EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #2
Updated January 16, 2011

CHALMERS

Real-time systems Real-time programming
Recommended programming method:
A
. . — Parallel programming paradigm
Susdieaton + Parallel programming « Reduces unnecessary dependencies between tasks
+ Cooperating tasks
A — Rendezvonsinida — Timing-aware task execution
implementation « Enables the identification of timing properties of tasks
— Deterministic task execution with priorities
AL « Enables the analysis of interference between tasks
Verification — Interrupt-based handling of system events

¢ Enables the analysis of the events’ interference on tasks

CHALMERS CHALMERS

Real-time programming Real-time programming
Desired properties of a programming language: What programming languages are suitable?
- C,CH+

- Suitable schedulable unit
e Strong support for low-level programming

* tasks with individual memory protection e Parallel programming only via calls to operating system (POSIX)

o threads ("lightweight tasks” without individual memory protection) « Priorities and notion of time lacking in language (OS dependent)
- Constructs facilitating communication with the environment - Java
« access to I/O addresses e Strong support for parallel programming (threads)

e Priorities and notion of time lacking (but appears in RT Java)
* Memory management ("garbage collection”) unsuited for real-time

« low-level data types

- Constructs facilitating the analysis of timing correctness

— Ada 95
o task priorities (enables deterministic conflict resolution) e Strong support for low-level programming
e task delays (enables periodic behavior) e Strong support for parallel programming (tasks)
¢ handling of hardware interrupts (model interrupt as a task) e Strong support for priorities and notion of time

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #2
Updated January 16, 2011

CHALMERS

Why parallel programming?

Most real-time applications are inherently parallel
— Events in the target system’s environment often occur in parallel;
by viewing the application as consisting of multiple tasks, this
reality can be reflected.
— While a task is waiting for an event (e.g., I/O or access to a
shared resource) other tasks may execute.
System timing properties can be analyzed more easily

— First the local timing properties of each task are derived; then,
the interference between tasks are analyzed

System can obtain reliability properties
— Redundant copies of the same task makes system fault-tolerant

CHALMERS

Support for parallel programming

Support in the programming language:
— Program is easier to read and comprehend, which means
simpler program maintenance
— Program code can be easily moved to another operating system
— For some embedded systems, a full-fledged operating system is
unnecessarily expensive and complicated

— Examples: Ada 95, Java, Modula, Occam, ...

Example:
Ada 95 offers support via task, rendezvous & protected objects

Java offers support via threads & synchronized methods

_

Problems with parallel programming

Access to shared resources

— Many hardware and software resources can only be used by
one task at a time (e.g., processor, hard disk, display)

— Only pseudo-parallel execution is possible in many cases

Information exchange

— System modeling using parallel tasks also introduces a need
for synchronization and information exchange.

Parallel programming assumes an advanced run-time
system that takes care of the scheduling of shared
resources and communication between tasks.

CHALMERS

Support for parallel programming

Support in the operating system:

— Simpler to combine programs written in different languages
whose parallel programming models are incompatible
(e.g., C/C++, Java, Pascal, ...)

- Difficult to implement the language’s parallel programming
model on top of the operating system’s model

— Operating systems become more and more standardized,
which makes program code more portable between OS’s
(e.g., POSIX for UNIX, Linux, Mac OS X, and Windows)

Example:
C/C++ offer support via fork, semctl & msgctl (UNIX, Linux)

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #2
Updated January 16, 2011

CHALMERS CHALMERS

Example: a simple control system

Objective: Keep temperature and
pressure for a chemical process
Thermometer ADC within given bounds.

Pressure sensor

I
1 : |
=

Switch B ADC
Heater l
S
Screen DAC ~— Pumplvalve

Sequential solution

procedure Controller is
TR : Temp_Reading;
PR : Pressure_Reading;
HS : Heater_Setting;
PS : Pressure_Setting;
begin
loop
Read(TR);
Temp_Convert(TR,HS);
Write(HS);
Write(TR);
Read(PR);
Pressure_Convert(PR,PS);
Write(PS);
Write(PR);
end loop;
end Controller;

read temperature

convert to temperature setting
to temperature switch

to screen

read pressure

convert to pressure setting
to pressure control

to screen

CHALMERS CHALMERS

Sequential solution

Drawback:
— the inherent parallelism of the application is not exploited

e procedure Read blocks the execution until a new temperature
or pressure sample is available from the ADC

* while waiting to read the temperature, no attention can be given
to the pressure (and vice versa)
o if the call for reading the temperature does not return because of
a fault, it is no longer possible to read the pressure
— the independence of the control functions are not considered
e temperature and pressure must be read with the same interval

e the iteration frequency of the loop is mainly determined by the
blocking time of the calls to Read.

Improved sequential solution

The Boolean function Ready_Temp indicates
whether a sample from ADC is available

Procedure Controller is

if Ready_Pres then
Read(PR) ;

Write(PS);
Write(PR);
end if;

end loop;
end Controller;

Pressure_Convert(PR,PS);

begin
loop
if Ready_Temp then
Read(TR); read temperature
Temp_Convert(TR,HS); convert to temperature setting
Write(HS); to temperature switch
Write(TR); to screen
end if;

read pressure

convert to pressure setting
to pressure control

to screen

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #2
Updated January 16, 2011

CHALMERS

Improved sequential solution Parallel solution
Procedure Controller is - A parallel code entity in Ada is
Adva ntages: task Temp_Controller; called "task”
task Pressure_Controller; - :
; ; ation i ; s ; - Atask ts of ficat
- the inherent parallelism of the application is exploited task body Temp_Controller is e ;:;‘:'S R
e pressure and temperature control do not block each other beg'gp
Read(TR) ;
Drawbacks: Temp-convert(TR. HS):
o) Write(TR):
— processor capacity is unnecessarily wasted end loop;

end Temp_Controller;

o the program spends a large amount of.tlme in 'b'usy wait” loops task body Pressure_Controller is
to detect new data samples (also complicates verification of correctness) begin
. . . 00|
— the independence of the control functions are not considered Read(PR); 3 ;
X X Pressure_Convert(PR,PS); rocedure Controller does not terminate
o if the call for reading the temperature does not return because of Write(PS); until tasks Temp_Controller and
afault, it is no longer possible to read the pressure endwigggSPR)- Pressure_Controller both have terminated
end Pressure_Controller;
begin

null; -- begin parallel execution
end Controller;

CHALMERS CHALMERS

Parallel solution Synchronization in Ada 95
Advantages: Rendezvous:
- the inherent parallelism of the application is fully exploited — For a task, there may be a number of entries that can be called
» pressure and temperature control do not block each other by other tasks
« the control functions can work at different frequencies — Entries are declared in the specification of the task:
* no processor capacity are unnecessarily consumed task P is -- specification of P

« the application becomes more reliable entry E1 (i : in integer); -- one input parameter (i)
entry E2; -- no input parameters
Drawbacks: end 2/
— the parallel tasks share a common resource — A specification of a task may only contain declarations of entries
» the screen can only be used by one task at a time — Entries are called from another task using:
o a third task is needed for controlling the access to the screen ; B T
P.El(n); -- cal with argument (n)
o tasks must be able to communicate with each other, which requires P.E2; -- call without argument

a run-time system for synchronization and information exchange

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #2
Updated January 16, 2011

CHALMERS

Synchronization in Ada 95 Synchronization in Ada 95
Rendezvous (cont'd): Rendezvous (cont'd):
— In the body of a task there should be at least one accept — Multiple tasks can call a certain entry E in task P.
construct for each declared entry. e The calling tasks are put into a wait queue in the order of the
e When P reaches the accept construct and another task Q has called made calls (i.e., FIFO, first-in-first-out).
the corresponding entry, a rendezvous occurs between P and Q. o Just one task at a time can perform rendezvous with P.
¢ The tasks simultaneously execute the statements in the accept o Every time the execution in P reaches an accept construct
construct; the task that arrived first will have to wait. for E, the first task in the wait queue is selected.
- Examples of accept constructs: — There may be multiple accept constructs for the same entry in
accept E1 (i : in integer); -- for data exchange a task. The current point of execution then decides which
accept construct will be selected.
accept E2; - nchronization ¢ Should be avoided! The program code becomes more difficult
B to understand.

CHALMERS CHALMERS

Example: simple buffer Example: simple buffer

Problem: Write a server task Simple_Buffer that works as a storage Access graph:
buffer for a data record of type data.

Task Y

Y
E =
Simple_Buffer
TaskZ
)
7

Called by client tasks in the following way:

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011

Updated January 16, 2011

CHALMERS

Example: simple buffer

task Simple_Buffer is
entry Write(d : in data);
entry Read(d : out data);
end Simple_Buffer;

task body Simple_Buffer is
buffer : data;

begin
Toop
accept erte(d : in data) do
buffer := d; -- save client data in buffer
end Write;
accept Read(d : out data) do
d := buffer; -- return buffer data to client
end Read;
end loop;

end Simple_Buffer;

CHALMERS

Synchronized solution

task Screen_Contro r is
entry Write_p(PR : Pressure_Reading);
entry Write_t(TR : in Temp_Reading);

end Screen_Controller;

task body Screen_Controller is
be?
oop

accept Write_p(PR : in Pressure_Reading) do
put_p(PR); -- write pressure value to screen
end Write_p;

accept Write t(TR : in Temp_Reading) do
put_t(TR); -- write temperature value to screen
end Write_t;

end loop;
end Screen_Controller;

Lecture #2

Example: control system

Thermometer

| Pressure sensor

: _1_

Switch

1)
T

Screen = Pumplvalve

CHALMERS

Synchronized solution

Procedure Controller is

task Temp_Controller;
task Pressure_Controller;

task body Temp_Controller is

begin
Toop
Read(TR);
Temp_ Convert(TR HS):
Write(HS);
Screen Controller Write_t(TR); -- entry call

end loop;
end TempJ:ontrol ler;

task body Pressure_Controller is
be |n

Bead(PR)
Pressure_Convert(PR,PS);
Write(PS);
Screen_Controller.Write_p(PR); -- entry call
end loop;
end Pressure_Controller;

begin

null; -- begin parallel execution
end Controller;

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011
Updated January 16, 2011

CHALMERS

Synchronized solution

Drawbacks:

— the independence of the control functions are not considered

o the screen task writes pressure and temperature every other
call (predetermined sequences)

¢ the sequential coding of the accept constructs in the screen task
introduces a (unnecessary) dependence between the tasks
Temp_Controller and Pressure_Controller

e this solution works poorly if one of the control functions needs to
write its value more often than the other (i.e., using different
iteration frequencies)

= the screen task needs a mechanism for considering available
accept constructs simultaneously

CHALMERS

Synchronization in Ada 95

Alternative rendezvous (cont'd):
— A corresponding action can be made for a calling task:

select
P.E1 (...) -- try to establish contact

else

-- perform error handling

end select;

Lecture #2

Synchronization in Ada 95

Alternative rendezvous:

— Multiple accept alternatives can be "open” at the same time in
the called task by enclosing them with select:

select

accept E1 (...) do
o A

accept E2 (...) do
else

Ca -- do something else

end select;

— If rendezvous cannot occur instantly, a task can refrain from

waiting and instead choose the else alternative in the select
construct.

CHALMERS

Improved screen task

task Screen_Controller is
entry Write_p(PR : in Pressure_Reading);
entry Write_t(TR : in Temp_Reading);
end Screen_Controller;

task body Screen_Controller is
begin
oop
select
accept Write p(PR : in Pressure_Reading) do
put_p(PR); -- write pressure value to screen
end Write_p;
or
accept Write_t(TR : in Temp_Reading) do
put_t(TR); -- write temperature value to screen
end Write_t;
end select;
end loop;
end Screen_Controller;

EDA222/DIT161 - Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #2
Updated January 16, 2011

Synchronization in Ada 95 Synchronization in Ada 95

Alternative rendezvous with time-out: Alternative rendezvous with time-out (cont'd):
— If rendezvous does not occur in a select construct within a

— A corresponding action can be made for a calling task:
certain amount of time, the called task can abort its wait:

select
select OrP4EL (...
accept E1 (...) do delay 10;
or .
accept E2 (...) do end select;
or
delay 10; - r 10 s s for contact

. Thlng»
end select;

— If no call is made to any of the open accept alternatives within
the given amount of time, the delay alternative will be chosen.

Synchronization in Ada 95

Conditional rendezvous (with guards):
— An accept construct enclosed by select can have a guard:

select
when Condition_1 =>
accept E1 (...) do
or
when Condition 2 =>
accept E2 (...) do

end séiéct;
— Only alternatives where the condition is true are "open” and can

be selected

— The conditions are calculated (in arbitrary order) every time the
select construct is executed

— If no alternatives are open, the program will terminate with error
code PROGRAM_ERROR

