
3: Transport Layer 3a-1

Chapter 3: Transport Layer
Part A

Course on Computer Communication
and Networks, CTH/GU

The slides are adaptation of the slides made
available by the authors of the course’s main
textbook

3: Transport Layer 3a-2

Transport services and protocols

 provide logical communication
between app’ processes
running on different hosts

 transport protocols run in
end systems

 transport vs network layer
services:
 network layer: data transfer

between end systems
 transport layer: data

transfer between processes
• uses and enhances, network

layer services

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

3: Transport Layer 3a-3

Recall: Transport-layer protocols
Internet transport services:
 reliable, in-order unicast

delivery (TCP)
 flow control
 connection setup
 + congestion control!! (slows

down if network is
congested…)

 unreliable (“best-effort”),
unordered unicast or
multicast delivery: UDP

 services not available:
 real-time
 bandwidth guarantees
 reliable multicast

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

3: Transport Layer 3a-4

Transport Layer
Learning goals:
 understand principles

behind transport layer
services:
 multiplexing/demultiplexing
 reliable data transfer
 flow control
 congestion control (some

now; more in connection
with RT applications)

 instantiation and
implementation in the
Internet

Overview:
 transport layer services
 multiplexing/demultiplexing
 connectionless transport: UDP
 principles of reliable data

transfer
 connection-oriented transport:

TCP
 reliable transfer
 flow control
 connection management
 TCP congestion control

3: Transport Layer 3a-5

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data, enveloping data
with header (later used for
demultiplexing)

Multiplexing at send host:

Recall: segment - unit of data exchanged between transport layer entities
aka TPDU: transport protocol data unit

3: Transport Layer 3a-6

How demultiplexing works
 host receives IP datagrams

 each datagram has source
IP address, destination IP
address

 each datagram carries 1
transport-layer segment

 each segment has source,
destination port number
(recall: well-known port
numbers for specific
applications)

 host uses IP addresses & port
numbers to direct segment to
appropriate receiver

source port # dest port #

32 bits

application
data

(message)

other header fields

TCP/UDP segment format

3: Transport Layer 3a-7

UDP demultiplexing

 Create sockets with port
numbers:

DatagramSocket mySocket1 = new
DatagramSocket(99111);

DatagramSocket mySocket2 = new
DatagramSocket(99222);

 UDP socket identified by
two-tuple:

(dest IP address, dest port number)

 When host receives UDP
segment:
 checks destination port

number in segment
 directs UDP segment to

socket with that port
number

 IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket

3: Transport Layer 3a-8

UDP demux (cont)
DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P2

client
IP: A

P1P1P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

SP provides “return address”

3: Transport Layer 3a-9

TCP demux

 TCP socket identified
by 4-tuple:
 source IP address
 source port number
 dest IP address
 dest port number

 recv host uses all four
values to direct
segment to appropriate
socket

 Server host may support
many simultaneous TCP
sockets:
 each socket identified by

its own 4-tuple
 Web servers have

different sockets for
each connecting client
 non-persistent HTTP will

have different socket for
each request

3: Transport Layer 3a-10

Connection-oriented demux
(cont)

Client
IP:B

P1

client
IP: A

P1P2P4

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P5 P6 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

3: Transport Layer 3a-11

TCP demux: Threaded Web
Server

Client
IP:B

P1

client
IP: A

P1P2

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P4 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

3: Transport Layer 3a-12

Roadmap Transport Layer
 transport layer services
 multiplexing/demultiplexing
 connectionless transport: UDP
 principles of reliable data transfer
 connection-oriented transport: TCP

 reliable transfer
 flow control
 connection management
 TCP congestion control

3: Transport Layer 3a-13

UDP: User Datagram Protocol [RFC 768]

 “best effort” service, UDP
segments may be:
 lost
 delivered out of order

to app
 connectionless:

 no handshaking between
UDP sender, receiver

 each UDP segment
handled independently
of others; subsequent
UDP segments can
arrive in wrong order

Is UDP any good?
 no connection

establishment (i.e. no
added delay)

 simple: no connection state
at sender, receiver

 small segment header
 no congestion control: UDP

can blast away as fast as
desired

3: Transport Layer 3a-14

UDP: more
 often used for streaming

multimedia apps, which are
 loss tolerant
 rate sensitive

 other UDP users:
 DNS
 SNMP

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

Transport Layer 3-15

UDP Checksum: check bit flips

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

Wraparound:
Add to final

sum
checksum

Sender:
 treat segment contents

as sequence of 16-bit
integers

 checksum: addition (1’s
complement sum) of
segment contents

 sender puts checksum
value into UDP checksum
field

Receiver:
 compute checksum of received

segment
 check if computed checksum

equals checksum field value:
 NO - error detected (report

error to app or discard)
 YES - no error detected.

• But maybe (very rarely)
errors nonethless? More
later ….

3: Transport Layer 3a-16

Roadmap Transport Layer
 transport layer services
 multiplexing/demultiplexing
 connectionless transport: UDP
 principles of reliable data transfer
 connection-oriented transport: TCP

 reliable transfer
 flow control
 connection management
 TCP congestion control

3: Transport Layer 3a-17

Principles of Reliable data transfer
 important in (app.,) transport, link layers
 in top-10 list of important networking topics!

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

3: Transport Layer 3a-18

Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to

deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by
rdt to deliver data to upper

3: Transport Layer 3a-19

Reliable data transfer: getting started
We’ll:
 incrementally develop sender, receiver sides of

reliable data transfer protocol (rdt)
 consider only unidirectional data transfer

 but control info will flow on both directions!
 use finite state machines (FSM) to specify

sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event
actions

3: Transport Layer 3a-20

Rdt1.0: reliable transfer over a reliable channel

 underlying channel perfectly reliable
 no bit erros
 no loss of packets

 separate FSMs for sender, receiver:
 sender sends data into underlying channel
 receiver read data from underlying channel

3: Transport Layer 3a-21

Rdt2.0: channel with bit errors

 underlying channel may flip bits in packet
 recall: UDP checksum to detect bit errors

 the question: how to recover from errors:
 acknowledgements (ACKs): receiver explicitly tells sender

that pkt received OK
 negative acknowledgements (NAKs): receiver explicitly

tells sender that pkt had errors
 sender retransmits pkt on receipt of NAK
 human scenarios using ACKs, NAKs?

 new mechanisms in rdt2.0 (beyond rdt1.0):
 error detection
 receiver feedback: control msgs (ACK,NAK) rcvr->sender

3: Transport Layer 3a-22

rdt2.0: FSM specification

sender FSM receiver FSM

3: Transport Layer 3a-23

rdt2.0: in action (no errors)

sender FSM receiver FSM

3: Transport Layer 3a-24

rdt2.0: in action (error scenario)

sender FSM receiver FSM

3: Transport Layer 3a-25

rdt2.0 has an issue:

What happens if
ACK/NAK corrupted?

 sender doesn’t know what
happened at receiver!

What to do?
 sender ACKs/NAKs

receiver’s ACK/NAK? What
if sender ACK/NAK lost?

 retransmit, but this might
cause retransmission of
correctly received pkt!

Handling duplicates:
 sender adds sequence

number to each pkt
 sender retransmits current

pkt if ACK/NAK garbled
 receiver discards (doesn’t

deliver up) duplicate pkt

Sender sends one packet,
then waits for receiver
response

stop and wait

3: Transport Layer 3a-26

rdt2.1: sender, handles garbled ACK/NAKs

3: Transport Layer 3a-27

rdt2.1: receiver, handles garbled ACK/NAKs

3: Transport Layer 3a-28

rdt2.1: discussion

Sender:
 seq # added to pkt
 two seq. #’s (0,1) will

suffice. Why?
 must check if received

ACK/NAK corrupted
 twice as many states

 state must “remember”
whether “current” pkt
has 0 or 1 seq. #

Receiver:
 must check if received

packet is duplicate
 state indicates whether

0 or 1 is expected pkt
seq #

 note: receiver can not
know if its last
ACK/NAK received OK
at sender

3: Transport Layer 3a-29

rdt2.2: a NAK-free protocol

 same functionality as
rdt2.1, using ACKs only:
 instead of NAK,

receiver sends ACK for
last pkt received OK

• receiver must explicitly
include seq # of pkt
being ACKed

 duplicate ACK at sender
results in same action as
NAK: retransmit
current pkt

sender
FSM

!

3: Transport Layer 3a-30

rdt3.0: channels with errors and loss

New assumption:
underlying channel can
also lose packets (data
or ACKs)
 checksum, seq. #, ACKs,

retransmissions will be
of help, but not enough

Q: how to deal with loss?

Approach: sender waits
“reasonable” amount of
time for ACK

 retransmits if no ACK
received in this time

 if pkt (or ACK) just delayed
(not lost):
 retransmission will be

duplicate, but use of seq.
#’s already handles this

 receiver must specify seq
of pkt being ACKed

 requires countdown timer

3: Transport Layer 3a-31

rdt3.0 sender

3: Transport Layer 3a-32

rdt3.0 in action

3: Transport Layer 3a-33

rdt3.0 in action

3: Transport Layer 3a-34

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender =

.008
30.008

= 0.00027 L / R
RTT + L / R

=

3: Transport Layer 3a-35

Performance of rdt3.0
 rdt3.0 works, but performance stinks
 Example: 50 Kbps, 500-msec round-trip propagation delay (satellite

connection), transmit 1000-bit segments

T
transmit

= 1000b
50 Kb/sec

= 20 msec

Utilization = U = =
520 msec

fraction of time
sender busy sending = 0.04

 1 segment every 520 msec -> 2 Kbps thruput (effective bit-rate)
over 50 Kbps link

 network protocol limits use of physical resources!

20 msec

3: Transport Layer 3a-36

Pipelined protocols
Pipelining: Solution to the problem of low utilization

of stop-and-wait: sender allows multiple, up to N,
“in-flight”, yet-to-be-acknowledged pkts.
 Choice of N: optimally, it should allow the sender to

continously transmit during the round-trip transit time
 range of sequence numbers must be increased
 buffering at sender and/or receiver

 Two generic forms of pipelined protocols: go-Back-N,
selective repeat (check also corresponding on-line
material in book’s site)

3: Transport Layer 3a-37

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U
sender =

.024
30.008

= 0.0008 3 * L / R
RTT + L / R

=

Increase utilization
by a factor of 3!

3: Transport Layer 3a-38

Go-Back-N
Sender:
 k-bit seq # in pkt header
 “window” of up to N, consecutive unack’ed pkts allowed

 ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
 may receive duplicate ACKs (see receiver)

 timer for each in-flight pkt
 timeout(n): retransmit pkt n and all higher seq # pkts in window

3: Transport Layer 3a-39

GBN: receiver

receiver simple:
 ACK-only: always send ACK for correctly-received

pkt with highest in-order seq #
 may generate duplicate ACKs
 need only remember expectedseqnum

 out-of-order pkt:
 discard (don’t buffer) -> no receiver buffering!
 ACK pkt with highest in-order seq #

3: Transport Layer 3a-40

GBN in
action

3: Transport Layer 3a-41

Selective Repeat

 receiver individually acknowledges all correctly
received pkts
 buffers pkts, as needed, for eventual in-order delivery

to upper layer
 sender only resends pkts for which ACK not

received
 sender timer for each unACKed pkt

 sender window
 N consecutive seq #’s
 again limits seq #s of sent, unACKed pkts

3: Transport Layer 3a-42

Selective repeat: sender, receiver windows

3: Transport Layer 3a-43

Selective repeat

data from above :
 if next available seq # in

window, send pkt
timeout(n):
 resend pkt n, restart timer
ACK(n) in [sendbase,sendbase+N]:

 mark pkt n as received
 if n smallest unACKed pkt,

advance window base to
next unACKed seq #

sender
pkt n in [rcvbase, rcvbase+N-1]

 send ACK(n)
 out-of-order: buffer
 in-order: deliver (also

deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

 ACK(n)
otherwise:
 ignore

receiver

3: Transport Layer 3a-44

Selective repeat in action

3: Transport Layer 3a-45

Selective repeat:
sequence number range!

wraparound
Example:
 seq #’s: 0, 1, 2, 3
 window size=3

 receiver sees no
difference in two
scenarios!

 incorrectly passes
duplicate data as new
in (a)

Q: what relationship
between seq # size
and window size?

More in action

 http://media.pears
oncmg.com/aw/aw_
kurose_network_4
/applets/go-back-
n/index.html

 http://media.pears
oncmg.com/aw/aw_
kurose_network_4
/applets/SR/index.
html

3: Transport Layer 3a-46

3: Transport Layer 3b-47

Pipelining: increased utilization
Ack-based => flowcontrol at the same time!!!

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3: Transport Layer 3a-48

Roadmap Transport Layer
 transport layer services
 multiplexing/demultiplexing
 connectionless transport: UDP
 principles of reliable data transfer
 connection-oriented transport: TCP

 reliable transfer
 flow control
 connection management
 TCP congestion control

Some review questions on this
part
 Why do we need an extra protocol, i.e. UDP, to

deliver the datagram service of Internets IP to
the applications?

 Draw space-time diagrams without errors and with
errors, for the following, for a pair of sender-
receive S-Rr: (assume only 1 link between them)
 Stop-and-wait: transmission delay < propagation delay and

transmission delay > propagation delay
 Sliding window aka pipeleined protocol, with window’s

transmission delay < propagation delay and window’s
transmission delay > propagation delay; illustrate both go-
back-n and selective repeat when there are errors

 Show how to compute the effective throughput between
S-R in the above cases, whene there are no errors

3: Transport Layer 3a-49

Review questions cont.
What are the goals of reliable data

transfer?
 Reliable data transfer: show why we need

sequence numbers when the sender may
retransmit due to timeouts.

Show how there can be wraparound in a
reliable data transfer session if the
sequence-numbers range is not large
enough.

Describe the go-back-N and selective
repeat methods for reliable data transfer

3: Transport Layer 3a-50

Extra slides, for further study

3: Transport Layer 3a-51

3: Transport Layer 3a-52

Bounding sequence numbers
for stop-and-wait…
… s.t. no wraparound, i.e. we do not run out of

numbers: binary value suffices for stop-
and-wait:

Prf: assume towards a contradiction that
there is wraparound when we use binary
seq. nums.
 R expects segment #f, receives segment

#(f+2):
R rec. f+2 => S sent f+2 => S rec. ack for f+1
=> R ack f+1=> R ack f => contradiction

 R expects f+2, receives f:
R exp. f+2 => R ack f+1 => S sent f+1
=> S rec. ack for f => contradiction

