Chapter 3. Transport Layer
Part A

Course on Computer Communication
and Networks, CTH/GU

The slides are adaptation of the slides made
available by the authors of the course's main
textbook

3: Transport Layer 3a-1

Transport services and protocols

O provide /logical communication
between app’ processes
running on different hosts

O transport protocols run in
end systems

O transport vs network layer
services:
O network layer: data transfer
between end systems
O ftransport layer: data
transfer between processes

- uses and enhances, network
layer services

application
transport
networ

data link

physical

network /

network

data link

data link
physical

physical

network

{ data link

physical

networ

data link

physical

3: Transport Layer 3a-2

Recall: Transport-layer protocols

Internet transport services:
3 reliable, in-order unicast
delivery (TCP)
o flow control
O connection setup

O + congestion controlll (slows
down if network is
congested...)

3 unreliable ("best-effort"),
unordered unicast or
multicast delivery: UDP

3 services not available:
O real-time
O bandwidth guarantees
O reliable multicast

application
transport
networ

data link

network

physical

data link

physical

network

T

data link

physical

3: Transport Layer

network

data link

physical

networ

data link

physical

3a-3

Transport Layer

Learning goals: Overview:
O understand principles 3 transport layer servuc__
behind fransport layer pemsms) multiplexing/demultiplexing
Services: O connectionless transport: UDP

X mL;!TLZ'e);'nf/:lemm;'plexmg O principles of reliable data
reliable aara rtransrer Tr'ansfer'

O
o flow control : :
5 O connection-oriented transport:

conges‘rion.con‘rr'ol (sgme TCP
now. more in connection
with RT applications) O reliable transfer
3 instantiation and o flow control
implementation in the O connection management
Infernet o TCP congestion control

3: Transport Layer 3a-4

Multiplexing/demultiplexing

delivering received segments
to correct socket

- Demultiplexing at rcv host: —

[] =socket Q = process

_ Multiplexing at send host: _
gathering data, enveloping da;

with header (later used for
demultiplexing)

Fa

application o application @ application
L T L ¢ —
transport transport transport
network network network
link link link
physical physical physical
host 1 host ? host 3

Recall: segment - unit of data exchanged between transport layer entities
aka TPDU: transport protocol data unit

3: Transport Layer 3a-5

How demultiplexing works

O host receives IP datagrams

O each datagram has source
IP address, destination IP
address

O each datagram carries 1
transport-layer segment

O each segment has source,
destination port number
(recall: well-known port
numbers for specific
applications)

O host uses IP addresses & port
nhumbers to direct segment to
appropriate receiver

32 bits >

source port #| dest port #

other header fields

application
data
(message)

TCP/UDP segment format

3: Transport Layer 3a-6

UDP demultiplexing

7 When host receives UDP

O Create sockets with port
segment:

humbers: o
DatagramSocket mySocketl = new O checks c?esTmaTmn port
DatagramSocket(99111); humber in segment
DatagramSocket mySocket2 = new o directs UDP segment to
DatagramSocket(99222); socket with that port
7 UDP socket identified by number .
two-tuple: 0 IP datagrams with

different source IP
addresses and/or source
port numbers directed
to same socket

(desT IP address, dest port number)

3: Transport Layer 3a-7

UDP demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

SP: 6428 SP: 6428
DP: 9157 DP: 5775
SP: 9157 SP: 5775
client DP: 6428 server DP: 6428 Client
IP: A IP: C IP:B

SP provides "return address”

3: Transport Layer

3a-8

TCP demux

3 TCP socket identified
by 4-tuple:
O source IP address
O source port number
O dest IP address
O dest port number

3 recv host uses all four
values to direct
segment to appropriate
socket

0 Server host may support
many simultaneous TCP
sockets:

O each socket identified by
its own 4-tuple

7 Web servers have
different sockets for
each connecting client

O non-persistent HTTP will
have different socket for
each request

3: Transport Layer 3a-9

Connection-oriented demux

(cont)

DD
SP: 5775
DP: 80
S-IP: B
D-IP:C
N
SP: 9157 SP: 9157
client DP: 80 server DP: 80 Client
IP:A | SIP:A IP: C S-IP: B IP:B
D-IP:C D-IP:C

3: Transport Layer 3a-10

TCP demux: Threaded Web
Server

3: Transport Layer 3a-11

—
~ N
SP: 5775
DP: 80
S-IP: B
D-IP:C
i
SP: 9157 SP. 9157
client | DP:80 server BP: 80 Client
IP:A | SIP:A IP: C S-IP: B IP:B
D-IP:.C D-IP:C

Roadmap Transport Layer

transport layer services
multiplexing/demultiplexing
connectionless transport: UDP
principles of reliable data transfer
connection-oriented transport: TCP
O reliable transfer
o flow control

O connection management
O TCP congestion control

O a daaaa

3: Transport Layer 3a-12

UDP: User Datagram Protocol [RFC 768]

A “best effort” service, UDP

segments may be: Is UDP any good?
O lost T nho connection
O delivered out of order establishment (i.e. no
to app added delay)
O connectionless: O simple: no connection state
o no handshaking between at sender, receiver

UDP sender, receiver

a

small segment header

O each UDP segment 3 no congestion control: UDP
handled independently can blast away as fast as
of others; subsequent desired

UDP segments can
arrive in wrong order

3: Transport Layer 3a-13

UDP: more

J often used for streaming
multimedia apps, which are

32 bits >

O loss tolerant Length, in |Source port #| dest port #
O rate sensitive bytes of UDP [~ length checksum
. segment,
3 other UDP users: including
o DNS header
O SNMP
Application
data
(message)

UDP segment format

3: Transport Layer 3a-14

UDP Checksum: check bit flips

Sender: .
O treat segment contents Receiver:
redr seg : J compute checksum of received
as sequence of 16-bit segment
Integers 7 check if computed checksum
3 checksum: addition (1's equals checksum field value:
complement sum) of O NO - error detected (report

error to app or discard)

segment contents
o YES - no error detected.

O sender puts checksum

) * But maybe (very rarely)
value into UDP checksum e/”/”ors)//'lonefh/e);s?Mg;e
field later ...

1110011001100110
1101010101010101
Wraparound:
: 1011101110111011
Add to final @ >
sum 1011101110111100
checksum 01000100010000112

Transport Layer 3-15

Roadmap Transport Layer

transport layer services
multiplexing/demultiplexing
connectionless transport: UDP
principles of reliable data transfer
connection-oriented transport: TCP
O reliable transfer
o flow control

O connection management
O TCP congestion control

O aaaaa

3: Transport Layer 3a-16

Principles of Reliable data transfer

O important in (app.,) transport, link layers
O in top-10 list of important networking topics!

-
O
-
ORN()
O 3 |receiver I
% = Orocess process
3 1

dt d ;
= L()relicible Chc::rmel)j rdt_send() deliver_ data()
8_ 5 reliable data reliable data
T fransfer protocol transfer protocol
% O (sending side) (receiving side)
=

udt_send()i Irdt_rcv()
tb(‘bunreliclble Chonnel):

(a) provided service (b) service implementation

O characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

3: Transport Layer 3a-17

Reliable data transfer: getting started

rdt_send(): called from above, deliver_data(): called by

(e.g., by app.). Passed data to rdt to deliver data fo upper
deliver to receiver upper layer /
\‘ rdt_send () data]fdeliver data()

send [reliable data reliable data receive
sid fransfer protocol transfer protocol id
ld€ |(sending side) (receiving side) siae
udt_send ()i packet packet Irdt_rcv ()
T—h()unrelioble channel)J
udt_send() : called by rdft, rdt_rcv(): called when packet
to transfer packet over arrives on rcv-side of channel

unreliable channel to receiver

3: Transport Layer 3a-18

Reliable data transfer: getting started

we'll:
3 incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

3 consider only unidirectional data transfer
O but control info will flow on both directions!

7 use finite state machines (FSM) to specify

sender, receiver
event causing state transition

actions taken on state transition

— \
event
actions)

3: Transport Layer 3a-19

state: when in this
"state” next state
uniquely determined
by next event

Rdt1.0: reliable transfer over a reliable channel

O underlying channel perfectly reliable
O no bit erros
O no loss of packets

0 separate FSMs for sender, receiver:
O sender sends data into underlying channel
O receiver read data from underlying channel

N\ N
wait for rdt_send(data) it for rdt_rcv(packet)
Cdg fro make_pkt(packet,data) Cg” If rom exfract(packet,data)
Jooveg udt_send(packet) elow deliver_data(data)

(a) rdt1.0: sending side (b) rdt1.0: receiving side

3: Transport Layer 3a-20

Rdt2.0: channel with bit errors

0 underlying channel may flip bits in packet
o recall: UDP checksum to detect bit errors

O the question: how to recover from errors:

O acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

O negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

O sender refransmits pkt on receipt of NAK
O human scenarios using ACKs, NAKs?
3 new mechanisms in rdt2.0 (beyond rdt1.0):

O error detection
O receiver feedback: control msgs (ACK,NAK) rcvr->sender

3: Transport Layer 3a-21

rdt2.0: FSM specification

raf _rcv(rcvpkt) &&
corrupt(rcvpkt)

rdt_send(data) udt send(NACK)

compute checksum
make pkt(sndpkt, data, checksum)
udt send(sndpkt)

wait for

rdf_rcv(rcvpkt)
88 isSNACK(rcvpki) call from

pelow
udt send(sndpkt)

wait for
call from
above

rdt rcv(revpkt) at rev(rev
= | okt) &&
&8 ISACK[ICVKT) notcorupt(rcvokt)

extract(rcvpkt,data)
deliver data(data)
udt send(ACK)

sender FSM receiver FSM

3: Transport Layer 3a-22

rdt2.0: in action (ho errors)

raf_rcv(revpkt) &&
corrupt(rcvpkt)

rdt_send(data) udt send(NACK)

compute checksum
make pkt(sndpkt, data, checksum)
udt send(sndpkt

wait for

call from
below

rdf_rcv(rcvpki) rdt rev(revpkt) &&

notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver data(data)
udt send(ACK)

sender FSM receiver FSM

3: Transport Layer 3a-23

rdt2.0: in action (error scenario)

raf_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt send(NACK)

rdf send(datq)

compute checksum
make pki(sndpkt, data,

it for
rdt rcv(revpkt) wal
88 isSNACK(rcvpki) call from

pelow
udt send(sndpkt)

rdf_rev(revki) rdt_rev(revpkt) &&

notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver data(data)
udt send(ACK)

sender FSM receiver FSM

3: Transport Layer 3a-24

rdt2.0 has an issue:

What happens if
ACK/NAK corrupted?

0 sender doesn't know what
happened at receiver!

What to do?

A sender ACKs/NAKs
receiver's ACK/NAK? What
if sender ACK/NAK lost?

O retransmit, but this might
cause retransmission of
correctly received pkf!

Handling duplicates:

O sender adds seguence
number to each pkt

[sender retransmits current
pkt if ACK/NAK garbled

3 receiver discards (doesn't
deliver up) duplicate pkt

—stop and wait
Sender sends one packet,
then waits for receiver
response

3: Transport Layer 3a-25

rdt2.1: sender, handles garbled ACK/NAKs

rdt send(data)

compute chksum
make pki(sndpkt,0,data,chksum)
udt send(sndpkt)

rdt_rev(revpkt) &&
(corruptrcvpkt) | |
isNAK(rcvpkt))

udt send(sndpkt)

wait for

rat rev(revpkt)

&& notcormnupt(revpki) rdt rev(revpkt)
&& isACK(rcvpkt) && notcorrupt({rcvpkt)
&& isACK(rcvpkt)

rdt rev(revpkt) &&
(corruptircvpkt) | |
isNAK(rcvpki))

udt send(sndpki)

rat send(data)

compute chksum
make pki(sndpkt, 1,data,chksum)
udt send(sndpkt)

3: Transport Layer 3a-26

rdt2.1. receiver, handles garbled ACK/NAKs

rdt rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
COTDUT%[C hkscl;r% ACK chk) rat rev(revpkt)
rat rev(revpkt Make_PKISenapkl, .CNksum o
&& Cérrug’r[rlzvpk’r] udt_send(sndpkt] && corupt(revipki)
compute chksum
make pki(sndpkt, NAK,chksum)
udt send(sndpkt)

compute chksum
make pki(sndpkt,NAK,c
udt send(sndpkt)

rat rev(revpkd)
&& notcorupt(revpkd)
&& has_seqO(revpkt)

rat rev(rcvpkt)
&& notcorrupt(rcvpkt)
&& has seql(revpkt)

rdt rcv(revpkt)
- compute chksum

compute chksum && notcorrupt(revpkt)

make pkt(sndpkt, ACK,chksum) && has seq 1 (rovpki) maike_pki(sndpkt ACK,chksum)

~ udt send(sndpkt
udf_send(sndpki) extract(rcvpkt,data) ~sendl)

deliver_data(data)

compute chksum

make pkt(sendpkt, ACK,chksum)
udt send(sndpk)

3: Transport Layer 3a-27

rdt2.1: discussion

Sender: Receiver:
7 seq # added to pkt 3 must check if received
7 two seq. #'s (0,1) will packet is duplicate
suffice. Why? O state indicates whether
3 must check if received gezr;t 's expected pkt
AC.K/ NAK corrupted O note: receiver can not
O twice as many states know if its last
O state must “r'emember'” ACK/NAK r'ecelved OK

whether "current” pkt

3: Transport Layer 3a-28

rdt2.2: a NAK-free protocol

- sender
0 same functionality as FSM

rdt2.1, using ACKs only: ~ cisendiata

COTDUET[CNS:ISUI?OCI ta,chk)

N mdadke SN U, adid, cnksum
receiver sends ACK for
last pkt received OK

rdt rev(revpkt) &&

(‘corrupt(revpkt) | !
/—\/ ISACK(rcviokt, 1)

* receiver must explicitly

include seq # of pkt
being ACKed rat rev(revpkt)
- && notcorrupt(rcvpkt)
O duplicate ACK at sender | 88 sACKevt,0)

results in same action as
NAK: retransmit
current pkt

3: Transport Layer 3a-29

rdt3.0: channels with errors and loss

New assumption:
underlying channel can

also lose packets (data
or ACKSs)

O checksum, seq. #, ACKs,

retransmissions will be
of help, but not enough

Q: how to deal with loss?

Approach: sender waits
“reasonable” amount of
time for ACK

A retransmits if no ACK
received in this time

O if pkt (or ACK) just delayed
(not lost):

O retransmission will be
duplicate, but use of seq.
#'s already handles this

O receiver must specify seq
of pkt being ACKed

O requires countdown timer

3: Transport Layer 3a-30

rdt3.0 sender

rdt_send(data)

compute chksum rdi_rev(rcvpkt) &&
make_pkt(sndpkt,0.data.chksum) (corrupt(revpkt) | |
udt_send(sndpkb

isACK(revpkt, 1))

start_timer

rdt_rcev(rcvpkt)

timeout

udt_send(sndpk)
) start_timer

rdt_rcv{rcvpkt)
&& notcorrupt(revpkt)

radt_rev(revpkt)
&8 isACK(rcvpkt,1)

&& notcorrupt(revpkt)
&& iIsACK(rcvpkt,0)

timeout

udt_send(sndpki ' rdt_rev(revpkt)
start_timer

rdt_rev(revpkd) &&
(corrupt(revpkt) | | rdt_send(data)

ISACK(revpkt 0)) compute chksum
make_pkisndpkt,1 data,chksum)
udt_send(sndpkt)
start_timer

3: Transport Layer 3a-31

rdt3.0 in action

sender receiver
send pkt0 Pkig
e \ rcv pkiO
ACK send ACKO
rcv ACKO
send pktl kf]
rcv pkil
ACK send ACK]1
rcvACKT
send pkiO Kt g
rcv pkio
ACK send ACKO

(a) operation with no loss

sender receiver
kt
send pkiO 0 ey pki0
ACK send ACKO

rcv ACKO

send pkt1 7 \%
(loss)

fimeout _|
resend pkt] %
rcv pktl
ACK send ACKT

rcvACK ot

send pkiO
rcv pkiO
}8/ send ACKO

(b) lost packet

3: Transport Layer 3a-32

rdt3.0 in action

sender receiver sender receiver
okt kt
send pki0 N’ rev pki0 send pki0 \% rcv pkio
ACK send ACKO ACK send ACKO
rcv ACKO rcv ACKO

rcv pktl
send ACK1

send pkt1] Pk send pkt1 7]
rcv pkil
send ACKI]
fimeout

ACK
(loss))(A'y
resend pkil -

fimeout = pkt 4
resend pki1 \rcv Pkt .
(detect duplicate) rcvACK

rcv pktl
(detect duplicate)

- ACK send ACK] send pki0 send ACK]
;%\rfnd okiO kt rcv pkio
v okio send ACKO
ACK) ACK q
send ACKO
(c) lost ACK (d) premature timeout

3: Transport Layer 3a-33

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —f«---- -
last packet bit transmitted, t =L/ R ¢

first packet bit arrives

RTT —last packet bit arrives, send ACK

ACK arrives, send next,
packet, t =RTT+L/R

U = L/R = -008 = 0.00027

sender RTT+L/R 30.008

3: Transport Layer 3a-34

Performance of rdt3.0

3 rdt3.0 works, but performance stinks

7 Example: 50 Kbps, 500-msec round-trip propagation delay (satellite
connection), transmit 1000-bit segments

T = 1000b = 20 msec
transmit 50 Kb/sec

fraction of time 20 msec

Utilization = U = gender busy sending™ 550 msec = 0.04

O 1 segment every 520 msec -> 2 Kbps thruput (effective bit-rate)
over 50 Kbps link

O network protocol limits use of physical resources!

3: Transport Layer 3a-35

Pipelined protocols

Pipelining: Solution to the problem of low utilization
of stop-and-wait: sender allows multiple, up to N,
“in-flight", yet-to-be-acknowledged pkts.

O Choice of N: optimally, it should allow the sender to
continously transmit during the round-trip transit time

O range of sequence numbers must be increased

O buffering at sender and/or receiver

+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

3 Two generic forms of pipelined protocols: go-Back-N,
selective repeat (check also corresponding on-line
material in books site)

data pc:ckeT—p

..-d""_-_-

3: Transport Layer 3a-36

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —sc-------------ooomee oo
last bit transmitted, t =L/ R ¢

first packet bit arrives
RTT - last packet bit arrives, send ACK

> last bit of 2"d packet arrives, send ACK
last bit of 3" packet arrives, send ACK

ACK arrives, send next]
packet,t=RTT+L/R |

......... t::""""".'b /nc rease utilization
/ by a factor of 3!

U, = 3*L/R _ 02% _ 40008
Sender RTT+L/R 30.008

3: Transport Layer 3a-37

Go-Back-N

Sender:
O k-bit seq # in pkt header
3 “window" of up to N, consecutive unack'ed pkts allowed

send_base nhextseqgnum dlready Jsable. hof
lv i ack’'ed yet sent
JIREE TV ERTRAIO0000 | oo s
t _ window size —%
N

3 ACK(n): ACKs all pkts up to, including seq # n - "cumulative ACK"
O may receive duplicate ACKs (see receiver)

3 timer for each in-flight pkt

3O timeout(n): retransmit pkt n and all higher seq # pkts in window

3: Transport Layer 3a-38

GBN: receiver

receiver simple:

3 ACK-only: always send ACK for correctly-received
pkt with highest /n-order seq #

O may generate duplicate ACKs
O need only remember expectedsegnum

O out-of-order pkt:
o discard (don't buffer) -> no receiver buffering!
O ACK pkt with highest in-order seq #

3: Transport Layer 3a-39

. sender receliver
GBN In send pkiO \
action rev pkio

send pktl

send ACKO
> sendpki2 —_ (loss) ord Ak
send pkt3
(waif) rev pkid, discard
A/ send ACK]
rcv ACKO
send pkt4
rcv pktd, discard
Srgr\;’dAgkl_K% \ Seng ACK]
ki5, di d
—okt2 timeout send ACKT "
send kaQ

send pkt3 \ rcv pki2, deliver
send pki4 send ACK2
send ka5 rcv pki3, deliver

\ send ACK3

3: Transport Layer 3a-40

Selective Repeat

O receiver /ndividually acknowledges all correctly
received pkts

O buffers pkts, as needed, for eventual in-order delivery
to upper layer

7 sender only resends pkts for which ACK not
received
O sender timer for each unACKed pkt

7 sender window
O N consecutive seq #'s
O again limits seq #s of sent, unACKed pkts

3: Transport Layer 3a-41

Selective repeat: sender, receiver windows

send_base nhexfsegnum dlready Usable. rot
L i ack’ed yet sent
OO
t _ window size —2
N

(a) sender view of segquence numbers

out of order

acceptable
(buffered) but — § (\ithin window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂlllllllllIIIIIIHIII |t [et

A __ indow size_—24

1 N

rcv_base

(b) receiver view of sequence numbers

3: Transport Layer 3a-42

Selective repeat

—sender — receiver
data fr'om above : ka nin [rcvbase, rcvbase+N-1]
O if next available seq # in 3 send ACK(n)
window, send pkt 7 out-of-order: buffer
timeout(n): 3 in-order: deliver (also
3 resend pkt n, restart timer deliver buffered, in-order

pkts), advance window to
hext not-yet-received pkt

ka nin [rcvbase-N,rcvbase-1]

AC K(n) In [sendbase,sendbase+N]:
O mark pkt n as received
O if n smallest unACKed pkt,

advance window base to = ACK(n.)
next unACKed seq # otherwise:
3 ighore

3: Transport Layer 3a-43

Selective repeat in action

pkt0 sent
01231456 78¢9 .

pki0 rcvd, delivered, ACKO sent
okt | sent ofi234l56789
012314567 8¢9 .
oki2 sent pktl revd, delivered, ACK1 sent
0123456789§> Oz 46789

pkt3 sent, window full
01231456789

pkt3 revd, buffered, ACK3 sent
ACKO revd, pki4 sent 0 1- 6789
Ol 234 678¢9
pktd revd, buffered, ACK4 sent
pki2 timeout, pki2 resent 023456789

Op1 234456789 oki2 revd, deliver pkis 2, 3, 4
ACK2 sent

ACKI1 revd, pkth sent

01234506789 01234567849
pktb revd, delivered, ACKS sent
012345|678¢9

3: Transport Layer 3a-44

Se I CCTiVZ repeaT : sender window receiver window

(after receipt) (after receipt)

sequence number range! [0 &Y J——
wraparound == ok © 21 2

012|301 2 01213012

ACK2

Example:

) timeout
0 seq#'s:0,1,2,3 retransmit pktQ, .
. . 012301 f - receive packet
7 window size=3 with seq number O
@)

T receiver sees ho | -
difference in two Cottor rocaint (Stor veveint)
scenarios! 5123 01 2B of23lo12
. CKO

3 incorrectly passes 512301 ?Ttlz - 0 120 -
dUp'iCGTC data as new 012301 2 R o 01203 01]2
in (Cl) o1 2 3]0 1

012301

receive packet
with seq number O

Q: what relationship
between seq # size
and window size? (b)

3: Transport Layer 3a-45

More in action

O O

3: Transport Layer 3a-46

Pipelining: increased utilization
Ack-based => flowcontrol at the same timelll

sender receiver

first packet bit transmitted, t = 0 —sc-------------ooomee oo
last bit transmitted, t =L/ R ¢

first packet bit arrives
last packet bit arrives, send ACK

> last bit of 2"d packet arrives, send ACK
last bit of 3" packet arrives, send ACK

RTT

ACK arrives, send next]
packet,t=RTT+L/R |

3: Transport Layer 3b-47

Roadmap Transport Layer

transport layer services
multiplexing/demultiplexing
connectionless transport: UDP
principles of reliable data transfer
connection-oriented transport: TCP
. O reliable transfer

geﬂ*&' o flow control

O connection management
O TCP congestion control

o aaaaq

!

3: Transport Layer 3a-48

Some review questions on this
part

3 Why do we need an extra protocol, i.e. UDP, to
deliver the datagram service of Internets IP to
the applications?

O Draw space-time diagrams without errors and with
errors, for the following, for a pair of sender-
receive S-Rr: (assume only 1 link between them)

O Stop-and-wait: transmission delay < propagation delay and
transmission delay > propagation delay

o Sliding window aka pipeleined protocol, with window's
transmission delay < propagation delay and window's
transmission delay > propagation delay; illustrate both go-
back-n and selective repeat when there are errors

O Show how to compute the effective throughput between

S-R in the above cases, whene there are no errors
3: Transport Layer 3a-49

Review questions cont.

7 What are the goals of reliable data
transfer?

O Reliable data transfer: show why we need
sequence humbers when the sender may
retransmit due to timeouts.

3 Show how there can be wraparound in a
reliable data transfer session if the
sequence-numbers range is not large
enough.

7 Describe the go-back-N and selective
repeat methods for reliable data transfer

3: Transport Layer 3a-50

Extra slides, for further study

3: Transport Layer 3a-51

Bounding sequence numbers
for stop-and-wait...

.. 8.t. no wraparound, i.e. we do not run out of
numbers: binary value suffices for stop-
and-wart:

Prf: assume tfowards a contradiction that
there is wraparound when we use binary

seq. nhums.
O R expects segment #f, receives segment
H(f+2):

R rec. f+2 => S sent f+2 => S rec. ack for f+1
=> R ack f+1=> R ack f => contradiction

O R expects f+2, receives f:
R exp. f+2 => R ack f+1 => S sent f+1
=> S rec. ack for f => contradiction

3: Transport Layer 3a-52

