
Interprocess Communication

The original UNIX systems had pipes as the only
interprocess communication method.

An improved interprocess communications interface was
designed for 4.2BSD.

The primary goales for the 4.2BSD interprocess
communication were:

1. Standardized interface for network communication.

2. Making communication between unrelated local
processes possible.

3. Provide communication facilities suitable for local area
networks for access to services such as fileservers.

1

Interprocess Communication

Specific goals for the new BSD interprocess
communication:

Transparency: Communication between processes
should not depend on the processes being at the same
machine.

Efficiency: Network implementations need to be efficient.
Extra layers should not be used in the implementation
unless absolutely necessary for proper functioning.

Compatibility: Existing naive processes should be able to
use the interface without change. More advanced
facilities are provided for sophisticated processes (that
need to be written for the new interface).

2



Interprocess Communication

The goals led to the following requirements:

• The system must support networks that use different
communication protocols. The notion of a
communication domain was defined for this purpose.

• A unified abstraction for a communication endpoint is
needed that can be manipulated with a file descriptor.
This communication endpoint was called a socket.

• The semantic aspects of communication must be made
available to applications in a controlled way. The socket
types were introduced for this purpose.

• Processes must be able to locate communication
endpoints so that they can communicate without being
related. Thus it must be possible to attach a name to a
socket.

Common socket types are stream sockets, datagram
sockets and sequenced packet sockets.

3

Socket - Server code

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <sys/un.h>
#include <unistd.h>
int main()
{

int sd, ns, len;
struct sockaddr un server address, client address;
char buf[256];
//create a socket for the client
sd = socket(AF UNIX, SOCK STREAM, 0);
//Name the socket
server address.sun family = AF UNIX;
strcpy(server address.sun path, "sockname");
len = sizeof(server address);
if (bind(sd, (struct sockaddr *)&server address, len) < 0)

printf("Cannot bind\n");

//Create a connection queue and wait for clients.
listen(sd, 2);
while(1) {

//Accept a connection.
len = sizeof(client address);
ns = accept(sd, (struct sockaddr *)&client address, &len);
if (fork() == 0)
{ /* child */

close(sd);
read(ns, buf, sizeof(buf));
printf("server read %s\n",buf);

}
close(ns);

}
}

4



Socket - Client code

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>
int main ()
{

int sd, len;
struct sockaddr un address;
int result;

//create a socket for the client
sd = socket(AF UNIX, SOCK STREAM, 0);

//Name the socket as agreed with the server
address.sun family=AF UNIX;
strcpy(address.sun path,"sockaddr");
len = sizeof(address);

//Now connect our socket to the server’s socket
result = connect(sd, (struct sockaddr *)&address, len);
if(result == -1) exit (1);
write(sd, "hi guy", 6);
//Close the socked
close(sd);
return (0);

}

5

Socket System Calls

Several new read and write system calls were implemented
for the socket interface (Table 11.1).

There are also several other new system calls such as:

getsockname Return the locally bound name of a socket.

getpeername Return the address of the remote end of the
socket connection.

There are also two ioctl-style calls - setsockopt and
getsockopt - to set and retrieve various parameters that
control the operation of a socket.

6



Implementation structure

• The interprocess-communication facilities are layered
on top of the networking facilities (Figure 11.2).

• Data flows through the socket layer to the network
protocols layer and down to the network interfaces layer
and up again in the receiving end.

• State required by the socket level is fully encapsulated
within the socket layer and state related to the protocols
are maintained in data structures specific to each
protocol.

• Within the socket layer, the socket data structure (Fig.
11.7) is the focus of all activity.

• For system calls related to sockets, most of the work in
the system calls are performed by a number of
second-level routines.

• This second-level routines all have a name with the
prefix so (Table 11.2).

7

Memory Management

• Protocol implementations must frequently prepend
headers or remove headers from data.

• As packets are sent, buffered data may need to be
divided into packets and received data may need to be
combined to a single record.

• A special purpose memory-management facility exist in
the kernel for use by the networking systems.

• This memory management facility is based on the mbuf
data structure.

8



Mbufs

• Mbufs (Memory buffers) are fixed size data buffers. All
mbufs has the same basic header (Fig. 11.3).

• The m len field shows the number of valid bytes in the
mbuf starting at the location pointed to by m data.

• The data structure makes it easy to remove data at the
start or at the end of the buffer.

→ To remove data at the start of the mbuf, the m data
field is increased and m len is decreased.

→ To remove data at the end of an mbuf, the m len field
is decreased.

• Multiple mbufs linked together by the m next field is
treated as a single object.

• Chains of mbufs linked together with the m nextpkt field
is called a queue.

9

Mbufs

The structure of an mbuf can be modified by the m flags
field:

M EXT The mbuf uses a storage area external to the mbuf
(fig. 11.5).

M PKTHDR This mbuf have an extra header that gives
more information about the packet stored in the mbuf
chain. Only used at the first mbuf in a chain (fig. 11.4).

M EOR This mbuf completes a record

The external data area used by an mbuf is called a mbuf
cluster. Several mbufs can refer to the same external data
area.

10



Storage-Management Algorithms

• Older single-processor versions of BSD used the
standard kernel memory allocator to allocate memory
for mbufs.

• This method is not efficient on a SMP machine.

• FreeBSD 5.2 gives each CPU a private container of
mbufs and clusters using the zone allocator.

• There is also a shared general pool of mbufs that are
used if the per-CPU list is empty.

The following routines are defined for mbuf allocation:

m get() Allocate an mbuf.

m gethdr() Allocate an mbuf with an extra header.

m clget() Add an external cluster to an mbuf.

m free() Free a single mbuf.

m freem() Free a chain of mbufs.

11

Mbuf Utility Routines

Many routines are defined within the kernel for
manipulating mbufs:

m copym() Make a copy of a chain of mbufs to another
chain of mbufs. It the mbufs refer to an
external cluster, the copy will reference the
same data.

m copydata() Copy a chain of mbufs to a normal memory
area.

m adj() Adjust (decrease) the data in an mbuf (by
adjusting the m len and m data fields)

M PREPEND() Macro that prepends a specified number
of data bytes to an mbuf.

12



Data structures

• Sockets are described by a socket struct that is
dynamically created at the time of a socket system call.

• The four socket types currently supported are shown in
Table 11.3.

• Communication domains are described by a domain
data structure (fig. 11.6) that is statically allocated.

• Communication protocols within a domain are
described by a protosw struct that is also statically
allocated for each protocol.

• The domain struct is described in Fig. 11.6.

Some fields in the domain struct:

dom name ASCII name of the communication domain.

dom family Identifies the address family used by the
domain (Table 11.4).

dom protosw Points to a table of functions that implement
the protocol routines.

13

Sockets

• The socket struct is described in Fig. 11.7.

• Storage for the socket struct is allocated by the UMA
zone allocator.

• The socket struct contains information about the
socket’s type, protocol and state (Table 11.5).

• At system call level, sockets are located via the file
descriptor.

• Data being sent or received are queued at the socket as
a list of mbufs.

• Data that is written on a socket is passed to the network
subsystem as a chain of mbufs for immediate
transmission.

• Received data are passed up to the socket layer in mbuf
chains, where it is queued until the application makes a
read system call.

• The maximum amount of data that may be queued in a
socket data buffer is limited by the high watermark.

• The network protocols can examine the high watermark
and use it for flow control.

• There is also a low watermark in each socket data
buffer.

14



Sockets and Accept

Sockets used to accept incoming connections maintain two
queues of sockets associated with connection requests:

• The so incomp field represents a queue of sockets that
need to be completed at the protocol level.

• The so comp field heads a list of sockets that are ready
to be returned to the listening process.

15

Socket Address

• Sockets may be assigned an address so that peers can
connect to them.

• The socket layer do not store addresses, but pass them
down to the protocol layer.

• Each protocol has its own kind of address and the
socket layer must be able to handle them all.

• The sockaddr struct (Fig. 11.8) is used to exchange
addresses between the socket layer and the lower
layers.

• The sockaddr struct always starts with a sa len field
and a sa family field, the remainder is dependent on
the sa family field (Fig 11.9).

16



Connection Setup

• For two processes to pass information between them,
an association must be set up.

• The steps in creating an association involves the
system calls, socket, connect, listen and accept.

• We only considers connection based protocols here.

• Connection establishment in a client-server model is
asymmetric.

• If a socket is used to accept incoming calls, a listen
system call must be used.

• The listen system call invokes solisten():

→ Establish an empty queue at so comp and set the
socket in SO ACCEPTCON state.

→ Inform the supporting protocol that the socket will be
receiving connections.

→ A parameter to listen specified the max number of
connections that will be queued at so comp.

17

Connection Setup

Once a socket is set up to establish connections, the
remainder is performed by the protocol layers.

• For each connection established at the server side a
new socket is created with the sonewconn() routine.

→ These new sockets may be placed at the so incomp
queue while processed or put directly at the so comp
queue awaiting an accept system call (Fig. 11.11).

• When an accept system call is made, the system checks
if a connection is present on the so comp queue.

→ If no connection is present, the process is put to
sleep until one arrives.

→ If a connection is present, the socket is removed from
the so comp queue and a file descriptor is allocated
to reference the socket and returned to the caller.

Client side.

An application that wants to connect uses the connect
system call.

• If the connecting socket is in unconnected state,
soconnect() makes a request to the protocol layer to
initiate a connection.

The state transitions during connection is shown in Fig.
11.10.

18



Date Transfer

Sending and receiving data can be done by any of several
different system calls (Table 11.1).

The system calls read and write can only handle sockets
that use connection oriented protocols, since they require a
file descriptor.

Datagram oriented protocols need extended system calls
like sendmsg and recvmsg that can take an address as
parameter.

Internally all transmit and receive requests are converted to
a uniform format and passed to the socket-layer sendit()
and recvit() routines.

19

Transmitting Data

The sendit() routine is responsible for gathering all
system-call parameters into the kernel’s address space
(with exception for the data) and call sosend().

sosend()

• Sosend() copies data from the user’s address space
into mbufs in the kernel’s address space and calls the
protocol layer to transmit the data.

• Sosend() is also responsible for putting processes to
sleep if it is insufficient space in the socket’s send buffer.

• For sockets that guarantee reliable data delivery, a
protocol will normally maintain a copy of all transmitted
data in the sockets send queue until it acknowledged by
the receiver.

20



Receiving Data

The recvit() routine does similar tasks as sendit() and then
calls soreceive().

soreceive()

• Soreceive() checks the socket’s state for incoming data,
errors or state changes and processes queued data
according to its type and actions specified by the caller.

• Data in the receive buffers are differently organized for
stream, datagram and sequenced-packet sockets.

• In the general case, the receive buffers are organized
as a list of buffers (Fig. 11.12).

• Receive calls normally return as soon as the low
watermark (default 1 byte) is reached.

• If no data or error exists, soreceive() puts the process to
sleep.

• When data arrive for a socket, the supporting protocol
notifies the socket layer by calling sorwakeup().

21

Socket Shutdown

Closing a socket may be a complicated operation for the
following reason:

• In certain situations as when a process exits a close call
is never expected to fail.

• However, if a socket promising reliable data delivery is
closed with data still queued, the system must attempt
to transmit the data perhaps indefinitely.

The socket layer compromises in an effort to address this
problem yet maintaining the semantics of close.

• State transitions for close is shown in Fig 11.13.

• If a socket in connected state is closed, a disconnect is
initiated, the socket marked to indicate that the
filedescriptor is no longer referencing it and the close
returns successfully.

• When the disconnect request completes, the network
routines notifies the socket layer and the resources are
reclaimed.

• Connection oriented protocols normally attempt to
transmit any queued data after close returns.

22


