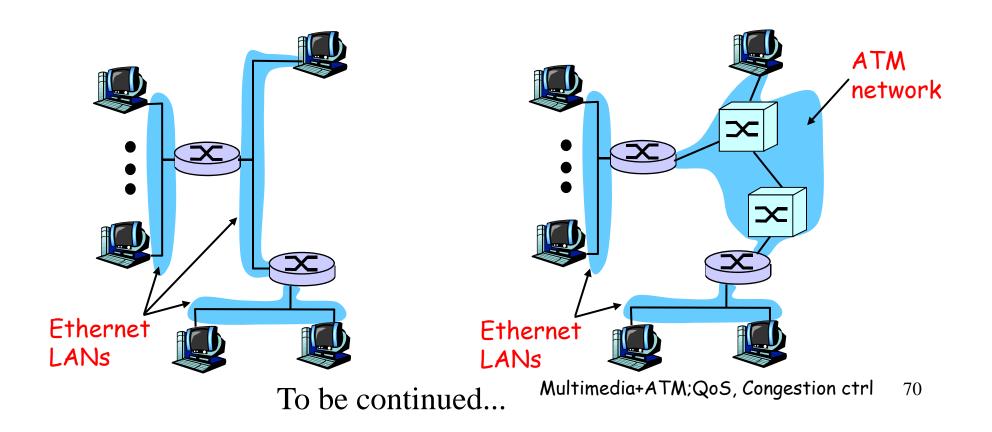

Several ATM Adaptation Layer (AALx) protocols defined, suitable for different classes of applications

AAL1: for CBR (Constant Bit Rate) services, e.g. circuit emulation AAL2: for VBR (Variable Bit Rate) services, e.g., MPEG video


- "suitability" has not been very successful
- computer science community introduced AAL5, (simple, elementary protocol), to make the whole ATM stack usable as switching technology for data communication under IP!

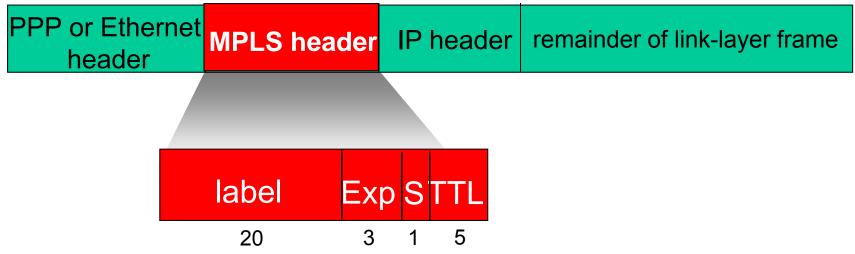
ATM: network or link layer?

- ATM is a network technology
- Reality: used to connect IP backbone routers
 - "IP over ATM"
 - ATM as switched link layer, connecting IP routers


IP-Over-ATM

Classic IP only

- 3 "networks" (e.g., LAN segments)
- MAC (802.3) and IP addresses


IP over ATM

replace "network" (e.g., LAN segment) with ATM network ATM addresses, IP addresses

<u>A parallel story: Evolution from ATM/VC related</u> <u>approach: Multiprotocol label switching (MPLS)</u>

- initial goal: speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding
 - borrowing ideas from Virtual Circuit (VC) approach
 - but IP datagram still keeps IP address!

MPLS capable routers

a.k.a. label-switched router

forwards packets to outgoing interface based only on label value (don't inspect IP address)

MPLS forwarding table distinct from IP forwarding tables

signaling protocol needed to set up forwarding

- RSVP-TE (extension for "traffic-engineering", use MPLS)
- forwarding possible along paths that IP alone would not allow (e.g., source-specific routing) !!

must co-exist with IP-only routers