
3: Transport Layer 3b-1

Chapter 3: Transport Layer
Part B

Course on Computer Communication
and Networks, CTH/GU

The slides are adaptation of the slides made
available by the authors of the course’s main
textbook

3: Transport Layer 3a-2

Roadmap Transport Layer
 transport layer services
 multiplexing/demultiplexing
 connectionless transport: UDP
 principles of reliable data transfer
 connection-oriented transport: TCP

 reliable transfer, flow control
 Timeout: how to estimate?
 connection management
 TCP congestion control

3: Transport Layer 3b-3

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

 full duplex data:
 bi-directional data flow in

same connection
 point-to-point:

 one sender, one receiver

 flow controlled:
 sender will not overwhelm

receiver
 connection-oriented:

 handshaking (exchange of
control msgs) init’s sender,
receiver state before data
exchange, MSS (maximum
segment size)

 reliable, in-order byte
steam:
 no “message boundaries”

 pipelined:
 TCP congestion and flow

control set window size
 send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

3: Transport Layer 3b-4

TCP Flow Control:
Dynamic sliding windows

receiver: explicitly informs
sender of (dynamically
changing) amount of free
buffer space
 RcvWindow field in

TCP segment
sender: keeps the amount of

transmitted, unACKed
data less than most
recently received
RcvWindow

In action:
http://media.pearsoncm

g.com/aw/aw_kurose_
network_4/applets/f
low/FlowControl.htm

sender won’t overrun
receiver’s buffers by

transmitting too much,
too fast

flow control

receiver buffering

RcvBuffer = size or TCP Receive Buffer

RcvWindow = amount of spare room in Buffer

3: Transport Layer 3a-5

Roadmap Transport Layer
 transport layer services
 multiplexing/demultiplexing
 connectionless transport: UDP
 principles of reliable data transfer
 connection-oriented transport: TCP

 reliable transfer, flow control
 Timeout: how to estimate?
 connection management
 TCP congestion control

3: Transport Layer 3b-6

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

 longer than RTT
 note: RTT will vary

 too short: premature
timeout
 unnecessary

retransmissions
 too long: slow reaction

to segment loss

Q: how to estimate RTT?
 SampleRTT: measured time from

segment transmission until ACK
receipt
 ignore retransmissions,

cumulatively ACKed segments
 SampleRTT will vary, want

estimated RTT “smoother”
 use several recent

measurements, not just
current SampleRTT

3: Transport Layer 3b-7

TCP Round Trip Time and Timeout

EstimatedRTT = (1-x)*EstimatedRTT + x*SampleRTT

 Exponential weighted average: influence of given
sample decreases exponentially fast

 typical value of x: 0.1

Setting the timeout
 EstimtedRTT plus “safety margin”
 large variation in EstimatedRTT -> larger safety margin

Timeout = EstimatedRTT + 4*Deviation

Deviation = (1-x)*Deviation +
x*|SampleRTT-EstimatedRTT|

3: Transport Layer 3b-8

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

3: Transport Layer 3b-9

TCP seq. #’s and ACKs
Seq. #’s: byte stream

“number” of first
byte in segment’s
data
 initially random (to min.

probability of conflict,
with “historical”
segments, buffered in
the network)

 recycling sequence
numbers?

ACKs: seq # of next byte
expected from other
side
 cumulative ACK

Host A Host B

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario

3: Transport Layer 3b-10

TCP ACK generation [RFC 1122, RFC 2581]

Event

in-order segment arrival,
no gaps,
everything else already ACKed

in-order segment arrival,
no gaps,
one delayed ACK pending

out-of-order segment arrival
higher-than-expect seq. #
gap detected

arrival of segment that
partially or completely fills gap

TCP Receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single
cumulative ACK

send duplicate ACK, indicating seq. #
of next expected byte

immediate ACK if segment starts
at lower end of gap

3: Transport Layer 3b-11

TCP: retransmission scenaria
Host A

loss

ti
m

eo
ut

time lost ACK scenario

Host B

X

Host A

Se
q=

92
 t

im
eo

ut

time premature timeout,
cumulative ACKs

Host B

Se
q=

10
0

ti
m

eo
ut

3: Transport Layer 3b-12

Fast Retransmit

 Time-out period often
relatively long:
 long delay before

resending lost packet
 Detect lost segments

via duplicate ACKs.
 Sender often sends

many segments back-to-
back

 If segment is lost,
there will likely be many
duplicate ACKs.

 If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:
 fast retransmit: resend

segment before timer
expires

3: Transport Layer 3a-13

Roadmap Transport Layer
 transport layer services
 multiplexing/demultiplexing
 connectionless transport: UDP
 principles of reliable data transfer
 connection-oriented transport: TCP

 reliable transfer, flow control
 Timeout: how to estimate?
 connection management
 TCP congestion control

3: Transport Layer 3b-14

TCP Connection Management

Recall: TCP sender, receiver establish
“connection” before exchanging data segments -
to initialize TCP variables

 client: connection initiator
Socket clientSocket = new Socket("hostname","port

number");

 server: contacted by client
Socket connectionSocket = welcomeSocket.accept();

Note: connection is between processes (socket end-points);
underlying network may be connectionless

3: Transport Layer 3b-15

TCP Connection Management:
Establishing a connection
Three way handshake:
Step 1: client end system sends TCP

SYN control segment to server
 specifies initial seq #

Step 2: server end system receives
SYN:
 allocates buffers
 specifies server-> client initial

seq. #
 ACKs received SYN (SYNACK

control segment)
 Negotiate MSS

Step 3: client receives SYNACK-
segm:
 allocates buffers
 ACKs the SYNACK (segment

may contain payload)

client server

open

3: Transport Layer 3b-16

TCP Connection Management: Closing a
connection

Requires distributed agreement (cf. also
Byzantine generals problem)

client closes socket:
clientSocket.close();

Step 1: client end system sends TCP FIN
control segment to server

Step 2: server receives FIN, replies with ACK.
(Possibly has more data to send; then closes
connection, sends FIN.

Step 3: client receives FIN, replies with ACK.
Enters “timed wait” (needed to be able to
respond with ACK to received FINs, if first
ACK was lost)

Step 4: server, receives ACK. Connection
closed.

client server

close

close

closed

ti
m

ed
 w

ai
t

3: Transport Layer 3b-17

TCP Connection Management (cont)

TCP client
lifecycle

TCP server
lifecycle

3: Transport Layer 3b-18

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

rcvr window size
ptr urgent datachecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data
(limited use)

ACK: ACK #
valid

PSH: push data now
(ltd use)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

3: Transport Layer 3a-19

Roadmap Transport Layer
 transport layer services
 multiplexing/demultiplexing
 connectionless transport: UDP
 principles of reliable data transfer
 connection-oriented transport: TCP

 reliable transfer, flow control
 Timeout: how to estimate?
 connection management
 TCP congestion control

3: Transport Layer 3b-20

Principles of Congestion Control

Congestion: a top-10 problem!
 informally: “too many sources sending too much

data too fast for network to handle”
 different from flow control!
 manifestations:

 lost packets (buffer overflow at routers)
 long delays (queueing in router buffers)

3: Transport Layer 3b-21

Causes/costs of congestion: scenario 1

 two senders, two
receivers

 one router,
infinite buffers

 no retransmission

 large delays
when congested

 maximum
achievable
throughput

unlimited shared
output link buffers

Host A
in : original data

Host B

out

3: Transport Layer 3b-22

Causes/costs of congestion: scenario 2

 one router, finite buffers
 sender retransmits lost packets

finite shared output
link buffers

Host A in : original
data

Host B

out

'in : original data, plus
retransmitted data

3: Transport Layer 3b-23

Causes/costs of congestion: scenario 2
 always: (goodput)
 “perfect” retransmission only when loss:

 retransmission of delayed (not lost) packet makes larger
(than perfect case) for same

in

out=

in

out>

inout

“costs” of congestion: (more congestion)
 more work (retrans) for given “goodput”
 unneeded retransmissions: link carries multiple copies of pkt

3: Transport Layer 3b-24

Causes/costs of congestion: scenario 3
 four senders
 multihop paths
 timeout/retransmit

in

Q: what happens as
and increase ?

in

finite shared output
link buffers

Host A
in : original data

Host B

out

'in : original data, plus
retransmitted data

3: Transport Layer 3b-25

Causes/costs of congestion: scenario 3

Another “cost” of congestion:
 when packet dropped, any “upstream transmission

capacity used for that packet was wasted!

H
o
s
t
A

H
o
s
t
B

o
u
t

3: Transport Layer 3b-26

Summary causes of Congestion:

 Bad network design (bottlenecks)
 Bad use of network : feed with more than can go

through
 … congestion (bad congestion-control policies

e.g. dropping the wrong packets, etc)

3: Transport Layer 3b-27

Two broad approaches towards congestion control

End-end congestion
control:

 no explicit feedback from
network

 congestion inferred from
end-system observed loss,
delay

 approach taken by TCP
(focus here)

Network-assisted congestion
control:

 routers provide feedback to
end systems
 single bit indicating

congestion (SNA, DECbit,
TCP/IP ECN, ATM)

 explicit rate sender should
send at

 routers may serve flows with
parameters, may also apply
admission control on
connection-request

 (see later, in assoc. with N/W
layer, ATM policies,
multimedia apps & QoS, match
of traffic needs with use of
the N/W)

3: Transport Layer 3b-28

TCP Congestion Control
 end-end control (no network assistance)
 sender limits transmission:
LastByteSent-LastByteAcked CongWin

 Roughly,

 CongWin is dynamic, function of perceived
network congestion (NOTE: different than
receiver’s window!)

How does sender perceive
congestion?

 loss event = timeout or 3
duplicate acks

 TCP sender reduces rate
(CongWin) after loss
event

Q: any problem with this?
three mechanisms:

 AIMD
 slow start
 conservative after

timeout events

rate = CongWin
RTT Bytes/sec

RTT

cwnd
bytes

RTT

ACK(s)

3: Transport Layer 3b-29

TCP Slowstart

 exponential increase (per RTT)
in window size (not so slow !?)

 loss event = timeout (Tahoe
TCP) and/or three duplicate
ACKs (Reno TCP)

initialize: Congwin = 1
for (each segment ACKed)

Congwin = 2 * Congwin
until (loss event OR

CongWin > threshold)

Slowstart algorithm Host A

RT
T

Host B

time

3: Transport Layer 3b-30

TCP Congestion Avoidance

/* slowstart is over */
/* Congwin > threshold */
Until (loss event) {
every w segments ACKed:

Congwin++
}

threshold = Congwin/2
Congwin = 1
perform slowstart

Congestion avoidance

3: Transport Layer 3b-31

Refinement (Reno)
Avoid slow starts!
Go to linear increase

after 3rd duplicate
ack, starting from
window of size (1/2
window before
change)

3: Transport Layer 3b-32

TCP AIMD

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

multiplicative decrease:
cut CongWin in half
after loss event

additive increase:
increase CongWin by
1 MSS every RTT in
the absence of loss
events

Long-lived TCP connection

3: Transport Layer 3b-33

Summary: TCP Congestion Control

 When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

 When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

 When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to
Threshold.

 When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

3: Transport Layer 3b-34

TCP sender congestion control
Event State TCP Sender Action Commentary

ACK receipt
for previously
unacked
data

Slow Start
(SS)

CongWin = CongWin + MSS,
If (CongWin > Threshold)

set state to “Congestion
Avoidance”

Resulting in a doubling of
CongWin every RTT

ACK receipt
for previously
unacked
data

Congestion
Avoidance
(CA)

CongWin = CongWin+MSS *
(MSS/CongWin)

Additive increase, resulting
in increase of CongWin by
1 MSS every RTT

Loss event
detected by
triple
duplicate
ACK

SS or CA Threshold = CongWin/2,
CongWin = Threshold,
Set state to “Congestion
Avoidance”

Fast recovery,
implementing multiplicative
decrease. CongWin will not
drop below 1 MSS.

Timeout SS or CA Threshold = CongWin/2,
CongWin = 1 MSS,
Set state to “Slow Start”

Enter slow start

Duplicate
ACK

SS or CA Increment duplicate ACK count
for segment being acked

CongWin and Threshold not
changed

3: Transport Layer 3b-35

TCP Fairness

Fairness goal: if N TCP
sessions share same
bottleneck link, each
should get 1/N of link
capacity

TCP’s congestion
avoidance effect:
AIMD: additive
increase, multiplicative
decrease
 increase window by 1 per

RTT
 decrease window by

factor of 2 on loss event

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

3: Transport Layer 3b-36

Why is TCP fair?
Two competing sessions:
 Additive increase gives slope of 1, as throughout increases
 multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

3: Transport Layer 3b-37

Fairness (more)
Fairness and UDP
 Multimedia apps often

do not use TCP
 do not want rate

throttled by congestion
control

 Instead use UDP:
 pump audio/video at

constant rate, tolerate
packet loss

 Further study?: TCP
friendly

Fairness and parallel TCP
connections

 nothing prevents app from
opening parallel cnctions
between 2 hosts.

 Web browsers do this ….

3: Transport Layer 3b-38

Chapter 3: Summary

 principles behind
transport layer services:
 multiplexing/demultiplexing
 reliable data transfer
 flow control
 congestion control

 instantiation and
implementation in the Internet
 UDP
 TCP

Next:
 leaving the network

“edge” (application
transport layer)

 into the network “core”

Some review questions on this
part

 Describe TCP’s flow control
 Why does TCp do fast retransmit upon a 3rd ack and not a

2nd?
 Describe TCP’s congestion control: principle, method for

detection of congestion, reaction.
 Can a TCP’s session sending rate increase indefinitely?
 Why does TCP need connection management?
 Why does TCP use handshaking in the start and the end of

connection?
 Can an application have reliable data transfer if it uses

UDP?

3: Transport Layer 3b-39

Extra slides, for further study

3: Transport Layer 3b-40

3: Transport Layer 3b-41

Wireless TCP
Problem: higher data error-rate destroys congestion control

principle (assumption)

Possible solutions:
 Non-transparent (indirect): manage congestion-control in 2

sub-connections (one wired, one wireless). But … the
semantics of a connection changes: ack at the sender means
that base-station, (not the receiver) received the segment

 Transpartent: use extra rules at the base-station (network
layer retransmissions...) to ”hide” the errors of the wireless
part from the sender. But … the sender may still timeout in
the meanwhile and think that there is congestion ...

 Vegas algorithm: observe RTT estimation and reduce
transmission rate when in danger of loss

3: Transport Layer 3b-42

TCP delay modeling

Q: How long does it take to
receive an object from a
Web server after sending
a request?

 TCP connection establishment
 data transfer delay

Notation, assumptions:
 Assume one link between

client and server of rate R
 Assume: fixed congestion

window, W segments
 S: MSS (bits)
 O: object size (bits)
 no retransmissions (no loss,

no corruption)

3: Transport Layer 3b-43

TCP delay Modeling: Fixed window

Case 1: WS/R > RTT + S/R:
ACK for first segment in window
returns before window’s worth
of data sent
latency = 2RTT + O/R

Case 2: WS/R < RTT + S/R:
wait for ACK after sending
window’s worth of data sent
latency = 2RTT + O/R

+ (K-1)[S/R + RTT - WS/R]

K:= O/WS

3: Transport Layer 3b-44

TCP Latency Modeling: Slow Start

 Now suppose window grows according to slow start.
 Will show that the latency of one object of size O is:

R
S

R
SRTTP

R
ORTTLatency P)12(2

where P is the number of times TCP stalls at server:

}1,{min KQP

where
- Q = number of times the server would stall until cong. window grows larger than
a “full-utilization” window (if the object were of unbounded size).

- K = number of (incremental-sized) congestion-windows that “cover” the object.

3: Transport Layer 3b-45

TCP Delay Modeling: Slow Start (2)

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

Example:
• O/S = 15 segments
• K = 4 windows
• Q = 2
• P = min{K-1,Q} = 2

Server idles P=2 times

Delay components:
• 2 RTT for connection
estab and request
• O/R to transmit
object
• time server idles due
to slow start

Server idles:
P = min{K-1,Q} times

3: Transport Layer 3b-46

TCP Delay Modeling (3)

R
S

R
SRTTPRTT

R
O

R
SRTT

R
SRTT

R
O

idleTimeRTT
R
O

P

k
P

k

P

p
p

)12(][2

]2[2

2delay

1

1

1

th window after the timeidle 2 1 k
R
SRTT

R
S k

ementacknowledg receivesserver until

segment send tostartsserver whenfrom time RTT
R
S

 window kth the transmit totime2 1

R
Sk

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

3: Transport Layer 3b-47

TCP Delay Modeling (4)

)1(log

)}1(log:{min

}12:{min

}/222:{min
}222:{min

2

2

110

110

S
O

S
Okk

S
Ok

SOk
OSSSkK

k

k

k

Calculation of Q, number of idles for infinite-size object,
is similar.

Recall K = number of windows that cover object

How do we calculate K ?

TCP friendly

TCP Friendly Page
http://www.psc.edu/networking/tcp_frien
dly.html This Web site summarizes some
of the recent work on congestion control
algorithms for non-TCP based applications.
It focuses on congestion control schemes
that use the "TCP-friendly" equation, (that
is, maintaining the arrival rate to at most
some constant over the square root of the
packet loss rate).

3: Transport Layer 3b-48

