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Chapter 3: Transport Layer
Part A

Course on Computer Communication 
and Networks, CTH/GU

The slides are adaptation of the slides made 
available by the authors of the course’s main  
textbook
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Transport services and protocols

 provide logical communication
between app’ processes 
running on different hosts

 transport protocols run in 
end systems 

 transport vs network layer 
services:
 network layer: data transfer 

between end systems
 transport layer: data 

transfer between processes 
• uses and enhances, network 

layer services 
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Recall: Transport-layer protocols
Internet transport services:
 reliable, in-order unicast 

delivery (TCP)
 flow control
 connection setup
 + congestion control!! (slows 

down if network is 
congested…)

 unreliable (“best-effort”), 
unordered unicast or 
multicast delivery: UDP

 services not available: 
 real-time
 bandwidth guarantees
 reliable multicast 
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Transport Layer
Learning goals:
 understand principles 

behind transport layer 
services:
 multiplexing/demultiplexing
 reliable data transfer
 flow control
 congestion control (some 

now; more in connection 
with RT applications)

 instantiation and 
implementation in the 
Internet 

Overview:
 transport layer services
 multiplexing/demultiplexing
 connectionless transport: UDP
 principles of reliable data 

transfer
 connection-oriented transport: 

TCP
 reliable transfer
 flow control
 connection management
 TCP congestion control
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Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application
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link

physical
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link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data, enveloping data 
with  header (later used for 
demultiplexing)

Multiplexing at send host:

Recall: segment - unit of data exchanged between transport layer entities 
aka TPDU: transport protocol data unit
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How demultiplexing works
 host receives IP datagrams

 each datagram has source 
IP address, destination IP 
address

 each datagram carries 1 
transport-layer segment

 each segment has source, 
destination port number 
(recall: well-known port 
numbers for specific 
applications)

 host uses IP addresses & port 
numbers to direct segment to 
appropriate receiver

source port # dest port #

32 bits

application
data 

(message)

other header fields

TCP/UDP segment format



3: Transport Layer 3a-7

UDP demultiplexing

 Create sockets with port 
numbers:

DatagramSocket mySocket1 = new 
DatagramSocket(99111);

DatagramSocket mySocket2 = new 
DatagramSocket(99222);

 UDP socket identified by  
two-tuple:

(dest IP address, dest port number)

 When host receives UDP 
segment:
 checks destination port 

number in segment
 directs UDP segment to 

socket with that port 
number

 IP datagrams with 
different source IP 
addresses and/or source 
port numbers directed 
to same socket
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UDP demux (cont)
DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P2

client
IP: A

P1P1P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

SP provides “return address”
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TCP demux

 TCP socket identified 
by 4-tuple: 
 source IP address
 source port number
 dest IP address
 dest port number

 recv host uses all four 
values to direct 
segment to appropriate 
socket

 Server host may support 
many simultaneous TCP 
sockets:
 each socket identified by 

its own 4-tuple
 Web servers have 

different sockets for 
each connecting client
 non-persistent HTTP will 

have different socket for 
each request



3: Transport Layer 3a-10

Connection-oriented demux 
(cont)

Client
IP:B

P1

client
IP: A

P1P2P4

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P5 P6 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B
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TCP  demux: Threaded Web 
Server

Client
IP:B

P1

client
IP: A

P1P2

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P4 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B
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Roadmap Transport Layer
 transport layer services
 multiplexing/demultiplexing
 connectionless transport: UDP
 principles of reliable data transfer
 connection-oriented transport: TCP

 reliable transfer
 flow control
 connection management
 TCP congestion control
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UDP: User Datagram Protocol [RFC 768]

 “best effort” service, UDP 
segments may be:
 lost
 delivered out of order 

to app
 connectionless:

 no handshaking between 
UDP sender, receiver

 each UDP segment 
handled independently 
of others; subsequent 
UDP segments can 
arrive in wrong order

Is  UDP any good?
 no connection 

establishment (i.e. no 
added delay)

 simple: no connection state 
at sender, receiver

 small segment header
 no congestion control: UDP 

can blast away as fast as 
desired
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UDP: more
 often used for streaming 

multimedia apps, which are
 loss tolerant
 rate sensitive

 other UDP users:
 DNS
 SNMP

source port # dest port #

32 bits

Application
data 

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header



Transport Layer 3-15

UDP Checksum: check bit flips

1 1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0
1 1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1

1 1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0
1 0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1

Wraparound:
Add to final

sum
checksum

Sender:
 treat segment contents 

as sequence of 16-bit 
integers

 checksum: addition (1’s 
complement sum) of 
segment contents

 sender puts checksum 
value into UDP checksum 
field

Receiver:
 compute checksum of received 

segment
 check if computed checksum 

equals checksum field value:
 NO - error detected (report 

error to app or discard)
 YES - no error detected. 

• But maybe (very rarely)  
errors nonethless? More 
later ….
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Roadmap Transport Layer
 transport layer services
 multiplexing/demultiplexing
 connectionless transport: UDP
 principles of reliable data transfer
 connection-oriented transport: TCP

 reliable transfer
 flow control
 connection management
 TCP congestion control
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Principles of Reliable data transfer
 important in (app.,) transport, link layers
 in top-10 list of important networking topics!

 characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)
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Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above, 
(e.g., by app.). Passed data to 

deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over 

unreliable channel to receiver

rdt_rcv(): called when packet 
arrives on rcv-side of channel

deliver_data(): called by 
rdt to deliver data to upper
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Reliable data transfer: getting started
We’ll:
 incrementally develop sender, receiver sides of 

reliable data transfer protocol (rdt)
 consider only unidirectional data transfer

 but control info will flow on both directions!
 use finite state machines (FSM)  to specify 

sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this 
“state” next state 

uniquely determined 
by next event

event
actions
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Rdt1.0: reliable transfer over a reliable channel

 underlying channel perfectly reliable
 no bit erros
 no loss of packets

 separate FSMs for sender, receiver:
 sender sends data into underlying channel
 receiver read data from underlying channel
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Rdt2.0: channel with bit errors

 underlying channel may flip bits in packet
 recall: UDP checksum to detect bit errors

 the question: how to recover from errors:
 acknowledgements (ACKs): receiver explicitly tells sender 

that pkt received OK
 negative acknowledgements (NAKs): receiver explicitly 

tells sender that pkt had errors
 sender retransmits pkt on receipt of NAK
 human scenarios using ACKs, NAKs?

 new mechanisms in rdt2.0 (beyond rdt1.0):
 error detection
 receiver feedback: control msgs (ACK,NAK) rcvr->sender
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rdt2.0: FSM specification

sender FSM receiver FSM
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rdt2.0: in action (no errors)

sender FSM receiver FSM
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rdt2.0: in action (error scenario)

sender FSM receiver FSM
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rdt2.0 has an issue:

What happens if 
ACK/NAK corrupted?

 sender doesn’t know what 
happened at receiver!

What to do?
 sender ACKs/NAKs 

receiver’s ACK/NAK? What 
if sender ACK/NAK lost?

 retransmit, but this might 
cause retransmission of 
correctly received pkt!

Handling duplicates: 
 sender adds sequence 

number to each pkt
 sender retransmits current 

pkt if ACK/NAK garbled
 receiver discards (doesn’t 

deliver up) duplicate pkt

Sender sends one packet, 
then waits for receiver 
response

stop and wait
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rdt2.1: sender, handles garbled ACK/NAKs
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rdt2.1: receiver, handles garbled ACK/NAKs
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rdt2.1: discussion

Sender:
 seq # added to pkt
 two seq. #’s (0,1) will 

suffice.  Why?
 must check if received 

ACK/NAK corrupted 
 twice as many states

 state must “remember” 
whether “current” pkt 
has 0 or 1 seq. #

Receiver:
 must check if received 

packet is duplicate
 state indicates whether 

0 or 1 is expected pkt 
seq #

 note: receiver can not
know if its last 
ACK/NAK received OK 
at sender
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rdt2.2: a NAK-free protocol

 same functionality as 
rdt2.1, using ACKs only:
 instead of NAK, 

receiver sends ACK for 
last pkt received OK

• receiver must explicitly
include seq # of pkt 
being ACKed 

 duplicate ACK at sender 
results in same action as 
NAK: retransmit 
current pkt

sender
FSM

!
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rdt3.0: channels with errors and loss

New assumption:
underlying channel can 
also lose packets (data 
or ACKs)
 checksum, seq. #, ACKs, 

retransmissions will be 
of help, but not enough

Q: how to deal with loss?

Approach: sender waits 
“reasonable” amount of 
time for ACK 

 retransmits if no ACK 
received in this time

 if pkt (or ACK) just delayed 
(not lost):
 retransmission will be  

duplicate, but use of seq. 
#’s already handles this

 receiver must specify seq 
# of pkt being ACKed

 requires countdown timer
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rdt3.0 sender
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rdt3.0 in action
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rdt3.0 in action
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rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

U 
sender =

.008
30.008 

= 0.00027 L / R 
RTT + L / R 

=
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Performance of rdt3.0
 rdt3.0 works, but performance stinks
 Example: 50 Kbps, 500-msec round-trip propagation delay (satellite 

connection), transmit 1000-bit segments

T
transmit

= 1000b
50 Kb/sec

= 20 msec

Utilization = U = =
520 msec

fraction of time
sender busy sending = 0.04

 1 segment every 520 msec -> 2 Kbps thruput (effective bit-rate) 
over 50 Kbps link 

 network protocol limits use of physical resources!

20 msec
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Pipelined protocols
Pipelining: Solution to the problem of low utilization 

of stop-and-wait: sender allows multiple, up to N, 
“in-flight”, yet-to-be-acknowledged pkts. 
 Choice of N: optimally, it should allow  the sender to 

continously transmit during  the round-trip transit time
 range of sequence numbers must be increased
 buffering at sender and/or receiver

 Two generic forms of pipelined protocols: go-Back-N, 
selective repeat (check also corresponding on-line 
material in book’s site)
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Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT 

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U 
sender =

.024 
30.008 

= 0.0008 3 * L / R 
RTT + L / R 

=

Increase utilization
by a factor of 3!
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Go-Back-N
Sender:
 k-bit seq # in pkt header
 “window” of up to N, consecutive unack’ed pkts allowed

 ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
 may receive duplicate ACKs (see receiver)

 timer for each in-flight pkt
 timeout(n): retransmit pkt n and all higher seq # pkts in window
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GBN: receiver

receiver simple:
 ACK-only: always send ACK for correctly-received 

pkt with highest in-order seq #
 may generate duplicate ACKs
 need only remember expectedseqnum

 out-of-order pkt: 
 discard (don’t buffer) -> no receiver buffering!
 ACK pkt with highest in-order seq #
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GBN in
action
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Selective Repeat

 receiver individually acknowledges all correctly 
received pkts
 buffers pkts, as needed, for eventual in-order delivery 

to upper layer
 sender only resends pkts for which ACK not 

received
 sender timer for each unACKed pkt

 sender window
 N consecutive seq #’s
 again limits seq #s of sent, unACKed pkts
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Selective repeat: sender, receiver windows
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Selective repeat

data from above :
 if next available seq # in 

window, send pkt
timeout(n):
 resend pkt n, restart timer
ACK(n) in [sendbase,sendbase+N]:

 mark pkt n as received
 if n smallest unACKed pkt, 

advance window base to 
next unACKed seq # 

sender
pkt n in [rcvbase, rcvbase+N-1]

 send ACK(n)
 out-of-order: buffer
 in-order: deliver (also 

deliver buffered, in-order 
pkts), advance window to 
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

 ACK(n)
otherwise:
 ignore 

receiver
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Selective repeat in action
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Selective repeat:
sequence number range! 

wraparound
Example: 
 seq #’s: 0, 1, 2, 3
 window size=3

 receiver sees no 
difference in two 
scenarios!

 incorrectly passes 
duplicate data as new 
in (a)

Q: what relationship 
between seq # size 
and window size?



More in action 

 http://media.pears
oncmg.com/aw/aw_
kurose_network_4
/applets/go-back-
n/index.html

 http://media.pears
oncmg.com/aw/aw_
kurose_network_4
/applets/SR/index.
html
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Pipelining: increased utilization
Ack-based => flowcontrol at the same time!!!

first packet bit transmitted, t = 0

sender receiver

RTT 

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK
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Roadmap Transport Layer
 transport layer services
 multiplexing/demultiplexing
 connectionless transport: UDP
 principles of reliable data transfer
 connection-oriented transport: TCP

 reliable transfer
 flow control
 connection management
 TCP congestion control



Some review questions on this
part
 Why do we need an extra protocol, i.e. UDP, to

deliver the datagram service of Internets IP to
the applications?

 Draw space-time diagrams  without errors and with
errors, for the following, for a pair of sender-
receive S-Rr: (assume only 1 link between them)
 Stop-and-wait: transmission delay < propagation delay and 

transmission delay > propagation delay
 Sliding window aka pipeleined protocol, with window’s

transmission delay < propagation delay and window’s
transmission delay > propagation delay; illustrate both go-
back-n and selective repeat when there are errors

 Show how to compute the effective throughput between
S-R in the above cases, whene there are no errors
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Review questions cont.
What are the goals of reliable data 

transfer?
 Reliable data transfer: show why we need

sequence numbers when the sender may
retransmit due to timeouts. 

Show how there can be wraparound in a 
reliable data transfer session if the 
sequence-numbers range is not large
enough.

Describe the go-back-N and selective
repeat methods for reliable data transfer
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Extra slides, for further study

3: Transport Layer 3a-51



3: Transport Layer 3a-52

Bounding sequence numbers
for stop-and-wait…
… s.t. no wraparound, i.e. we do not run out of 

numbers: binary value suffices for stop-
and-wait:

Prf: assume towards a contradiction that  
there is wraparound when we use binary 
seq. nums.
 R expects segment #f, receives segment 

#(f+2): 
R rec. f+2 => S sent f+2 => S rec. ack for f+1
=> R ack f+1=> R ack  f => contradiction

 R expects f+2, receives f:
R exp. f+2 =>  R ack f+1 => S sent f+1 
=> S rec. ack for f => contradiction


