
2: Application Layer 1

Chapter 2: Application Layer

Course on Computer Communication and
Networks, CTH/GU

The slides are adaptation of the slides made available by
the authors of the course’s main textbook:

Computer Networking: A Top Down Approach,
5th edition.
Jim Kurose, Keith Ross
Addison-Wesley, 2009.

2: Application Layer 2

Chapter 2: Application Layer
Chapter goals:
 conceptual +

implementation aspects
of network application
protocols
 client server, p2p

paradigms (we will
study the latter
seperately)

 service models
 learn about protocols by

examining popular
application-level
protocols (more will come
later, when studying real-
time traffic aspects)

 specific protocols:
 http, (ftp), smtp, pop,

dns,
 p2p file sharing,

multimedia apps: we
cover that later, after
having an overview of the
layers

 programming network
applications
 socket programming

2: Application Layer 3

Applications and application-layer protocols

Application: communicating,
distributed processes
 running in network hosts in

“user space”
 exchange messages
 e.g., email, file transfer, the

Web
Application-layer protocols

 one “piece” of an application -
others are e.g. user agents.

• Web:browser
• E-mail: mail reader
• streaming audio/video: media

player
 define messages exchanged

by apps and actions taken
 use services provided by lower

layer protocols

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

2: Application Layer 4

Client-server paradigm

Typical network app has two
pieces: client and server

application
transport
network
data link
physical

application
transport
network
data link
physical

Client:
 initiates contact with server

(“speaks first”)
 typically requests service from

server,
 for Web, client is implemented

in browser; for e-mail, in mail
reader

Server:
 provides requested service to

client
 e.g., Web server sends

requested Web page, mail
server delivers e-mail

request

reply

2: Application Layer 5

Auxiliary terms ++
socket: Internet

application programming
interface
 2 processes communicate

by sending data into
socket, reading data out
of socket (like sending
out, receiving in via doors)

Q: how does a process
“identify” the other
process with which it
wants to communicate?
 IP address of host

running other process
 “port number” - allows

receiving host to
determine to which
local process the
message should be
delivered

… more: cf
programming
project guidelines

2: Application Layer 6

Properties of transport service of interest to the app

Reliability-related
 some apps (e.g., audio) can

tolerate some loss
 other apps (e.g., file

transfer, telnet) require
100% reliable data
transfer

 Connection-oriented vs
connectionless services

Bandwidth, Timing
 some apps (e.g.,

multimedia) require
minimum amount of
bandwidth

 some apps (e.g., Internet
telephony, interactive
games) require low delay
and/or low jitter

 other apps (elastic apps,
e.g. file transfer) make
use of whatever
bandwidth, timing they
get

2: Application Layer 7

Transport service requirements of common apps

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

financial apps

Data loss

no loss
no loss
No-loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Bandwidth

elastic
elastic
elastic
audio: 5Kb-1Mb
video:10Kb-5Mb
same as above
few Kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

2: Application Layer 8

Services provided by Internet
transport protocols

TCP service:
 connection-oriented: setup

required between client,
server

 reliable transport between
sending and receiving process

 flow control: sender won’t
overwhelm receiver

 does not provide: timing,
minimum bandwidth
guarantees

 (extra service: for the health
of the NW, not for each
user: congestion control:
throttle sender when network
overloaded)

UDP service:
 connectionless
 unreliable transport

between sending and
receiving process

 does not provide: flow
control, congestion
control, timing, or
bandwidth guarantee

Q: why bother? Why is
there a UDP?

2: Application Layer 9

Internet apps: their protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

nslookup and many others

Application
layer protocol

» smtp [RFC 821]
telnet [RFC 854]
» http [RFC 2068]
ftp [RFC 959]
proprietary
(e.g. RealNetworks)
SIP, RTP,
proprietary (e.g., Skype)
» DNS
[RFC 882, 883,1034,1035]

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP + “tricks”

typically UDP, TCP also
possible + “tricks”
UDP

2: Application Layer 10

The Web: some jargon

 Web page:
 consists of “objects”
 addressed by a URL

 Most Web pages
consist of:
 base HTML page, and
 several referenced

objects.
 URL has two

components: host name
and path name:

 User agent for Web is
called a browser:
 MS Internet Explorer
 Netscape Communicator

 Server for Web is
called Web server:
 Apache (public domain)
 MS Internet

Information Server
 Netscape Enterprise

Server

www.someSchool.edu/someDept/pic.gif

2: Application Layer 11

The Web: the http protocol
client initiates TCP connection

(creates socket) to server, port
80

server accepts TCP connection
 http messages (application-layer

protocol messages) exchanged
between browser (http client) and
Web server (http server)

 TCP connection closed
http is “stateless”
 server maintains no information

about past client requests
Protocols that maintain “state” are

complex!
 past history must be maintained
 if server or client crashes, their

views of “state” may be inconsistent,
must be reconciled

PC running
Explorer

Server
running

NCSA Web
server

Mac running
Navigator

tcp socket
port 80

 http1.0: RFC 1945
 http1.1: RFC 2068

2: Application Layer 12

http example
Suppose user enters URL

www.someSchool.edu/someDepartment/home.index

1a. http client initiates TCP
connection to http server
(process) at
www.someSchool.edu. Port 80
is default for http server.

2. http client sends http request
message (containing URL) into
TCP connection socket

1b. http server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. http server receives request
message, forms response
message containing requested
object
(someDepartment/home.index),
sends message into socket

time

(contains text,
references to 10

jpeg images)

2: Application Layer 13

http example (cont.)

5. http client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg
objects

6. Steps 1-5 repeated for each
of 10 jpeg objects

4. http server closes TCP
connection.

time

2: Application Layer 14

http message format: request

ASCII (human-readable format;
try telnet to www server, port 80)

GET /somedir/page.html HTTP/1.0
User-agent: Mozilla/4.0
Accept: text/html, image/gif,image/jpeg
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD
(PUT, DELETE in v 1.1.)

commands)

header
lines

Carriage return,
line feed

indicates end
of message

2: Application Layer 15

http request message: general format

2: Application Layer 16

http message format: respone

HTTP/1.0 200 OK
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
html file

2: Application Layer 17

http response status codes

200 OK
 request succeeded, requested object later in this message

301 Moved Permanently
 requested object moved, new location specified later in

this message (Location:)
400 Bad Request

 request message not understood by server
404 Not Found

 requested document not found on this server
505 HTTP Version Not Supported

In first line in server->client response message.
A few sample codes:

2: Application Layer 18

Trying out http (client side) for yourself

1. Telnet to your favorite Web server:
Opens TCP connection to port 80
(default http server port) at www.eurecom.fr.
Anything typed in sent
to port 80 at www.eurecom.fr

telnet www.eurecom.fr 80

2. Type in a GET http request:
GET /~ross/index.html HTTP/1.0 By typing this in (hit carriage

return twice), you send
this minimal (but complete)
GET request to http server

3. Look at response message sent by http server!

2: Application Layer 19

Non-persistent and persistent connections

Non-persistent
 HTTP/1.0
 server parses request,

responds, and closes TCP
connection

 new TCP connection for
each object => extra
overhead per object

Persistent
 default for HTTP/1.1
 on same TCP connection:

server, parses request,
responds, parses new
request,..

 Client sends requests for
all referenced objects as
soon as it receives base
HTML;

 Less overhead per object
 Objects are fetched

sequentially

But can also pipeline
requests (resembles
non-persistent
optimised behaviour)

But most 1.0 browsers use
parallel TCP connections.

2: Application Layer 20

User-server interaction: authentication

Authentication goal: control
access to server documents

 stateless: client must present
authorization in each request

 authorization: typically name,
password
 authorization: header

line in request
 if no authorization

presented, server refuses
access, sends
WWW authenticate:

header line in response

client server
usual http request msg
401: authorization req.
WWW authenticate:

usual http request msg
+ Authorization:line

usual http response msg

usual http request msg
+ Authorization:line

usual http response msg time

Browser caches name & password so
that user does not have to repeatedly enter it.

2: Application Layer 21

Cookies: keeping “state”

client server
usual http request msg
usual http response +
Set-cookie: 1678

usual http request msg
cookie: 1678

usual http response msg

usual http request msg
cookie: 1678

usual http response msg

cookie-
specific
action

cookie-
spectific

action

server
creates ID

1678 for user

Cookie file

amazon: 1678
ebay: 8734

Cookie file

ebay: 8734

Cookie file

amazon: 1678
ebay: 8734

one week later:

2: Application Layer 22

Cookies (continued)
What cookies can bring:
 authorization
 shopping carts
 recommendations
 user session state

Cookies and privacy:
 cookies permit sites to

learn a lot about you
 you may supply name

and e-mail to sites
 search engines use

cookies to learn yet
more

 advertising companies
obtain info across
sites

aside

2: Application Layer 23

Conditional GET: client-side caching

 Goal: don’t send object if
client has up-to-date stored
(cached) version

 client: specify date of
cached copy in http request
If-modified-since:

<date>

 server: response contains
no object if cached copy up-
to-date:
HTTP/1.0 304 Not

Modified

client server

http request msg
If-modified-since:

<date>

http response
HTTP/1.0

304 Not Modified

object
not

modified

http request msg
If-modified-since:

<date>

http response
HTTP/1.1 200 OK

…
<data>

object
modified

2: Application Layer 24

Web Caches (proxy server)

 user configures browser: Web
accesses via web cache

 client sends all http requests to
web cache
 if object at web cache, web

cache immediately returns
object (http response)

 else requests object from
origin server (or from next
cache), then returns http
response to client

 Hierarchical, cooperative
caching, ICP: Internet Caching
Protocol

Goal: satisfy client request without involving origin server

client

Proxy
server

client
origin
server

origin
server

2: Application Layer 25

Why Web Caching?
Assume: cache is “close” to

client (e.g., in same
network)

 smaller response time:
cache “closer” to client

 decrease traffic to distant
servers
 link out of

institutional/local ISP
network often bottleneck

 Important for large data
applications (e.g. video,…)

 Performance effect:

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

E(delay)=hitRatio*LocalAccDelay + (1-hitRatio)*RemoteAccDelay

2: Application Layer 26

ftp: the file transfer protocol

 transfer file to/from remote host
 client/server model

 client: side that initiates transfer (either to/from
remote)

 server: remote host
 ftp: RFC 959
 ftp server: port 21

file transfer FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

2: Application Layer 27

ftp: separate control, data connections

 ftp client contacts ftp server
at port 21, specifying TCP as
transport protocol

 two parallel TCP connections
opened:
 control: exchange

commands, responses
between client, server.

“out of band control”
 data: file data to/from

server
 ftp server maintains “state”:

current directory, earlier
authentication

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

2: Application Layer 28

ftp commands, responses

Sample commands:
 sent as ASCII text over

control channel
 USER username
 PASS password

 LIST return list of file in
current directory

 RETR filename retrieves
(gets) file

 STOR filename stores
(puts) file onto remote
host

Sample return codes
 status code and phrase (as

in http)
 331 Username OK,

password required
 125 data connection

already open;
transfer starting

 425 Can’t open data
connection

 452 Error writing
file

2: Application Layer 29

Electronic Mail
User Agent
 a.k.a. “mail reader:

composing, editing, reading
mail messages -e.g., Outlook,
Mozzila messenger

Mail Servers
 Mailbox: incoming messages

(yet to be read) for user
 message queue of outgoing

(to be sent) mail messages
 SMTP protocol between mail

servers to send email
messages
 client: sending mail

server
 “server”: receiving mail

server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

2: Application Layer 30

Electronic Mail: smtp [RFC 821, 2821]

 uses TCP to reliably transfer email msg from client to
server, port 25

 direct transfer: sending server to receiving server
 three phases of transfer

 handshaking (greeting)
 transfer of messages
 closure

 command/response interaction
 commands: ASCII text
 response: status code and phrase

 messages must be in 7-bit ASCII

2: Application Layer 31

Sample smtp interaction
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

2: Application Layer 32

try smtp interaction for yourself:

 telnet servername 25

 see 220 reply from server
 enter HELO, MAIL FROM, RCPT TO, DATA, QUIT

commands
above lets you send email without using email client

(reader)

2: Application Layer 33

Mail message format

smtp: protocol for exchanging
email msgs

RFC 822: standard for text
message format:

 header lines, e.g.,
 To:
 From:
 Subject:
different from smtp

commands!
 body

 the “message”, ASCII
characters only

header

body

blank
line

2: Application Layer 34

Message format: multimedia extensions

 MIME: multimedia mail extension, RFC 2045, 2056
 additional lines in msg header declare MIME content

type

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data

multimedia data
type, subtype,

parameter declaration

method used
to encode data

MIME version

encoded data
(base 64: encode everything

in A-Z, a-z, 0-9, +, /; good for binary
quoted-printable: 8-bit chars =

“= [hd hd]” (hd= hexadecimal digit);
good for ascii extensions

2: Application Layer 35

MIME types
Content-Type: type/subtype; parameters

Text
 example subtypes: plain,

html

Image
 example subtypes: jpeg,

gif

Audio
 exampe subtypes: basic

(8-bit mu-law encoded),
32kadpcm (32 kbps
coding)

Video
 example subtypes: mpeg,

quicktime

Application
 other data that must be

processed by reader
before “viewable”

 example subtypes:
msword, octet-stream

2: Application Layer 36

Multipart Type
From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=98766789

--98766789
Content-Transfer-Encoding: quoted-printable
Content-Type: text/plain

Dear Bob,
Please find a picture of a crepe.
--98766789
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data
--98766789--

2: Application Layer 37

Mail access protocols

 SMTP: delivery/storage to receiver’s server
 Mail access protocol: retrieval from server

 POP: Post Office Protocol [RFC 1939]
• authorization (agent <-->server) and download
• cannot re-read e-mail if he changes client

 IMAP: Internet Mail Access Protocol [RFC 1730]
• Manipulation, organization (folders) of stored msgs

(folders, etc) on one place: the IMAP server
• keeps user state across sessions:

 HTTP: Hotmail , Yahoo! Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP POP3 or
IMAP

receiver’s mail
server

2: Application Layer 38

POP3 protocol
authorization phase
 client commands:

 user: declare username
 pass: password

 server responses
 +OK
 -ERR

transaction phase, client:
 list: list message numbers
 retr: retrieve message by

number
 dele: delete
 Quit

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: <message 1 contents>
S: .
C: dele 1
C: retr 2
S: <message 2 contents>
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user alice
S: +OK
C: pass hungry
S: +OK user successfully logged on

2: Application Layer 39

DNS: Domain Name System

People: many identifiers:
 SSN, name, Passport #

Internet hosts, routers: IP address (32 bit) - used
for addressing datagrams (129.16.237.85)
 “name”, e.g., (www.cs.chalmers.se)- used by humans
 name (alphanumeric addresses) hard to process @ router

Q: map between IP addresses and name ?

2: Application Layer 40

DNS: Domain Name System
 distributed database implemented in hierarchy of many name

servers
 application-layer protocol host, routers, name servers to

communicate to resolve names (address/name translation)
 note: core Internet function implemented as application-layer

protocol; complexity at network’s “edge”
 More services by DNS:

 alias host names, i.e. mnemonic  canonical (more complex) name
 load distribution: different canonical names, depending on who is

asking
 The Internet Corporation for Assigned Names and Numbers

(http://www.icann.org/) and Domain Name Supporting
Organization main coordinators

2: Application Layer 41

DNS name servers
local name servers:

 each ISP, company has one
 host DNS query first goes to

local name server; acts as
proxy/cache

root name servers: contacts
authoritative name server if name
mapping not known (~ dozen root
name servers worldwide)

Top-level domain (TLD) servers:
responsible for (e.g. knowing
the authoritative name
servers) com, org, net, edu,
etc, and all top-level country
domains uk, fr, ca, jp.

authoritative name server:
 for a host: stores that host’s

IP address, name
http://www.youtube.com/watc
h?v=2ZUxoi7YNgs&feature=re
lated

Why not centralize DNS?
 single point of failure
 traffic volume
 distant centralized database
 maintenance

doesn’t scale!

2: Application Layer 42

DNS: Root name servers
 contacted by local name server that can not resolve name
 root name server:

 contacts authoritative name server if name mapping not known
 gets mapping
 returns mapping to local name server

13 root name
servers worldwide

b USC-ISI Marina del Rey, CA
l ICANN Los Angeles, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA (and 17 other locations)

i Autonomica, Stockholm
(plus 3 other locations)

k RIPE London (also Amsterdam,
Frankfurt)

m WIDE Tokyo

a Verisign, Dulles, VA
c Cogent, Herndon, VA (also Los Angeles)
d U Maryland College Park, MD
g US DoD Vienna, VA
h ARL Aberdeen, MD
j Verisign, (11 locations)

2: Application Layer 43

Example: recursive query

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2

45

6

authoritative DNS server
dns.cs.umass.edu

7

8

TLD DNS serve

3

 Host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

2: Application Layer 44

Recursive vs iterative queries

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS server
 recursive query:
 puts burden of name

resolution on
contacted name server

 heavy load?
 iterated query:
 contacted server

replies with name of
server to contact

 “I don’t know this
name, but ask this
server”

2: Application Layer 45

DNS records
DNS: distributed db storing resource records (RR)

 Type=NS
 name is domain (e.g.

foo.com)
 value is IP address of

authoritative name server
for this domain

RR format: (name, value, type,ttl)

 Type=A
 name is hostname
 value is IP address

 Type=CNAME
 name is an alias name
 value is canonical name

 Type=MX
 value is hostname of

mailserver associated with
name

ttl = time to live

2: Application Layer 46

DNS protocol, messages
DNS protocol : query and reply messages, both with same

message format

msg header
 query(reply)-id: 16 bit #

for query, reply to query
uses same #

 flags:
 query or reply
 recursion desired
 recursion available
 reply is authoritative

2: Application Layer 47

DNS protocol, messages

Name, type fields
for a query

RRs in reponse
to query

records for
authoritative servers

additional “helpful”
info that may be used

2: Application Layer 48

Inserting records into DNS
 Example: just created startup “Network Utopia”
 Register name networkuptopia.com at a registrar

(e.g., Network Solutions)
 Need to provide registrar with names and IP addresses of

your authoritative name server (primary and secondary)
 Registrar inserts two RRs into the com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

 Put in authoritative server Type A record for e.g.
www.networkuptopia.com and Type MX record for
e.g. mail.networkutopia.com

2: Application Layer 49

DNS: caching and updating records

 once (any) name server learns mapping, it caches
mapping
 cache entries timeout (disappear) after some

time
 update/notify mechanisms (and more, incl.

security) cf.
 RFC 2136, 3007 (ddns)
 http://www.ietf.org/html.charters/dnsext-charter.html

 http://www.youtube.com/watch?v=Xau_jPGeJ24

To come later on
(after all ”layers”)

 Peer-to-peer (p2p) applications

2: Application Layer 50

